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The Wavelet-NARMAX Representation: A Hybrid Model Structure Combining
Polynomial Models with Multiresolution Wavelet Decompositions

S.A. Billings, H.L.. Wei
Department of Automatic Control and Systems Engineering, University of Sheffield
Mappin Street, Sheffield, S1 3JD, UK

A new hybrid model structure combing polynomial models with multiresolution wavelet decompositions is
introduced for nonlinear sy'stem identification. Polynomial models play an important role in approximation theory,
and have been extensively used in linear and nonlinear system identification. Wavelet decompositions, in which the
basis functions have the property of localization in both time and frequency, outperform many other approximation
schemes and offer a flexible solution for approximating arbitrary functions. Although wavelet representations can
approximate even severe nonlinearities in a given signal very well, the advantage of these representations can be lost
when wavelets are used to capture linear or low-order nonlinear behaviour in a signal. In order to sufficiently utilise
the global property of polynomials and the local property of wavelet representations simultaneously, in this study
polynomial models and wavelet decompositions are combined together in a parallel structure to represent nonlinear
input-output systems. As a special form of the NARMAX model, this hybrid model structure will be referred to as the
WAvelet-NARMAX model, or simply WANARMAX. Generally, such a WANARMAX representation for an input-
output system might involve a large number of basis functions and therefore a great number of model terms.
Experience reveals that only a small number of these model terms are significant to the system output. A new fast
orthogonal least squares algorithm, called the matching pursuit orthogonal least squares (MPOLS) algorithm, is also

introduced in this study to determine which terms should be included in the final model.

Keywords: Nonlinear system identification; NARMAX models; wavelets; orthogonal least squares.

1. Introduction

Modelling and identification of nonlinear systems have been extensively studied in recent years, and several
model structures and modelling approaches have been developed. These include the polynomial NARMAX
(Nonlinear AutoRegressive Moving Average with eXogenous inputs) model (Billings and Leontaritis 1982,
Leontaritis and Billings 1985), neural networks (Chen et al. 1990a, Billings et al. 1992, Chen and Billings
1992b, Yamada and Yabuta 1993, Delgado et al. 1995), radial basis function networks (Chen et al 1990b,
1992a), wavelet networks (Zhang and Benveniste 1992, Zhang 1997) , fuzzy logic based models (Wang 1992),
neuro-fuzzy networks (Brown and Harris 1994), wavelet multiresolution decompositions (Billings and Coca
1999, Coca and Billings 2001), support vector machines and kernel methods(Campbell 2002, Lee and Billings
2002), and other basis function expansion based models. In input-output observational data based modelling, the
main task is to determine a suitable model structure, which involves the smallest number of input variables (the
lagged inputs and outputs for dynamical systems) and adjustable parameters. In practice, however, model
parsimony and accuracy are difficult to achieve simultaneously. Therefore, the trade-offs between model
parsimony, accuracy, and validity have to be considered. Another property often considered while modelling a

dynamical system is the prediction (forecasting) capability of the model.

Among existing model structures, polynomial based model structures play a very important role in linear and

nonlinear system modelling and identification. The well-established linear and nonlinear models such as AR(X),
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ARMA(X) (Ljung 1987) and bilinear models, which have been widely used in linear and nonlinear system
modelling, all belong to the polynomial model class and can be viewed as special cases of the polynomial
NARMAX model (Billings and Leontaritis 1982, Leontaritis and Billings 1985, Pearson 1995, 1999).
Polynomials are globally smooth functions. It has been proved that any given continuous function on an infinite
interval can be uniformly approximated using a polynomial (Schumaker 1981). Experience shows that even a
simple polynomial model can track the linear trend of a dynamical system very well. However, a polynomial
model of a low degree possesses a poor ability to track severe nonlinear behaviour, such as jumps and

discontinuities.

Local function expansion based model structures including the wavelet decomposition techniques provide a
powerful tool for representing nonlinear signals, even severely nonlinear signals with discontinuities. Among
almost all the basis functions used for the purpose of approximation, few have had such an impact and spurred so
much interest as wavelets. Wavelet decompositions outperform many other approximation schemes and offer a
flexible capability for approximating arbitrary functions. Wavelet basis functions have the property of
localization in both time and frequency. Due to this inherent property, wavelet approximations provide the
foundation for representing arbitrary functions economically, using just a small number of basis functions.
Wavelet algorithms (Coca and Billing 2001) process data at different scales or resolutions, and this makes
wavelet representations more adaptive compared with other basis functions. Although wavelet decompositions
can represent nonlinear signals very well, the advantage of these decompositions might be lost when a signal

displays linear or low-order nonlinear trends.

In order to sufficiently utilise the global property of polynomial models and the local property of wavelet
representations simultaneously, polynomial models and wavelet decompositions will be combined together in a
parallel way to represent a nonlinear input-output system in the present study. As a special form of the
NARMAX model, this hybrid model structure will be referred to as the WANARMAX model.

One of the common problems in nonlinear system modelling is the curse of dimensionality. Theoretically, an

n-dimensional system should be represented using an n-variate function. However, for large n, it is almost

always true that the observational data only forms a sparse distribution in the space R". Consequently, the
identification problem, which can be converted into a regression problem in most cases and for most model
structures, is often ill-posed and various methods have been employed to resolve this problem. One way of
representing a continuous function of several variables is to decompose a multivariate function into a
superposition of a number of continuous functions with fewer variables and this is the essence of Hilbert’s 13%
problem, which was resolved by Kolmogorov. Several applicable approaches have been proposed to realize the
idea of representing multivariate functions using a superposition of a number of functions with fewer variables.
The projection pursuit regression algorithm (Friedman 1981), radial basis function networks (Chen et al 1990b,
1992a), and multi-layer perceptron (MPL) architecture (Haykin 1994) are among the representations that have
been studied for multivariate functions. The existing strategies that attempt to approximate general functions in
high dimensions are based on suppositions of additive functional submodels including the polynomial

NARMAX representation introduced by Billings and Leontaritis (1982, 1985), the multivariate adaptive

' regression spline (MARS) method introduced by Friedman(1991), and the adaptive spline modelling of

observational data (ASMOD) introduced by Kavli (1993).




Although experience shows that most systems in practice can be expressed as a supposition of a number of

low-dimensional submodels if the system variables are appropriately selected, a large number of potential model
terms might still be involved when expanding each functional component. Practice and experience show that
often many of the model terms are redundant and inclusion of redundant terms can result in a complex model
structure and the model may become oversensitive to the training data and is likely to exhibit poor generalisation
properties. It is therefore important to determine which terms should be included in the model. A new fast
orthogonal least squares algorithm, called the matching pursuit orthogonal least squares (MPOLS) algorithm, is

introduced in the present paper as one solution t0 the model term selection problem.

This paper is organised as follows. In Section 2, the wavelet transform and wavelet decompositions are
briefly reviewed. In Section 3, the Wavelet-NARMAX model structure, or simply WANARMAX, is introduced.
The model term selection problem is discussed in Section 4, where a new matching pursuit orthogonal least
squares (MPOLS) algorithm is proposed. Section 5 discusses the implementation of the WANARMAX model.
In section 6, two examples are provided to illustrate the applicability of the new modelling framework.

Conclusions are given in Section 7.

2. Wavelet transform and wavelet decompositions

Wavelet analysis is based on a wavelet prototype function, called the analysing wavelet, mother wavelet, or
simply wavelet. Temporal analysis is performed using a contracted, high-frequency version of the same function.
Because the signal to be studied can be represented in terms of wavelet decompositions, data operations can also

be performed using the corresponding wavelet coefficients.

2.1 The continuous wavelet transform
From wavelet theory, the continuous wavelet transform (CWT) of a given function f € L*(R) with respect to

the mother wavelet (0 is defined as (Chui 1992, Daubechies 1992).

W, £)(@,b) =[P (X )

where (p:a‘b) (x) indicates the complex conjugate of the function @, ;, (x), which is obtained by dilating and

translating the mother wavelet @(x) as follows

1
Py (X)=a Za{x bj, a€e R",beR @
a
The CWT (12) is invertible subject to a mild restriction imposed on the wavelet ¢
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where ¢ is the Fourier transform of the function ¢ . Equation (1) states that the continuous wavelet transform
(W, f)(a,b) is the correlation of f(x) with a scaling (dilation) a and a shift (translation) b . The inverse
transform (4) guarantees that the function f(X) can be reconstructed from the CWT and it can be interpreted in
at least two different ways. On the one hand, this shows how to reconstruct the function f from the wavelet
transform and, on the other hand, the inverse transform gives a recipe showing how to write any arbitrary f as a

superposition of the wavelet functions @, ,, (x) .

2.2 Wavelet series
In practical applications the CWT is often discretised in both the scaling and dilation parameters for
computational efficiency. Based on this discretization, wavelet decompositions can be obtained to provide an

alternative basis function representation. Take the univariate wavelet as an example. The most popular approach
to discretise the CWT is to restrict the dilation and translation parameters to a dyadic lattice as a = 27 and

b=k2" with J-k € Z . Other non-dyadic ways of discretization are also available.

Let@,; , (x) = 272 (27 x — k) be a wavelet family with respect to j,k € Z . It is can be proved that under

some mild assumptions for @, , (x),any f € L*(R) can be uniquely described as (Chui 1992)

=3 Y0, - )

Jj=—oa k=—co

where the convergence of the series in (24) is in L (R) , namely

I K,
J,,Jz.lé,r.l}(,_—)m f(x) - J;Ja k;(lcj,k¢j'k (x) =) ©6)

Eq. (5) is called a wavelet series. In comparison with the CWT, the wavelet series is more computationally

efficient. But this is obtained at the expense of increased restrictions on the choice of the basic wavelet @ . The

wavelet series (5) can be extended to the d-dimensional case by taking tensor products of one-dimensional

wavelets or by choosing the radial types of wavelets.

2.3 Mulitresolution wavelet decompositions
It is known that for identification problems based un the regression representation it is useful to have a basis

of orthogonal (semi-orthogonal or bi-orthogonal) functions whose support can be made as small as required and

which provides a universal approximation to any L*(R) function with arbitrary desired accuracy. One of the

original objectives of wavelet theory was to construct orthogonal (semi-orthogonal) basis in L*(R). The

principles for constructing orthogonal wavelets are as follows:

(i) The family{@,, (x) = 2722  x—k), j,k € Z} constitutes an orthogonal basis for the space L’ (R) ;

(i) There exists a function @, called a scaling function related to the mother wavelet ¢, such that the elements




of the family {@(f —k)} ez are mutually orthogonal;

(iiiy ForVj€ Z , the family {9;,(x)= 2292 x—k),k€E Z} constitute an orthogonal basis for L (R) ;

(iv) The basic function (¢ and the scaling function ¢ are related by some deterministic equations.
To satisfy the above aims, an orthogonal wavelet system can be constructed using multiresolution analysis

(MRA)(Mallat 1989, Chui 1992). Let WJ. (j€ Z) denote some wavelet subspaces, which are defined as the

closure of the linear span of the wavelet functions { @ ik } ez » namely

W;= Span{rpj,k,keZ} (N
which satisfy

er‘\WJ={®},foranyi¢j ®)

where the over-bar denotes closure. It follows that r (R) canbe decomposed as a direct sum of the spaces
W,;:
(R)=-@OW,OW, W, @ ©)

in the sense that every function fe L*(R) has a unique decomposition

f(X)=---+g-ﬁ(x)+g0(x)+g1(x)+---=Zgj(x) (10)

JeZ
The circles around the plus signs in (9) indicate “orthogonal sums”. The decomposition of (9) is usually called an

orthogonal decomposition of L*(R).

For each j € Z , consider the closed subspaces of L*(R)

Vj.-—----('BWj_z@Wj_l, jEZ (n
which have the following properties:
(i) .cv,cV,cV,c,
(i) (-U‘,/J_ y=L*(R) (theover-bar here indicates closure),
ez
(i) NV, =2
ez
(iv) Vj+1:Vj@Wj,VjE Z.
Q) f(x)e Vj<:>f(2x)er+1,VjeZ,
(vi) f(x)eVJ.c:»f(x—ka)er, vj. ke Z,
(vii) (0t — k) }iezisan orthogonal basis for V; .

It is clear that every function fe I (R) can be approximated as closely as desirable by the projections 4 i F

inV,. Another important intrinsic property of these spaces is that more and more variations of P, fare
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removed as j — —oo . In fact, these variations are peeled off, level by level in decreasing order of the rate of

variations (frequency bands) and stored in the complementary W . , shown in property (iv).

Assume that the wavelet ¢ and the corresponding scaling function @ constitute an orthogonal wavelet system,

then any function f € I? (R) can be expressed as the following multiresolution wavelet decomposition

2o k

FO=X0, 0, )+ XD B0, (%) (12)
k
where the wavelet coefficients & ok and ﬁ ;4 can be calculated in theory by the inner products:
a,, =<f.d,, >:j FOP), (D (13)

B =< [0, >= [ f(0)0] (x)dx (14)

and j, is an arbitrary integer representing the lowest resolution or scaling level. Notice from (9) that if
Jo — —°°, the approximation representation (12) becomes the wavelet decomposition (5). In addition, based

on (11) and the properties of MRA, any function f € L*(R) can be arbitrarily closely approximated in v,

for some sufficiently large integer J. That is, for any € >0, there exists a sufficiently large integer J, such that

This means that in a wavelet series representation, the wavelet bases can be replaced by orthogonal scaling

<E (15)

FG=D <[>0,

functions with a large resolution scale.

Using the concept of tensor products, the multiresolution decomposition (12) can be immediately generalised
to the muti-dimensional case, where a multiresolution wavelet decomposition can be defined by taking the tensor
product of the one-dimensional scaling and wavelet functions (Mallat 1989). Let f € L*(R?), then f(x) can
be represented by the multiresolution wavelet decomposition as

291
f(-xp"'sxd) = Zaja,kq)jﬂ_k(xlv"'sxd)"* 22 Zﬁjiz\};jlz(xp,xd) (16)
k =1

jzjo k
where k = (k,,k,,,k,)€ Z* and

d

@, 4O, xy) =272 [To% x, ~ k) a7
i=1
d

W (xyeeaxy) =222 [0 5, — k) (18)

i=1
with 17(” = @ or ((scalar scaling function or the mother wavelet) but at least one n(i) =@ . In the two-
dimensional case, the multiresolution approximation can be generated, for example, in terms of the dilation and

translation of the two-dimensional scaling and wavelet functions
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lPJEZL), ks (xi 2 x?_) = (pj‘kl (x} )¢j,k2 (xz)

qu§3£] ks (xl H x2) = (pj.h (xl )(D.f,k‘_’ (xz)

19)

3. The WANARMAX model

The WANARMAX model is formed by combining a polynomial model with wavelet decompositions. In this
study, polynomial NARMAX models and semi-orthogonal multiresolution wavelet decompositions will be

considered and combined in a parallel way.

3.1 The NARMAX representations for nonlinear input-output systems

In the past few decades, modelling and identification techniques for nonlinear systems have been extensively
studied with many applications in approximation, prediction and control. Several nonlinear models have been
proposed in the literature including the NARMAX model representation which was initially proposed by Billings
and Leontaritis (Billings and Leontaritis 1982, Leontaritis and Billings 1985). The NARMAX model takes the

form of the following nonlinear difference equation:

Y@ = =D,y —n,),u(t =1),-,ult —n,),et =1),-,e(t ~n,)) +e() (20)
where f is an unknown nonlinear mapping, #(Z) and y(f) are the sampled input and output sequences,:

n,and n, are the maximum input and output lags, respectively. The noise variable e(Z) with maximum lag

n,, is unobservable but is assumed to be bounded and uncorrelated with the inputs and the past outputs. The

model (20) relates the inputs and outputs and takes into account the combined effects of measurement noise,

modelling errors and unmeasured disturbances represented by the noise variable e(t) .

One of the popular representations for the NARMAX model (20) is the polynomial representation which takes

the function f(-) as a polynomial of degree £ and gives the form as

¥ =0, + 3 £, ) +3 S fi (x, 0, @)+
5=l

iy=1 =i,
+ 3 Y fry (5, @, x, @), 3, (D) + () @1
o=l =i

where @, , ., are parameters, n =n +n, +n, and
LR ¥y u e

i}

i, G, @, @)%, @) =6, [ ][5, 0, 1sm< 2,
k=1

y(t—k) 1<k<n,
x, () = ut—(k—n,) n, +1<k<n, +n, (22)
e(t—(k—nywnu)) ny+n“+1SkSny+nu+ne
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The degree of a multivariate polynomial is defined as the highest order among the terms. For example, the
degree of the polynomial h(x, ,Jz.'z,xz’)=a]xi4 86X, + a3x12x2x32 is £ =2+1+2=5. Similarly, a
NARMAX model with polynomial degree £ means that the order of each term in the model is not higher than £ .

The NARX model is a special case of the NARMAX model and takes the form

y@) = f(y =D, -,y —n,)u@@ =1, -,ult—n,)) +e) (23)

Similar to (21), (23) can be described using a polynomial representation with

y(-k), 1<k<n,
x, ()= (24)
ut—k+n), n+lsks<n=n +n,

3.2 The wavelet-based AVONA expansion

Generally, a multivariate nonlinear function can often be decomposed into a superposition of a number of

functional components via the well known functional analysis of variance (ANOVA) expansions as below

y(r)=f(x (t),xz(t),---,x (t))
—fo+2f(x @)+ D f 00,0+ Y F (2, x,) + -

I=i<j<n I<i<j<k<n

+ 2 f,‘l,'z...,'m (le (I), sz (I)a Ty -x;'m (t)) ol f;z...n (xl (t)z X, (I)a T, X, (t)) + 8(1) (25)

18§ <+ <i, <n
where the first functional component f; is a constant to indicate the intrinsic varying trend; Jis ffj ,ot, are
univariate, bivariate, etc., functional components. The univariate functional components f;(x,) represent the
independent contribution to the system output that arises from the action of the ith variable X, alone; the
bivariate functional components f (x; 2 X ) represent the interacting contribution to the system output from the
input variables x; and x;, etc. Let X, (1) (k=1,2,...,n) be defined as (22) or (24), the ANOVA expansion (25)
can then be viewed as a special form of the NARMAX or NARX models for dynamic input and output systems.

The expansion (25) can be referred to as the ANOVA decomposition of the NARAMX or NARX models.

Although the ANOVA expansion (25) involves up to 2" different functional components, experience shows that

a truncated representation containing the components up to the bivariate functional terms is often sufficient

) = f, +Ef &, @)+ 3 £, G, (0,1, (1) +e(t) (26)

p=1 p=l g=p+1

This can often provide a satisfactory description of y(#) for many high dimensional problems providing that the

input variables are properly selected. The presence of only low order functional components does not necessarily

imply that the high order variable interactions are not significant, nor does it mean the nature of the nonlinearity

* of the system is less severe. An exhaustive search for all the possible submodel structures of (25) is demanding

and can be prohibitive because of the curse-of-dimensionality. A truncated representation is advantageous and




practical if the higher order terms can be ignored. In practice, the constant term [, can often be omitted since it

can be combined into other functional components.

In practice, many types of functions, such as kernel functions, splines, polynomials and other basis functions
can be chosen to express the functional components in model (25) and (26). In the present study, however,

mutiresolution wavelet decompositions will be chosen to describe the functional components. The functional
components [, (x,(?)) (p=1.2,...,n) and Jog (X, @), x, (1)) (1S p<g=<n) can be expressed using the

multiresolution wavelet decompositions (12) and (16) as

f,(x, @) = Zajf’,wh,k(x,,(r)wzz 200, (x, (). p=12~n, 27)

Zi k

S oq (e, @), () = 2 Za§f1?‘2 i (X, OB, (3, (1))
+ Z 5 2 BLDVg,, (x, P, (x, (1))

Zj ko ky

* EZZ ks Pty (5 ()4, (x, )

J2i k

+ 222 0P, (X, )0, (x,(2). 1Sp<g<n. (28)

i2j &

3.3 The WANARMAX model

The wavelet- NARMAX model, or simply WANARMAX, which incorporates a polynomial NARMAX model

and a multiresolution wavelet decomposition in a parallel way, can be defined as
Y@ = f@) = f7x@) + f7 (@) + [EED) +e() (29)

where  x(¢) =[x, (1), x,(1),"--, x, (1)]" and X, (2) (k=12,...,n) are defined as in (24), f'(x(t))is a
polynomial model; £ (x(2)) is a wavelet decomposition model; and fZ(£(1))is a polynomial model with
respect to the noise variable e(t) and &(t)=[e(t—1),e(t —2),--,e(t—n 17 The

submodels f* (x(2)), f¥ (x(2)) and .fE(&(r)) can be combined into the WANARMAX model (29) in

various forms and the following are some examples

£ @) =a, +2apxp 0 (300
FED) =a, + Zapxp ® +2 ibm x, (), ©) (30b)
£ (x(2)) =§i}fp (x, @) (31a)
[V (@) = Zf (%, (r))+2_lq2pfp,,, (x, (0), x, (£)) (31b)
FROEE = Z:lcpe(t -p) ' (322)




fEE@) = Ec e(t - p)+ E Zcpqe(r - ple(t—q) (32b)

RN = Zc e - )+22cme(t— Ye(t — )+22dpqxp(t)e(r—q) (32¢)

where the functional components f, (x,(¢)) (p=1.2,....n) and [, (x,(),x, (1)) (1< p<g<mn) in (29)

can be expressed using the multiresolution wavelet decompositions (27) and (28). Take (30b),(31b) and (32b) as
an example, the WANARMAX model (29) can be described as

y(t)=a0+2n:apxp(t)+i ibm x,(0)x, @)

p=l q=p+l

+22a§f’z¢h 0+ 3T B50,,05,0)

p=l jzj, k

* 2 2 2 J(F;m’]‘?(}f)ﬂ ¢}1 &y (t))¢fz-k2 (xli' (t))

Ep<gsn & k;

+ Y XY BN, (x, 009, (x, ()

I€p<qsn jzj, k ko

+ Y YD B, (x, (O, (%, 0)

1€p<qsn jzj, k ks

* 2 2 2 2 ffi?.)f{c:)qgj‘kl (xp (t))¢j.kz (xq (t))

I<p<gsn j2j, k ks

+2cpe(r—p)+220Pqe(t-p)e(t—q) L e(t) (33)

p=l p=lq=p
For a selected wavelet ¢(-) and the scaling function @(-) , once the maximum lags n y» M, and n, are given,

and the initial and highest resolution scales in the multiresolution decomposition are determined, the model (33)

can be rearranged and converted into a linear-in-the-parameters regression model of the form
M, M, M
P E
YO =36"pf )+ .07 " 0)+ Xﬂk PE@) +e(r) (34)
i=1 j=l k=1

where the regressors p,.‘p(t),p:,.v (?) and pf(l‘)(i =12+ M; =12 My k=12, M;) are
related to the autoregressive model £ (x(¢)), the wavelet decomposition model f¥ (x(z)) and moving
average model f © (£(2)) , respectively. 6 ,ﬂw and 0, (i=12,\M; j=12,---M,; k=12,---,M,)

are parameters to be estimated. M, =1+ (n, +n,)(n, +n, +1)/2,M, =n, and M, depends on not
only the wavelet type used but also the initial and the highest resolution scales.

A special case for the WANARMAX model (34) is the Wavelet-NARX, or simply WANARX model
@) = 2 07 b’ (1) + Z 0" p¥ (6) + e(t) 35)

Although many functions can be chosen as scaling and/or wavelet functions, most of these are not suitable in

system identification applications, especially in the case of multidimensional and multiresolution expansions. An

10




implementation, which has been tested with very good results, involves B-spline and B-wavelet functions in

multiresolution wavelet decompositions (Billings and Coca 1999, Coca and Billings 2001, Wei and Billings
2002). B-spline wavelets were originally introduced by Chui and Wang (1992) to define a class of semi-

orthogonal wavelets.
For large n, and n,, the model (34) might involve a great number of model terms or regressors. Experience

shows that often many of the model terms are redundant and therefore are insignificant to the system output and
can be removed from the model. An efficient algorithm is required to determine which terms should be included

in the model. The significant model term selection problem is discussed in the next section.

4. Model term selection
The selection of which terms should be included in the WANARMAX model (34) is vital if a parsimonious

representation of the system is to be identified. For a selected basic wavelet and associated scaling function, once

the initial resolution scale level is given, simply increasing the orders7, and 7, of the dynamic terms and the

highest resolutions in the multiresolution wavelet model will in general result in an excessively over
parameterised complex model. Fortunately, experience has shown that only a small subset of these model terms
are significant and the remainder can be discarded with little deterioration in prediction accuracy. Several
possible ways can be used to determine which terms are significant and should be included in the model,
including the well-known orthogonal least squares (OLS) algorithm. In this section, the forward orthogonal least
squares (OLS) algorithm is briefly summarised and then a new matching pursuit orthogonal least squares

(MPOLS) algorithm is introduced. '

The WANARMAX model (34) can be expressed as a linear-in-the-parameters equation of the form
e
y@®)=Y,6,p, ) +e) (36)
=1

where pm(t)=p:(t) foor m=L12,---,M,, pm(t)=p::(t) for M, +1<m<M,+M,, and

p,(0)=pi(t) foo M|+ M, +1<m<M =M, +M,+M,. 0, (m=12,---,M ) are parameters to

be estimated. Define
P™ ={p, :1<i, <M; k=12,-,m}, m=12,...M, 37)

The model term selection procedure is in fact an iterative process which searches through a nested term set in the

sense that

PO p® c..c P™ ... (38)

This makes both the complexity and the accuracy of the representation based on these term sets increase until a

suitable term set is found, that is, there exists an integer M , (generally M , << M), such that the model

M,
¥(1)=Y.0, p, @) +e() (39)
k=1

provides a satisfactory representation over the range considered for the measured input-output data.
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4.1 The forward orthogonal least squares (OLS) algorithm

A fast and efficient model structure determination approach can be implemented using the forward orthogonal
least squares (OLS) algorithm and the error reduction ratio (ERR) criterion, which was originally introduced to
determine which terms should be included in nonlinear models (Billings et al. 1988, 1989, Korenberg et al. 1988,
Chen et al. 1989). This approach has been extensively studied and widely applied in nonlinear system
identification (see, for example, Chen et al. 1991, Wang and Mendel 1992, Zhu and Billings 1996, Zhang 1997,
Hong and Harris 2001). The forward OLS algorithm involves a stepwise orthogonalization of the regressors and
a forward selection of the relevant terms in (36) based on the error reduction ratio (ERR) (Billings et al. 1988,
1989). The procedure can be briefly summarised as follows:

A compact matrix form corresponding to (36) is

Y=PO+E (40)
where Y =[y(1),y(2),--, )’(N)]T-PZ[PpPp' Py} D =lp; 0, p; (2, p; (N')]T,@z[gi,ﬁz,- =0y I
= =[e(l),e(2),--,e(N)]" . Assume that the regression matrix P can be orthogonally decomposed as

P=WA (41)
where A is an M X M unit upper triangular matrix and Wis an N X M matrix with orthogonal columns
Wy, W,, =+, W,, in the sense that W' W =D =diadd,,d,, --,d,,]. The space spanned by the orthogonal basis
W, W,,**,W,, is the same as that spanned by the basis set p,, p,,**, p,, - and (40) can be expressed as

Y=(PA")A®)+E=WG+E (42)
where G =[g,,8,,"""» &m 1" is an auxiliary parameter vector, which can be calculated directly from Y and

W by means of the property of orthogonality as

G=D'W'Y (43)
or
YTw.
gl'sz:r; . i=1,27“'3M (44)

The parameter vector ® is related to G by the equation A® = G, and this can be solved using either a
classical or modified Gram-Schmidt algorithm (Chen et al. 1989).

The number M of all the candidate terms in model (36) is often very large. Some of these terms may be

redundant and should be removed to give a parsimonious model with only M o terms (M, <<M ). Assume

that the residual signal (f) in the model (36) is uncorrelated with the past outputs of the system, then the output

variance can be expressed as

Lyr :ii“g?w.?w.+—1-="’”=" (45)
N Nj—] @ N

. . M )
Note that the output variance consists of two parts, one is the desired output, (1/N) E ‘ ig? ij w; , which can
i=

be explained by the regressors, and the other part, (1/ N)E"Z, represents the unexplained variance. Thus

. M .
1/N )Z“f=l g2w! w, is the increment to the explained desired output variance brought by w,, and the ith

error reduction ratio, ERR,, introduced by W, , can be defined as
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ERR, =82 % 1009 = L
Y’y XYW w,)

This ratio provides a simple but effective means for seeking a subset of significant regressors. The significant

x100%, i=12,---,M, (46)

terms can be selected in a forward-regression manner according to the value of ERR, . Several orthogonalization

procedures, such as Gram-Schmidt, modified Gram-Schmidt and Householder transformation (Chen et al. 1989)
can be applied to implement the orthogonal decomposition. The improved version of this algorithm (Zhu and
Billings 1996) provides a significant reduction in the computations and is advantageous compared to the
classical Gram-Schmidt aléorithm when dealing with high order MIMO systems. Other recent studies by Hong

and Harris (2001) have proposed other improvements to this procedure.

Remark 1: The candidate terms that are not chosen in the first step are orthogonalized with respect to all

previously selected basis functions. Because of the orthogonality the j th term can be selected in the same way

as in the first step. w ; 1is the Jj th selected orthogonal term and g ; 1s the corresponding parameter. Any
numerical ill conditioning can be avoided by eliminating the candidate basis functions for which wf w; are less
than a predetermined threshold 7, for example, 7=10"" and r >10.

Remark 2: The assumption that the regression matrix P is full rank in columns is unnecessary in the iterative
forward OLS algorithm. In fact, if the M columns of the matrix P are linearly dependent, and assuming that the

rank in columns is L (<M) , then the algorithm will stop at the M, -th step.
Remark 3: If required, the procedure can be terminated at the M-th step (M, <L) when
M,
1- 2 ERR, < p, where 0 is a desired error tolerance, which can be learnt during the regression procedure.

i=1

The final model is the linear combination of the M o significant terms selected from the M candidate terms

{p,}2,

My
YO =3, 8w,(1)+e(0) @)
i=1
which is equivalent to
M,
YO =30, (x(t)) +e(t) (48)
i=1

where the parameters @@ = 6,,.0,, 6, 1" are calculated from the triangular equation AG°™® =@©X
0

with GO =[g1,g2,---,gM0 1" and

1 a, o i
0 1 e ay,
A=l 1 E (49)
D s 1 Bigs s,

The entries a;(1<i< j<M,) are given in the above OLS algorithm.
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4.2 Matching pursuit orthogonal least squares (MPOLS) algorithm

Note that in the forward Gram-Schmidt OLS algorithm, at each step all the unselected regressors are made to
orthogonalize with the previously selected regressors, and most of the computational cost is based on these
orthogonalization transforms. An iterated orthogonal projection algorithm, the matching pursuit method,
proposed by Mallat and Zhang (1993) is a simple regressor selection algorithm which is relatively
computationally efficient. But the matching pursuit algorithm is less efficient than OLS, since the number of
regressors selected by the matching pursuit algorithm is almost always larger than that selected by OLS for the
same given threshold value of approximation accuracy. A trade-off between the efficiency and the computational
cost is considered here by combining the advantages of the forward OLS with the matching pursuit algorithm to
create a new algorithm called the matching pursuit orthogonal least squares (MPOLS) algorithm. The algorithm

is described below.
For the output vector Y=[y(1),y(2),---,y(f\f)]T in (36) or (40), find a vector p, from the candidate
regressor family{py, p,, = P} , so that p, is the “best” matching regressor to ¥, i.e., p, makes the mean

squared error of the following linear regression
YO =c,p, ) +&,(0) (50)

achieve a minimum in the sense that

1 & 1 & |1
=& O==Y00-¢,p, O = mm{——}‘_,[y(t) ~CpPr (t)]""} 1)
N =1 N t=1 m | N =1
The “best” matching regressor p p, Can be found by means of a geometrical approach, see Figure 1. From Figure
i
Y
S
A—V"—dl
Pn Pn
Figure 1 Diagram of least squares algorithm
. 3) &)
VY'Y yp,p,
Y'p
1
||pm = ||Y||cos a=— (53)
| VPP
Thus
4
I e o
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Therefore,

i T

YT 2
£, =argmax{£—p—”)—,1SmSM} (55)
PulPm

set q,()=p, @), wB=q@), g = YTw)/(w'w,)., ERR =gl(w/ w)/(X"Y), and
n,(&) = y(©)—gw ().
At the second step, find a vector p, from the candidate regressor family{p,, :1Sm<M,m#/£,} , so that

P,, is the “best” matching regrssor to 77, . Following the approach in (51) and (55), £, should be chosen as

@ p.)’
Po P

m

€2=argmax{ ,1Sm$M,m¢f1} (56)

Set q,(t) = p,, (¢). Orthogonalize g, with W, as below

w, (57
1 Wi

Andset g, = (YT w,) /(Wi w,), ERR, = g2(wlw,) (YY) , and 1,(t) = 17,() — g,,(0).

Generally, at step £, select

T Z
{, =arg max{——(mf;p n)
m PuPn

,1_<_mSM,m¢El,m¢fz,-'-,m?ﬁf,{_l} (58)

Set g, (£) = p,, () and orthogonalize g, with w;,w,, --, W, ; as below

T T
w w, g W, q

ITq" ) i k w, —---—————-T“ d W, (59)
W, W, W, W, W Wiy

W, =g, —
Calculate g, = (Y w, ) (Wi w,), ERR, = g (w w)/(Y"Y), and setn), (t) =1, (1) — g, W, (1) -

A similar algorithm has been used for basis selection in wavelet neural networks (Xu 2002). Note that in the

MPOLS algorithm, only the most recently selected regressor ¢ ; = p ¢, at step j is made to be orthogonal with

the previous selected regressors ¢, = p,, (k=12,...j-1). Therefore, the computational load of the

orthogonalization procedure in OLS, which involves making all the unselected regressors orthogonal with the
previously selected regressors, is significantly reduced in the new MPOLS algorithm. Therefore, the
computational cost of the MPOLS algorithm is much less than that of the OLS algorithm, and the new algorithm
is much faster then most existing OLS and fast OLS algorithms.

In the MPOLS algorithm, any numerical ill conditioning can be avoided by eliminating the candidate terms for

which p,.T D, is less than a predetermined threshold 7 , for example, 7 = 107" and r210. w; is the jth

selected orthogonal term and g ; is the corresponding parameter. If required, the procedure can be terminated at

M,
the M ,-th step (M, < L) when 1— ZERRI. <, where O is a desired error tolerance, which can be

i=1
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learnt 'during the regression procedure. The final model is the linear combination of all the selected significant

terms in the form of (47) and (48).

Notice that, for the same problem, MPOLS may select different model terms (regressors) and different
numbers of model terms compared with OLS even for the same threshold value of termination. It is nearly
always true that the MPOLS selects more model terms than that of OLS. However, the first term selected by
both algorithms is always the same. The computational efficiency of the MPOLS algorithm compared with OLS
can be demonstrated using the CPU time required to perform a bench test example on the same computer. This is

illustrated in Table 1.

Table 1 The comparison of the computational efficiency between OLS and MPOLS

Number of selected
Cases | Data length Number of regressors (m) CPU time (sec)
(N) candidate regressors
M) OLS MPOLS OLS MPOLS
Case 1 500 565 12 20 23.23 2.03
Case 2 600 1321 9 15 119.73 10.29
Case 3 1000 705 21 44 226.38 22.15
Case 4 500 1153 110 112 1503.82 21.49
Note: The threshold values to terminate the OLS and MPOLS algorithms were the same.

5. Implementing a WANARMAX Model

This section discusses some practical problems in the implementation of a wavelet-NARMAX model and
summarizes the procedure for implementing a WANARMAX model. The implementation of a WANARMAX
model involves several practical issues including observational input-output data pre-processing, significant
variable selection, resolution scale determination in the wavelet decomposition submodels, and model validity

tests.

5.1 Significant variable selection

The first problem encountered in WANARMAX modelling is how to determine which variables should be
included in the model. For a linear regression model, the model terms and the variables are exactly the same,

they are the regressors. However, variables and terms are generally distinct in a typical nonlinear model. It is
often the case in practice that some of the variables x, (), X, (t),---, X, () in the model (29) are redundant and

only a subset of these variables is significant. Inclusion of redundant variables might result in a much more
complex model since the number of model terms increases dramatically with the number of variables.
Furthermore, including redundant variables might lead to a large number of free parameters in the model, and as
a consequence the model may become oversensitive to the training data and is likely to exhibit poor

generalisation properties. Therefore, it is important to determine which variables should be included in the

* model.
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The purpose of variable selection is to pre-select a subset consisting of the significant variables or to eliminate

redundant variables from all the candidate variables of a system under study prior to model term detection. It is

required that the selected significant variables alone should sufficiently represent the system.

5.2 Data pre-processing

The original observational input-output data u(f) and y(7) (t=1,2, ...,N) are often normalized into a standard
domain, for example the unit interval [0,1], for the convenience of implementation. This is especially true when
a compactly supported wavelet and/or a scaling function are used in the wavelet model (31). Taking the
univariate Haar wavelet (the first-order B-spline wavelet) as an example, it is much easier to select the starting
resolution level and the range of the shift parameters if the sample data has been normalized to [0, 1].

The modelling can then be performed in [0,1], and the model output can then be recovered to the original

system operating domain by taking the inverse transform.

5.3 Determination of the resolution scale and shift parameter

In theory, the multiresolution wavelet decomposition (12) and (16) are infinite expansions. In practice,
however, it is impossible to include infinite terms in these wavelet decompositions. Therefore, the infinite

decompositions are always truncated at appropriate dilations (resolutions) and translations.

Consider the one-dimensional multiresolution wavelet decomposition (12) and assume that the function
f(x) is defined in [0, 1] and X is an independent variable which is uniformly distributed in [0,1], that is, x
itself can be considered as “time”, then the basis functions (dilated and translated versions of the wavelet and
scaling function) in the multiresolution wavelet decomposition (12) are mutually orthogonal and the
decomposition is unique. Assume also that the Haar wavelet (the first-order B-spline wavelet) and scaling
function are used in the decomposition, then a truncated decomposition with the initial resolution scale jo and the

highest resolution scale jm.,=/ can be expressed as

2/01 J 24
F)= 2, 0+ DY B0, (%) (60)
k=0 J=Jg k=0

Clearly, the higher the upper resolution scale level J, the more accurate the approximation is. A recommended
approach for selecting the highest scale J is to utilize the features of the sampled signal, for example, the natural
frequency of the signal to be approximated. Assume that the maximum natural frequency of the sampled signals
is

the highest scale can be empirically chosen as J,, = [108, (Mf 1, )], Where M is a positive number,

max ?
say between 2*and 26 and [-] denotes taking the integer value of the corresponding number (Wei and Billings

2002).

In practical identification problems, however, the orthogonality of the mutiresolution wavelet decomposition

might be lost, since most observational data fail to satisfy the uniform distribution assumption. Also in dynamic

systems modelling, the variables, X, (f) (i=1,2,...,n) in (27) and (28) are usually the lagged outputs y(z-i)




[ 2

(i=12,- *y11,) or lagged inputs u(t-j) ( j=L2,---,n,), which are usually sparse in the normalized interval
[0, 1]. The empirical rule j . =[log,(Mf,,,)] for selecting the highest resolution scale can however still
be used.

For a compactly supported wavelet, the shift parameter & is determined by the corresponding resolution scale j.

For example, at a given scale j, the shift parameter k in the Haar wavelet multiresolution decomposition (61) is

chosen as k=01,---,2"". Generally, for a compactly supported wavelet ((x) with an integer

support S, =[0,K ], where K , is integer, the support for the dilated and translated wavelet
@ (x)= 21221 x~k) is [27k, 2-j(KA_ + k)], therefore, the shift parameter k at a resolution scale j

should be taken as — (K, —1) <k < 2771 —1. This is also true for a compactly supported scaling function

#(x).

5.4 Model validity tests
Several methods of model validation have been proposed for nonlinear system identification (Billings and

Voon 1986, Billings and Zhu 1995). The noise sequence &(f)in the NARMAX model (20) is assumed to be

independent, bounded and uncorrelated with the past inputs and outputs, and no other a priori information is

known. Let ]Ac() represent an estimated model for the system f'(-) , the residuals £() can be estimated as
e®)=y@®)- 3@

= }’(t) - f(}’(f —1):".1 y(r = ny),h'.(t _1)9"'=u(t _nu),E(t —1),,€(t _ne)) (61)
If the model structure and parameter values are correct, £(-) will be unpredictable from all linear and nonlinear

combinations of past inputs and outputs. For nonlinear SISO systems; this can be tested by computing the

following correlation functions (Billings and Voon 1986)

. ©)=6(0), Ve
Ve (2) =0, Vz
1¥q2, (7) =0, Yt (62)
Vi (r)=0, Y1

| ¥ e (r)=0, 720

where 12 (t) = u* (1) —u® (1) =u’*(t) — E[u*(1)], and the correlation function ¥ # (*) can be estimated as

N-1
Y @+
Ve (1) = —= (63)

‘j[ifz(r{fﬁm]
=1 =1
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The first two conditions in (62) form the traditional tests used in linear system identification. The remaining
three conditions involve cross correlation tests between the input and residuals, by which all possible omitted
nonlinear terms can be detected. In practice, if these correlation functions fall within the confidence intervals at a

given significance level (0 < @ <1), say @=0.05, which corresponds to the 95% confidence interval, the

model is viewed as adequate and acceptable. For large N (the data length), these confidence intervals are

approximately i1.96/ \[ﬁ )

Although the model validation tests are normally justified on the basis of the calculation of correlations
between the input and the residuals, Billings and Zhu (1995) showed that the use of outputs enhances the
performance of the tests and allows the number of individual correlation tests to be reduced. When the output is

introduced, only two tests are required
Y oy (7) = A6(7)
Y—_.(@)=0

(ye)u

for VT (64)

and these can be more efficient in cases of MIMO system identification.

An alternative approach for validating the model is to check the prediction capability of the fitted model. This
can reveal severe model deficiencies which would otherwise go undetected. The measure of the predictive
capability of a model is not based on the one-step-ahead prediction errors, but based on the multi-step-ahead (the
long-term) prediction errors. Generally, the observational data are split into an estimation set which is used to
identify the model, and a testing set (or validation set) which is used to judge the predictive ability of the model.
This is often referred to as cross-validation, and provides an efficient tool not only for validating the estimated -
model but also for the estimation of the model. The most powerful approach to validate an estimated model is to

check the model behaviour, using the model predicted output (MPO) defined as

j‘)mp{) (f) = f(j}mpn(t == 1)! Ty i)mpo(z - n). ),M(I - 1)1 : "u(t - nu),O,- o :O) (65)
The model predicted outputs are recursively estimated and are used to calculate the model prediction errors
€opo 1) = V(@) = Vo () (66)

where y(2) (t=1,2....,N) are the system measurements.

5.5 An iterative implementation procedure
The iterative identification procedure to implement a WAN ARMAX model consists of the following steps.
Step 1: Data pre-processing
For convenience of implementation, convert the original observational input-output data u(t) and y(#)
(t=12, ....N) into unit intervals [0,1]. The converted input and output are still denoted by u(z) and y(7).
Step 2: Determining the model initial conditions

This includes:
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(i) Provide values for My, N,.M,, p© and O, (where 0 and 0, are threshold parameters for terminating

the model term selection procedure, O is used in Step 3 and 0, in Step 4, notice in general 0, < 0).

(i) Set e(t)=0 for=1,2,....N.
(iii) If possible, select the significant variables from all the candidate lagged output and input variables

{y@—1),~, 3 —n, ) ult — 1), ut — 1, )} . This involves the model order determination and

variable selection problems.
(iv) Select a polynomial submodel f” (x(f)), a wavelet submodel f" (x(f)), and a noise model f BEEGND
from the representations (30a)-(32c).

(v) Determine the initial and the highest resolution scales. Generally the initial resolution scales j, and j, in

the wavelet models can be set to j, = j,=0, and the highest resolution scales J; and J, can be chosen

in a heuristic way.
Step 3: Identify the WANARX model
(i) Calculate the regressors pip (1) and p?’ () (i=12,--,M,;j=12,---,M,) which are related to the
the autoregressive models f (x(£)) and the wavelet decomposition model f* (x(f)). The regression
matrix P = [P”, P" ] of the WANARX model (35) are formed from these regreesors.
(ii) Select the significant terms in the autoregressive models f (x(f)) and the wavelet decomposition model

Y (x(f)) using the OLS or MPOLS algorithms to obtain parsimonious models of the form (47) and (48).

Step 4: An iterative loop to identify a WANARMAX model

(i) Set k=0 and estimate the initial residuals
V(@)= y(1)- 3@
=y(O) = (=D, y@ —n,),u(t 1), ut —n,)0,:-,0)
= y(®) - i’, 2w () (67)
i=1
where g,.(m = g. and WI_IO) =w,(i =1,2,---,M ) are the orthogonalized regressors and the parameters
estimated in Step 3 (if).

(i) Set k=:k+1. Select significant terms for the moving average model f © (£(¢)) , add these terms to the

model estimated in Step 3 (ii). Re-estimate the parameters for the updated model using the OLS or

MPOLS algorithms, and calculate the residuals € (k) () recursively using

eR ()= y(t)— F Oyt =1), -, y(t —n,)u(t =1), -, u(t —n,),e*P (¢ = 1),---,£“P (@t -n,))

=y~ Y.6p, ® (68)
j=1

or
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My+m,
(k) — (k) (k)
¥ @) =y0)- Y gPwh @) (69)
j=1
where m, is the number of the noise terms selected. The above recursive calculation will be terminated at

the kth iteration if one of the following the convergence tests is satisfied

(k) (k-1)

MO+’”’ gm - g"’l l
2 ——W < 51 (70)
and
EN:|(-:“" &)~ e*" (r)[2 <6, (71
t=1

where 51 and O , are two tolerance values for convergence testing. Numerous tests have shown that less than

10 iterations, typically 3-53 iterations, are sufficient for the algorithm to converge.

Step 5: Model validity tests
Apply model validity tests to evaluate the identified model. If the identified model does not satisfy the model
validity tests, change some of the initial model conditions in Step 2, especially conditions (i), (iv)and (v),

and repeat Steps 3 to 4.

6. Examples
Two examples, one a simulated system and one based on real data relating to a terrestrial magnetosphere

dynamic system, are given to illustrate the effectiveness and applicability of the new modelling framework.

6.1 Simulated example—a nonlinear system

The following nonlnear input-output system

_Y@-Dy@-2)+yt-Dy@—-3)+ y(-2)y(-3)
1+ v -D+y* (¢ -2)+ y* (¢ -3)

+ 2[sin(y(z — 1)) 1[cos(y(z — 2))]1 + 2[sin( y(z — 2))][cos(y(z — 3))]

y(@)

+ 2[sin(y(z — 3)][cos(y( - 1))] + 6.0u> (t —1) + 1> (t — 2) (72)
was simulated using a system input with the form

u(t) = 2sin(zm / 25) + 0.5sin(zm / 3Q) +0.02exp[sin(7 / 40)] (73)

The estimation set consists of 500 input-output data points which are shown in Figure 2. Setting 7, = 3,

n, =3, and initially selecting the model structure for this system to be of the form
y@) = f(y@E =1, -,y =5)ult =1),---,u(t - 3))

5 3 5 5
=a,+ Y a,y(t—-p)+ Y, but—p) + ¥ Nb, y(t-p)yit—q)

p=lgq=p
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3 3 5

+chpqu(t_p)u(t_Q) +22dqu(t_P)”(f“Q)

p=lq=p p=l g=1
5 3
+ 3 £, = PN+ Y, f s (ult = p)) (74)
p=l p=1
where each function f » () can be described using the multiresolution wavelet decomposition (27) as
4
fo e, @)= D 0000, (x, N+, > B0, (x,@). p=12,---8, (75)
kek® J=0 kK,

where @, (x) = 2202 x—k)and P (x)= 212427 x — k) are the 4th order B-spline wavelet and
scaling functions, and K° ={-3,~2,—1,0}and K ={=0-0 =]y Qg ,27 —1) for j=0,1,2,3 4.

The initial model (74) contains 565 model regressors, but most of these are likely to be redundant and should
be removed form the initial model. Both the OLS and MPOLS algorithms were used to select the significant

regressors, and two parsimonious models were obtained

12

Y@) = FOD (=1, y(t = S)ult 1), ut -3) = Y,6° p© (1) (76)
(@)= f MO (y(r =1), -, y(t = 5),ut —1), -, u(t —3)) = ieé“”"”) P (@) (77)
k=1

The parameters, regressors and the corresponding error reduction ratios (ERR) of the models (76) and (77) are
listed in Table 2 and Table 3, respectively. A comparison of the model predicted outputs and the measurements, -
are shown in Figure 3. Note that more model terms has been selected by the MPOLS algorithm than that
selected by the forward OLS algorithm, but the model predicted outputs of the MPOLS identified model (77) is

worse than that from the OLS identified model (76), this behaviour will be investigated in a later paper.
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Figure 2 The input and output data of the system described  Figure 3 The comparison of the model predicted output (MPO) and the

by Eq. (72). (a) Input; (b) Output. measurements for the system described by Eq (72). (a) The model predicted
outputs based on the model (76) ; (b) The model predicted outputs based on
the model (77). ( The solid line denotes the measurements, and the dashed
line denotes the model predicted outputs.)
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Table 2 The regressors, parameters and the corresponding ERRs estimated using OLS for the system described by Eq (72)

Nogthet p;ﬁ’zt) Paé?gfﬁfrs ERR, x100%

1 ye-1) 5.02655¢-001 97.52096

2 y(t—4) -9.37588-002 1.04316

3 o1 (u(t =3)) -6.55070e-001 0.23092

4 Po.2(u(t —1) 7.21870e-001 0.10046

5 P13 -D) 7.63680e-002 0.22474

6 Po3(y(r—1)) 1.90501e-002 0.08508

7 Poou(t=1) -2.23549¢+001 0.11981

8 Po-3(y(t—1)) -5.04206e-001 0.02497

9 Ps2(y(t-5) 3.73955¢-003 0.01516

10 Po,-1(u(t = 2)) 1.41307e+000 0.01250

11 y(t = 2u(t-2) -2.49814+000 0.01455

12 y(t —2)u(r-3) 2.10633e+000 0.03581

Note: The threshold value O =0.006, the CPU time spent on selecting these model terms from all the candidate

model term set is 23.23s.

(72)

Table 3 The regressors, parameters and the corresponding ERRs estimated using MPOLS for the system described by
Number Terms Parameters
1 . l(‘MPOI.S) o P ,EMPOLS) ERR, x100%
1 y(t-1) 1.01732e+000 97.52096
2 ¢ (Yt -3)) 1.67365¢-001 0.51440
3 Po,0(¥(1-5) -9.08939-001 0.51530
4 @2 (u(t—1)) 2.26668¢-001 0.20425
5 Po,-4(y(r—1) -5.24924+000 0.11191
6 @11 (u(t -3)) 8.15303¢-002 0.08418
7 Poo(y(r—4) -1.40831e+000 0.04319
8 O (y(-1) -4.91165¢-002 0.02270
9 P2 (¥ -5)) -4.16277e-002 0.03402
10 36wt —1) 4.07545¢-002 0.02683
11 P22 (1) -7.13154e-003 0.02574
12 @24 (¥ —4)) 2.73731e-002 0.02045
13 Pa10(y(—4) -1.10107e-002 0.01004
14 Py, (u(t-1)) -1.60958¢-002 0.01619
15 Po,-3(y(t=5)) 3.44345¢-003 0.00903
16 P47 (¥(1-2)) 8.70263¢-003 0.01084
17 @11 (Y- 4)) -1.46078¢-002 0.00858
18 P23(¥(t-3)) -1.17200e+000 0.00893
19 Pas(y(—1) 4.28377e-003 0.00737
20 @412y —2)) -9.62771e-003 0.00821

model term set is 2.03s.

Note: The threshold value 0 =0.008, the CPU time spent on selecting these model terms from all the candidate
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6.2 A terrestrial magnetosphere dynamic system
While the results obtained for the simulated system in section 6.1 demonstrate the applicability of the
wavelet-NARMAX model, it does not provide a realistic test for the new hybrid modelling structure. To

achieve the latter objective, a data set related to a terrestrial magnetosphere dynamic system was considered.

The sun is a source of a continuous flow of charged particles, ions and electrons called the solar wind. The
terrestial magnetic field shields the Earth from the solar wind, and forms a cavity in the solar wind flow that is
called the terrestrial magnetosphere. The magnetopause is a boundary of the cavity, and its position on the day
side (sunward side) of the magnetosphere can be determined as the surface where there is a balance between the
dynamic pressure of the solar wind outside the magnetosphere and the pressure of the terrestrial magnetic field
inside. A complex current system exists in the magnetosphere to support the complex structure of the
magnetosphere and the magnetopause. Changes in the solar wind velocity, density or magnetic field lead to
changes in the shape of the magnetopause and variations in the magnetospheric current system. In addition if the
solar wind magnetic field has a component directed towards the south a reconnection between the terrestrial
magnetic field and the solar wind magnetic field is initiated. Such a reconnection results in a very drastic
modification to the magnetospheric current system and this phenomenon is referred to as magnetic storms.
During a magnetic storm, which can last for hours, the magnetic field on the Earth’s surface will change as a
result of the variations of the magnetospheric current system. Changes in the magnetic field induce considerable
currents in long conductors on the terrestrial surface such as power lines and pipe-lines. Unpredicted currents in
power lines can lead to blackouts of huge areas, the Ontario Blackout is just one recent example. Other
undesirable effects include increased radiation to crew and passengers on long flights, and effects on
communications and radio-wave propagation. Forecasting geomagnetic storms is therefore highly desirable and
can aid the prevention of such effects. The D, index is used to measure the disturbance of the geomagnetic field
in the magnetic storm. Numerous studies of correlations between the solar wind parameters and magnetospheric
disturbances show that the product of the solar wind velocity V and the southward component of the magnetic
field, quantified by B;, represents the input that can be considered as the input to the magnetosphere. Denote the

multiplied input by VB,.

Figure 4 shows 1000 data points of measurement of the solar wind parameter VB, (input) and the D, index
(output) with a sample period T=1hour. The purpose here is to identify a nonlinear model to represent the input-
output relationship between VB (input) and D,,. The effects of other inputs on the system will be neglected in the

present study.

The objective here was to construct a hybrid wavelet-NARMAX model of the form (29). The first 500
input-output data points were used for model identification and the remaining 500 data points were used for
testing. Ten significant variables {y(z-1), ..., y(#-5),u(t-1), ..., u(z-5)} were initially selected using a variable

selection algorithm. The initial model was chosen as below:

y(f) = f(J’(f_l)a"Hy(f‘s)au(f—l),“'au(t_5),3(1—1)7"',3(1‘—10))

10 10 10 10
=ay+ Y a,x, 1)+ ¥ b,x,Ox,@) + Y f,(x,)
p=l p=lg=p p=l
10
+Y c,e(t—p) +e(t) (78)

24




where X, (t) = y(t — p) for p=1,..,5 and X, (t)=u(t— p+5) forp=6,...10, and each function fp () can

be expressed as Eq. (75) .

The implementation procedure 5.2 was performed step by step, and both the OLS and MPOLS algorithms

were used in the model identification procedure, finally two parsimonious models were obtained

y() = f(ou) (y(—1),---, y(t = 5),u(t —1),---,u(t - 5),e(t - 1)....,e(t —10))

14
=207 P () (79
k=1
y(t) = f‘“”"”’ (y(t=1), -,y =5),u(t =1),---,u(t - 5),e(t —1),---,e(t —10))
16
k=1

The parameters, regressors and the corresponding error reduction ratios (ERR) of the selected regressors in
models (79) and (80) are listed in Table 4 and Table 5, respectively. A comparison of the model predicted
outputs and the measurements are shown in Figure 5, which clearly indicates that the model predicted outputs
provide good long term predictions and give confidence in the identified model. The discrepancy between the
model predicted outputs and the measured values of the Dy index are believed to be the result of other inputs

which affect the system output but were not included in the current model.

L s s H " .
o 100 200 300 400 s00 600 700 800 800 1000
Time [Hours]

Figure 4 The input and output data of a terrestrial magnetospheric dynamic system. (a) Input; (b) Output.
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Figure 5 The comparison of the model predicted output (MPO) and the measurements for a terrestrial magnetospheric dynamic system.
(a) The model predicted outputs based on the model (79) ; (b) The model predicted outputs based on the model (80).
( The solid line denotes the measurements, and the dashed line denotes the model predicted outputs.)
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Table 4 The regressors, parameters and ERRs estimated using OLS for a terrestrial magnetospheric dynamic system.

blitther , ;ﬁ?zt) Pa‘;z?ﬁ?rs ERR, x100%
1 y(r-1) 8.86991e-001 95.64488
2 By (u(t—1)) 7.28895¢-001 1.53870
3 o4 (u(r—1)) 2.92761e+000 1.01020
4 @, (u(t—2)) 8.09016e-002 0.71025
5 @ LVE—2)) 1.22450e-002 0.70824
6 0., (y(-1) 1.04799¢-002 0.09612
1 @3, (¥(t—2)) 9.99869¢-003 0.00544
8 0,5,y -2)) -5.38155¢-003 0.00525
9 e(t-1) 1.23283¢-002 0.00107
10 e(z-2) 3.475842-001 0.00093
11 e(r-3) 4.00556¢-001 0.00045
12 e(r-35) 9.64407¢-003 0.00042
13 e(t=T) -2.14539¢-001 0.00012
14 e(r-8) -5.24350e-002 0.00009

Note: The CPU time spent on selecting the process model terms from all the candidate
model term set is 20.59s.

Table 5 The regressors, parameters and ERRs estimated using MPOLS for a terrestrial magnetospheric dynamic system.

L , iﬂ;r:;.; o I:EZTSES ERR, x100%
1 y(t-1) 9.92291e-001 95.64488
2 @y, (u(t-1)) 1.02467¢-001 1.31859
3 @, 5 (¥ —1)) 6.50852¢-001 1.22031
4 @yn (U —1)) -4.06704e-002 0.81145
5 @, (y(t-2)) 2.29453¢-002 0.60765
6 0,,(yt-2)) 1.10544e-001 0.08649
? @,5u(t—2)) 3.67041¢-001 0.01626
8 @,,(u(t-5)) 6.17316¢-002 0.00545
9 @, (y1—4) -5.45452¢-003 0.00486
10 e(t-1) 5.66383¢-003 0.00118
11 e(r-2) 2.86554¢-002 0.00073
12 e(t-4) -7.00413¢-002 0.00029
13 e(r-5) -3.90424¢-002 0.00013
14 et=7) 1.19670e-002 0.00020
15 e(t-8) 3.28276¢-002 0.00008
16 e(t-9) -7.32255¢-003 0.00006

Note: The CPU time spent on selecting the process model terms from all the candidate
model term set is 1.38s.
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7. Conclusions

A novel hybrid modelling framework, which combines polynomial models with multiresolution wavelet
decompositions, has been proposed for nonlinear input-output system identification. In a wavelet-NARMAX
model, or simply WANARMAX, a high-dimensional system is initially expressed as a supposition of a number
of low-dimensional submodels, and then each submodel is expanded using polynomial models and
multiresolution wavelet decompositions. The new WANARMAX model structure not only significantly
alleviates the difficulty of the curse-of-dimensionality for high-order and high-dimensional nonlinear system
modelling, but also makes it possible to sufficiently utilise the global property of polynomial models and the
local property of wavelet representations simultaneously.

A large number of potential model terms are usually involved in a WANARMAX model when each submodel
is expanded using multiresolution wavelet decompositions. Most of the model terms are redundant and only a
small number of significant model terms need to be included in the final model. Either the widely-used forward
OLS algorithm or the new MPOLS algorithm proposed here can be used to select the significant model terins.
The computational cost of the MPOLS algorithm is much less than that of the OLS algorithm. However, the
MPOLS is less efficient than the forward regression OLS, that is, for the same given problem, it is nearly always
true that the MPOLS selects more model terms than that selected by OLS with the same threshold value for
termination. The MPOLS routine also tends to produce model predicted outputs that are not as good as those

from an OLS identified model.

The WANARMAX model can be used to describe a wide class of nonlinear systems including severely
nonlinear systems. The linear or low-order nonlinear trends of the system can be easily tracked by polynomial
models and the local nonlinear behaviour can be captured by wavelet decompositions. This enables the
WANARMAX model to be more flexible than either a single polynomial model or a wavelet decomposition

model.
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