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Identification of Hybrid Systems Using a Class of Unified &
Wavelet-NARX Models

H.L. Wei and S.A. Billings
Department of Automatic Control and Systems Engineering, University of Sheffield
Mappin Street, Sheffield, S1 3JD, UK

A mnovel approach is proposed for the identification of hybrid systems based on a unified wavelet-based
modelling framework, where the system input-output relationship is connected using mixed multiresolution
wavelet decompositions with respect to different types of wavelet and associated scaling functions. No a
priori information on the system dynamics is required to estimate a wavelet-NARX model but only a given
input-output data set with an assumption that the system input and the output are bounded in a finite interval.
Several examples, which involve piecewise affine (PWA) systems, open-loop threshold autoregressive
systems (TARSO), piecewise rational systems, and hinging hyperplane ARX (HHARX) systems, are

provided to demonstrate the effectiveness and applicability of the new identification procedures.

Keywords: Hybrid systems; identification; multiresolution analysis; NARX models; wavelets

1. Introduction

Hybrid systems, are a wide class of dynamical systems incorporating both continuous-time and discrete-time or .
discrete-event dynamics, and have attracted great interest from various areas (Morse et al., 1999). The
continuous dynamics in such a system are usually associated with first principles, while the discrete-time or
discrete-event behaviour is determined by discrete logic rules or sequences. Hybrid systems exist widely in
many contexts, in both engineering and non-engineering areas. One of the simplest examples of such systems is
the commonly used electrical radiator with a thermostat in a room. Several types of models have been proposed
to represent hybrid systems (Heemels et al., 2001), including differential automata (Tavernini, 1987), Brockett’s
model (Brockett, 1993), hybrid Petri-nets (David and Alla, 1994), hybrid automata (Branicky et al., 1998),
complementarity models (Van der Schaft and Schumacher, 1998; Heemels et al., 2000; Camlibel et al., 2003),
integrator hybrid system model (Tittus and Egardt,1998), mixed logical dynamic (MLD) models (Bemporad and
Morari, 1999), and piecewise affine (PWA) models (Bemporad et al., 2000, 2003 and the references therein). In
a broad sense, some linear multimodels such as the open-loop threshold auntoregressive models (Tong, 1983,
1990) and piecewise autoregressive moving average models (Johansen and Foss, 1993) can also be categorized

into a special case of hybrid system representations.

As pointed out in Roll et al. (2004), most studies on hybrid systems in the literature are concerned with system
analysis, stability analysis, control, verification and fault detection. Different analysis tools are closely related to

different concrete model structures. Whilst these forward problems in hybrid systems have been extensively

studied in recent years, the inverse problem, which is concerned with obtaining a model from experimental data
sets, that is, the identification problem, has received relatively little attention and relatively few results have been

achieved. Recent contributions concerning identification of hybrid systems and related results include the papers.
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by Skeppstedt et al. (1992), Breiman (1993), Johansen and Foss (1995), Bemporad et al. (2003) and Ferrari-
Trecate et al. (2003). For a comprehensive discussion and evaluation on identification methods of hybrid

systems, see the recent papers by Ferrari-Trecate et al. (2003) and Roll et al. (2004) and the references therein.

PWA models are a class of attractive and popular representations for hybrid systems. Several existing
approaches can result in or at least are related to piecewise affine schemes, these include Chua’s canonical
representation (Chua and Deng, 1988), neural networks with piecewise affine perceptrons (Batrumi, 1991),
threshold autoregressive models (Tong, 1983, 1990) and linear multimodels (Johansen and Foss, 1993), and
hinging hyperplanes (Breiman, 1993). The main difficulty for most piecewise approaches is thé problem of
partitioning the system operating region, where the estimation of the piecewise models cannot be easily
separated from the task of finding the domain for each submodel. One of the main advantages of piecewise
affine models is that they can easily be recast using state-space representations and this enables system analysis
and control to be easily facilitated. The common drawback of these approaches is that the system behaviour must
be continuous in the whole operating regime and the system should vary slowly while entering the domain of
one submodel from another to guarantee the global validity of the resulting models. Roll et al. (2004) proposed
an identification approach for PWA systems based on mixed integer linear of quadratic programming
(MILP/MIQP), where the optimality of the estimate can be proved, but it was found (Ferrari-Trecate et al., 2003;
Roll, 2003) that the number of the integer variables involved in the MILP/MIQP increases dramatically with the
length of the data set. For example, the number of feasible integer variables involved in a MIQP is usually an
astronomical figure, and the total number of ad combination in the MIQP is by much larger. Therefore, this
approach can only be applied to solve a problem with a very short data set (Ferrari-Trecate et al., 2003). Ferrari-
Trecate et al. (2003) introduced an efficient method for identifying discrete-time PWA systems, even systems
with possibly discontinuities by combining some clustering, linear identification and pattern recognition
techniques. But, this approach requires some a priori information on the system under study, for example, it is
assumed that the estimation data set is generated from a PWA model and the number of submodels is known,

and so on. Therefore applications of this identification method may be restricted to a limited range.

The present study aims to provide a unified modelling framework for hybrid system identification based on a
wavelet-NARX representation, which can represent a wide class of hybrid systems, even systems with
discontinuities. In the wavelet-NARX representation, a hybrid system is initially expressed as a superimposition of
a number of low-dimensional submodels (Wei et al., 2002; Billings and Wei, 2003), which can be described
using mixed wavelet multiresolution decompositions (Mallat,1989). By expanding each submodel using
truncated wavelet decompositions, a high-dimensional wavelet-NARX model can then be converted into a
linear-in-the-parameters problem, which can be solved using least-squares type methods. An efficient model
term detection approach based on a forward orthogonal least squares (OLS) algorithm, along with the error
reduction ratio (ERR) criterion (Billings et al., 1989; Chen et al., 1989) is applied to solve the linear-in-the-

parameters problem in the present study.

The rest of the paper is organised as follows. In Section 2, wavelet decompositions are briefly reviewed. In
Section 3, a unified wavelet-NARX representation based on mixed wavelet multiresolution decompositions is

e

introduced. Section 4 provides some case studies, where several illustrative examples are given.

2 ' W F ii:'e\-*\**i}:g{if"’




2. Wavelet Multiresolution Decompositions

This section briefly reviews results on wavelet decompositions. For more details about these results, see for
example the work of Mallat (1989), Chui (1992), Daubechies (1992) and Meyer (1993). In the following, it is
assumed that the independent variable x of a function f€ I*(R) is defined in the umit interval [0,1]. In

addition, for the sake of simplicity, one-dimensional wavelets are considered as an example to illustrate related

concepts.

2.1 One-dimensional wavelet multiresolution decompositions

From wavelet theory (Mallat, 1989; Chui ,1992; Daubechies, 1992; Meyer,1993), an orthogonal wavelet system
can be constructed using multiresolution analysis (MRA) under some assumptions and considerations. Assume

that the wavelet & and associated scaling function ¢ constitute an orthogonal wavelet system, then any

function f € I*(R) can be expressed as a multiresolution wavelet decomposition
f(x):Zajo‘k¢jo'k(x)+ZZﬂj,ij,k (x) _ (1)
P 2io k
where ;. (x)= 2192 x-k) , @i (%)= 2j’2¢(2fx— k) , j,k€Z , a; ; and ﬁj,k are the wavelet
approximation and detail coefficients, and j, is an arbitrary integer representing the coarsest resolution or scale

level.

2.2 Extending to high-dimensional space
The results for one-dimensional case can easily be extended to high-dimensions. One commonly used approach
is to a generate separable function by the tensor products of several one-dimensional functions. For example, an

n-dimensional function ®: R 1+ R can be constructed using a scalar function ¥ as follows

d
O(x) = B(xy, 3y, x5) = [ [ wix) @)

i=1
Another popular scheme is to use radial functions. For example, the n-dimensional Gaussian type functions can
be constructed as
i|x 2
D(x) =D(x;, %5, , Xy ) =X Xp =2 Xg€ 2 3)
d
where |[x||2 =xTx= ZH x,-2 . Similarly, the n-dimensional Mexican hat (also called the Marr) function can be

expressed as ®(x) = (n ~"x||2) exp(—-ﬂx" oy 2).

Using the concept of rensor products, the multiresolution decomposition (1) can be immediately generalised
to the muti-dimensional case, where a multiresolution wavelet decomposition can be defined by taking the tensor

product of the one-dimensional scaling and wavelet functions (Mallat, 1989; Zhang and Benveniste, 1992).

letfe I? (Rd ), then f(x) canbe represented by the multiresolution wavelet decomposition as
D
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f(-rli"'1xd)=Zaj0,k®ja,k(xls"',xd)+ ZZ Zﬂﬁliq’rﬁ (X, xy) (€))
k g k1=l
where k = (k. k;,--. k)€ Z¢ and
d
@, (,x,) =22 [ 92" %, ~ k) ()
i=1
d
Pl Gy oenayy =292 [0V @1, ~K,) ©)

i=1

with 7% = ¢ or  (scalar scaling function or the mother wavelet) but at least one ﬂ(‘) =y.
Notice that if j; is large enough, the approximation representation (4) can be expressed using only the scaling

function @ , that is, there exists a sufficiently large integer J, such that

d
f(xl!'"!xd)=Za1,kq)l,k(x1""’xd) = Z 21’“21—[43’(2]35; ~k;) @)
3 i=1

ke kg
Although many functions can be chosen as scaling and/or wavelet functions, most of these are not suitable in
system identification applications, especially in the case of multidimensional and multiresolution expansions. An
implementation, which has been tested with very good results, involves B-spline wavelets in multiresolution
wavelet decompositions (Billings and Coca, 1999; Coca and Billings, 2001; Billings et al., 2003), and these type

wavelets will be used for hybrid system identification in the present study.

2.3 B-spline wavelets

B-splines are piece-wise polynomial functions with good local properties, and were originally introduced by
Chui and Wang (1992) to define a class of semi-orthogonal wavelets for representing a signal using

multiroselution decompositions. The mth order B-spline function is defined as

R . 3OS = T, mE , @
Jj=0

(m—-1)14

where C;" =m(m—1)---(m—k +1)/ k!, and x] =x" for x>0 and x; =0 for x<0. The mth order B-

spline N, can be calculated by the following recursive formula:

N ()=——N_(0)+Z"EN _(x-1).,m>2 ©)
m—1 m—1
with
1 ] 01

Setting IV, as the scaling function, that is, #(x) = N, (x) , then both the scaling function and the associated

wavelet can be expressed in terms of the scaling function N, (x) as follows

¢(x)=ickNm(2x—k) (11)
=0




3Im-2
@(x)= Y d,N, (2x~k) -
k=0
with the coefficients given by
1 m
€y = Ck (13)
(D* & .
dy ="7-5 ZCjNZm(k_J+1):k—o,l,"',3m—2 (14)
j=0

Clearly, the support of the # th order B-spline wavelet and the associated scaling function are

{ supp ¢ = suppN,, =[0,m] (15)

supp ¢ =[0,2m ~1]

Both the B-spline wavelets and the associated scaling functions are symmetric or anti-symmetric within the
support. The most commonly used B-splines are those of orders 1 to 4, which can be explicitly expressed as
Table 1.

Table 1 The B-splines of order 1 to 4

Ni(x) | Ny(®) 2N5(x) 6N, (x)
0<x<1 1 x x2 %
1€x<2 0 2-x —2x%+6x-3 | =3x* +12x* —12x+4
2<x<3 0 0 (x=3)* 3x? —24x* +60x—44
3<x<4 0 0 0 — x> +12x* —48x+64
elsewhere 0 0 0 0

3. The Unified Wavelet-NARX Representation

A unified modelling framework is introduced to identify hybrid systems based on the wavelet-NARX
representation, which is initially expressed as a superimposition of a number of low-dimensional submodels.

These submodels can then be described using mixed wavelet multiresolution decompositions.

3.1 Additive representations of nonlinear dynamical systems

A wide range of nonlinear systems can be represented using the NARX (Nonlinear AutoRegressive with
eXogenous inputs) model (Leontaritis and Billings, 1985; Pearson, 1999). Taking SISO systems as an example,

this can be expressed by the following nonlinear difference equation

y(1) = F((E=1), -,y —n,)ut =1),-,u(t —n,)) + () (16)
where f is an unknown nonlinear mapping, #() and y(#) are the sampled input and output sequences,
n,and n, are the maximum input and output lags, respectively. The noise variable e(?)is immeasurable but is

assumed to be bounded and uncorrelated with the inputs.




Several approaches can be applied to realise the representation (16) including polynomials, neural networks,
linear multimodels and other complex models, see for example Pearson (1999) for comprehensive discussions.

In the present study, an additive model structure will be adopted to represent the NARX model (1). The
multivariate nonlinear function f in the model (16) can be decomposed into a number of functional components

via the well known functional analysis of variance (ANOVA) expansions (Friedman, 1991; Chen, 1993)

¥(0) = f(x (0, x5 (8-, %, ()

= ot YL@+ DA @)+ Y i (0,30, 5 () -
i=1

1<i< j<n 1si< j<ksn

e Zfiliz"'im (le (r)sxi.l (t)s ”’xi,,, (I)) i le---n (xI (t)v Xq (r)= X, (t)) +e(t) (17)

I=iy <<y S0
where x(2) = [x, (1), X, (2),+-, X, (£)]" and

y(—k), 1<k &mn,
x. ()= (18)
Wt—k+n,), roA12kSn=0 +n,

The first functional component f, is a constant to indicate the intrinsic varying trend; f;, fj,"*~, are
univariate, bivariate, etc., functional components. The univariate functional components f;(x;) represent the
independent contribution to the system output that arises from the action of the ith variable X, alone; the

bivariate functional components f; (X;,X;) represent the interacting contribution to the system output from the

input variables X; and x;, etc. The ANOVA expansion (17) can be viewed as a special form of the NARX
models for input and output dynamical systems. Although the ANOVA decomposition of the NARX model (16)

involves up to 2" different functional components, experience shows that a truncated representation containing

the components up to the bivariate or tri-variate functional terms is often sufficient to provide a satisfactory
description of y(¢f) for many high dimensional problems providing that the input variables are properly
selected. The presence of only low order functional components does not necessarily imply that the high order
variable interactions are not significant, nor does it mean the nature of the nonlinearity of the system is less
severe. An exhaustive search for all the possible submodel structures of (17) is demanding and can be prohibitive

because of the curse-of-dimensionality. A truncated representation is advantageous and practical if the higher
order terms can be ignored. In practice, the constant term f; can often be omitted since it can be combined into
other functional components.

In practice, many types of functions, such as kernel functions, splines, polynomials and other basis functions
can be chosen to express the functional components in model (16). In the present study, however, wavelet

decompositions will be chosen to describe the functional components in the additive model (17), and this was

referred to as the wavelet-NARX model in Billings and Wei (2003) and Wei and Billings (2004).




3.2 Mixed multiresolution wavelet decompositions

In order to make wavelet multiresolution decompositions more flexible and capable of representing arbitrary
hybrid system, including systems with sharp variations or possible discontinuities, the decompositions (1) and
(7) are adapted and extended to mixed wavelet multiresolution decompositions using B-spline wavelets. For one-

dimensional functional components in the additive model (17), the mixed decompositions can be described as

fp(xp(m:Za“] M (x, UD*‘ZZ Briw5i (x, )

25k

Za”] o2 (x, (r))+ZZ P (x, @)
2 k

Zcx‘” o (x, )+ ZZﬁﬁkwﬁ“%(xp(t)) (19)
jzj, k

where g% (x, () =272 gt (2’x,(#) - k) and t,zr[”‘] (x,(@®)=2""2yp'"™ (27 x,(t)— k) are the mth order

B-spline and wavelet functions, a[m] and ﬂ‘[r";(] are the associated wavelet coefficients, j, is the initial

(coarsest) resolution level for the decomposition of with respect to the mth order B-spline wavelets.

Similarly, the d-dimensional (d>1) functional components in the additive model (17) can be expressed as

d
Futyoty G, O3, O m, ) = Y abl L T @" x, —k,)

ks eky p=1
[2] .
[T aid
W Z ajz;kpsz“skd H¢ (2 : xip “kp)
kyky - oky p=l
d
4 4 ¥
¥ Z a-ET.;];khkz-"'skd H ¢[ ](2 h xfp - kp) (20)
kyokyeiky p=l

where ¢'™ is the mth order B-spline function, J m 18 the finest resolution scale. In the mixed wavelet

multiresolution decompositions (19) and (20), the first order B-spline (the Haar) scaling and wavelet functions
are piecewise constant functions, which are particularly effective to describe discontinuous dynamics of a
system. The second order B-spline and wavelet functions are piecewise ramp functions, which are capable of
capturing some linear trends of the dynamics including sharp varying trends. The fourth order B-spline and

wavelet functions are smooth functions, which can detect the system behaviour that varies smoothly.

All the submodels in the additive model (17) can be expressed using the extended multiresolutions (19) and
(20), and the resulting model consists of three parts, that is,

Y@ = f (0 @), x, (1), %, (1)
= FU G @, 3@, 1, @) + F P 0 (0, x5 (0,0, 5, ) + £ 0y (0, 2,00+, %, ©) @

where £U™ | m=1,2,4 are the mixed multiresolution wavelet decomposition with respect to the mth order B-spline

wavelet and scaling functions. Each f tml s in the form of the additive model (17), where the submodels are




approximated using the wavelet multiresolutions (1) or (7). Model (21) will be referred to as the mixed

multiresolution wavelet decomposition (MMWD).

For an identification practice, it is impossible to solve a decomposition involving infinite terms. A MMWD is
therefore often truncated at a satisfactory accuracy with a chosen finest resolution scale. With the assumption

that x() € [0,1], for a given resolution scale j , the range of the associated translation (dilation) parameter k for
the wavelet I/IS";C] (x(2)) and scaling function ¢)§f’,’3 (x()) in the MMWD can be determined accordingly. For

example, for the Haar wavelet and scaling function, =00 27 —1. For the second order B-spline function
¢52,1 (x()), k=-1,0,1,..., 2/ —1 and for the second order B-wavelet function wﬂ (x@), k=2,-10,..., 27 -1.

Thus, the number of the total wavelet terms involved in a truncated MMWD can be determined beforehand.
Since the unknown parameters are only the wavelet coefficients, a truncated MMWD can easily be translated

into a linear-in-the-parameters problem, which can be solved using least squares type algorithms.

Note that a MMWD may involve a large number of candidate wavelet terms and might be severely redundant,
especially for a high-dimensional system with several variables (large time lags for the system input and/or
system output). Fortunately, this problem can be successfully resolved by employing the well-known and widely
used OLS-ERR algorithm (Billings et al., 1989; Chen er al., 1989). A fast and efficient model structure
determination approach has been implemented using the forward orthogonal least squares (OLS) algorithm and
the error reduction ratio (ERR) criterion, which was originally introduced to determine which terms should be
included in a model (Billings ef al., 1989; Chen et al., 1989). This approach has been extensively studied and
widely applied in nonlinear system identification, see for example Chen et al. (1991), Wang and Mendel (1992),
Hong and Harris (20015, Billings and Wei (2003). The forward OLS algorithm involves a stepwise
orthogonalization of the regressors (wavelet terms) and a forward selection of the relevant significant terms in all

candidate model terms based on the error reduction ratio (ERR) (Chen ez al., 1989).

4. Case Studies

In this section, several examples are given to illustrate the new identification procedure using the MMWD

models. No a priori knowledge about the system dynamics is required except the following assumption.

Assumption: The system inputs and outputs are bounded in some finite interval.
Assume that the system input u(¢) and output y(¢) are bounded in [, %] and [y, ¥], respectively, where
—~eo <y <@ <o and —e0< y<y <eo. The observational data set can easily be normalised into the unit

interval [0,1], therefore the variables x,(f) described by Eq (18) satisfy 0<x;(f) <1 . The identification

procedures will be performed over the unit interval [0, 1], and finally the signals simulated from the identified

model will be recovered via some appropriate inverse transform (Wei and Billings, 2004).

Example 1 Consider a simple piecewise affine system similar to that in Ferrari-Trecate et al.(2001) described

by the model




—u(t-1) -10<u(t-1H<-5
yB)=<+ulr-1 —S<u(-1<5 7 22
Bu(t—-1)-2 55u(t-1)<10

This model was simulated by setting the input u(r) as a random sequence that is uniformly distributed in [-10,10],
and 5000 input-output data points with an additive noise of normal distribution N (0, 0?), where 0 =0.5, were
collected, the first 400 of which will be used for system identification. The regression plot of y(z) versus u(z-1) is
shown in Figure 1(a) and (b), which clearly indiéates that there exists a piecewise linear relationship between the
output y(7) and the input u(z-1), and there is a discontinuity point at u(z —1) =%5. As shown in Figure 1(c) and
(d), this PWA system possesses an interesting phase portrait which is divided into foﬁr parts. The density of each

part is not the same.
Noting that the system input u(f) and noisy output y(z) are respectively bounded in [1,%] and [y, y], where

u =—u=10,y=-8 and y =30, the observational data were normalised using this information. The identification

procedures will be performed over the unit interval [0, 1]. The wavelet-NARX model for the PWA system was
initially chosen to be '

0 : 0

20 / f 20 .g‘fﬂ-

y(t)
=]
7

y(t)
=)
3

90 0 10 20

Figure 1 Phase portraits of the PWA system (22). (a) y(f) vs u(t-1) , 400 points, noise free; (b) y(¢) vs u(z-1) 400 points, with
additive noise; (c) y(¥) vs y(z-1), 5000 points, noise free; (d) y(z) vs u(z-1), 5000 points, with additive noise.




y(&) = fOy=Du-10)= fFU(y - Dult -D)+ FP @ -D,ut-1)

= fBye -+ @ -1) + e -1)+ 2w -1) (23)
where
@)=Y M B e+ Y Y A (x(e) (24)
k jZie k

where f ;m] are wavelet decompositions with respect to the mth order B-spline and associated wavelet functions.
The coarsest and finest resolution scales for the first and second-order B-spline and wavelet functions in (24)
were chosen to be j; = j, =0,J,=6, and J,=5, respectively. Although 410 candidate model terms in the

initial wavelet-NARX model (23), only 8 most significant model terms were selected using an OLS-ERR
algorithm (Billings et al., 1989; Chen et al., 1989). An parsimonious model is found to be

Y@= f(yt —Du(t ~D)=FU w@ -D)+ £ (@ -1)

=0.0132p5% (u(t — 1)) +0.0930p1] (u(t — 1)) —0.0744yL (u(z 1))

+1.0307¢5% (u(t — 1)) — 00366y, (u(t —1)) —0.0731y5?, (u(z - 1)

- 0.0658 15 (u(t — 1)) +0.1974p{7 (u(t 1) (25)
The model (25), as well as the original system (22), was simulated by setting the input u(z) as a random sequence
that is uniformly distributed in [-10,10]. The model simulated output from (25) was compared with that from
(23), and this is shown in Figure 2, where only the data points ranging from 800 to 1000 in the data set are
plotted. The discrepancy between these outputs shown in Figure 2(b) clearly indicates that the identified model

(25) is excellent. Note that the model (25) is performed on normalized input and output and therefore the given

input and output signals should be pre-normalized and then the output from the model can be recovered to its
original amplitude by ¥(#) = y + (¥ — ¥)y(¢) , where y() is the model simulated output from (25) and y(z)is

the associated recovered signal.

To inspect how the output signal is recovered from a mixed wavelet decomposition, the model (25) was also

simulated by setting the input signal () =10sin(27% /50) . Note that this input induces the response in the
system output a higher-harmonic, that is, the output oscillates at twice the input oscillation frequency, see the
dashed line in Figure 3(c) . The signals recovered by f m b2 (21 and y=f g b (2 in (25) are shown in Figure
3(a), (b) and (c), respectively. Clearly, the signal recovered by f W s plecewise constant, which is appropriate
to describe sharp variations or discontinuous dynamics, and the signal recovered by f 2] is somewhat smooth.

The discrepancy between the recovered signal by f W4 £ from (25) and the ideal output from (22) is shown
in Figure 3(d).
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Figure 2 A comparison between the model predicted output from the model (25) and the that from the original system (22)
with the input as a random sequence. (a) Overlap of the outputs from (22) and (25); (b) The discrepancy between the outputs.

850 900
Sampling Index

Figure 3 Signals recovered frem 1, £ and ™ + £ based on the model (25). (a) Recovered from f™ ; (b)

Recovered from f 2. ) A comparison between the signal recovered from f 4 f (2] and the that from the original system
(22). (d) The discrepancy between the recovered signal from (25) and that from the original system (22).
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Example 2 Consider an open-loop threshold autoregressive system (TARSO) (Tong, 1990; Pearson, 1999)
described by the model

y(rj =a,yt-D)+b,yt—-2)+ult-1)+e@), [x 1), x, " e . (26)

where x, () = y(t —k) for k=1,2, &(#) is a Gaussian white noise with a standard derivation o, =0.1.
Q, =[0,00)X[0,20) , Q, =[0,00) X (=0,0) , Q3 =(—=2,0)x[0,0) , and £, =(—o0,0)X(—=5,0) . a
=a,=16, a;=a,=0, by=b;=-08, b, =b, =0.8.

Model (26) was simulated by setting the input signal as u(¢) = sin(2zz /50) and 400 input-output data points
were used for model estimation. Using the information that ¥ Su(z) < and y < v() <y, where u =-u=I,
y=-4 and y =7.5, the observational data were normalized. Three most significant variables, X, @) =y(t-1),

x,(1)=y(t —2)and x,;(z) =u(t —1) were chosen using a variable selection algorithm (Wei et al., 2004) for

this system and the wavelet-NARX model with respect to the normalized variables for the TARSO system (26)
was initially set to be

YO = f (e (1) 2, (1), x5(1))
= £, (1), %, (1), %5 (0) + £ 0 (), %, (1), %5 (1)) + 19 (2, (8), %, (8), %5 (2))

= Z R, )+ }:Z £, @), x, 1)

p=14g=2

+me(x (t))+ZZf[2](x ()%, ()

p=1g=2

+Zf[‘” (x, <t))+ZZf;;” (x, (8), %, (1)) @7

p=1q=2

[m]

The univariate functions f,"" are wavelet decompositions with respect to the mth order B-spline and associated

wavelet functions defined as in (24), where the coarsest and finest resolution scales for the first, second and

fourth-order B-spline and wavelet functions were chosen to be j, = j, = j,=0,J,=5, J,=4 and J, =3. The
bivariate functions f p[,;"] are wavelet decompositions with respect to the mth B-spline products as defined by
(20), where the resolutions scales for the first, second and fourth-order B-splines were chosen to be J; =2,
J,=1and J,=0. An identified parsimonious model was found to be
¥(®) = f(y(& =1,y = 2),u(t ~1))
=1.281748, (y(t - 1)) +0.6484p5; (y(z — 1)) — 0.8970p5%; (y(t - 2))
—267.4688w ) (y(t - 2)) —249.41054, (y(t - )@t q (¥(t —2))

—0.1921457, (u(t 1)) (28)
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To test the performance of the identified -model (28), an input signal u(?) =u,(r) +w,(t) , where
u; (1) = A, sin(27 / 50) for A, =0.8 and A, =0.5, and w,(¢) was a random sequence that was uniformly

distributed in [~c;,c;] for ¢,;=0.2 and ¢, =0.5, was used to drive the model (28). The model output from (28)

was recovered to its original amplitude and this was compared with the output from the original system (26), see
Figures 4 and 5, which clearly indicate that the identified model (28) provide an excellent representation for the
original TARSO system (26).

1 ™
U.Srfh\

. . s L L L L .
1] 20 40 60 80 100 120 140 160 180 200

()
| P A, « =
2z
=5
g, \ ]
]
5 ) . 1 1 1 L L A 1
o 20 40 &0 80 100 120 140 160 180 200

Sampling Index

Figure 4 Performance of the identified model (28) for the TARSO system (26) by setting the input signal
u(t) =uy (£) + wy (¢) , where u, (¢)=0.8sin(27z / 50) and w, () was a random sequence uniformly distributed

in[-0.2, 0.2]. (a) The input. (b) A comparison between the recovered signal from the model (28) and the output from the

original system (26). (The solid line in (b) indicates the real output, and the dashed line indicates the simulated output from
the identified model (28)).
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Figure 5 Performance of the identified model (28) for the TARSO system (26) by setting the input signal
u(t) =u, (1) +w, (t), where u,(t)=0.5sin(27% / 50) and w, () was a random sequence uniformly distributed

in[-0.5, 0.5]. (2) The input. (b) A comparison between the recovered signal from the model (28) and the output from the

original system (26). (The solid line in (b) indicates the real output, and the dashed line indicates the simulated output from
the identified model (28)).
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Example 3 A piecewise rational system ( Pearson, 1999) described by the model

y(t=Dy(t-2) . Sen(u(t —Du(t —1)
a?+y*e-D+y*¢-2) b +cie-1)

(&)= + &(2) (29)

where a=b=1, ¢=0.1, sgn(u)=1 for # =0 and sgn(u)=0 for u<0, £(¢) is a Gaussian white noise with a

standard variation U§ =0.01. This system was simulated by setting the input signal u(f) as a random sequence
uniformly distributed in [-10, 10] and 500 input-output data points were used for model estimation. Using the

information that u <u(t)<w% and y<y()<y, where i =—u =10, y =-6 and J =6, the observational data

were normahzed Three most significant variables, x, (t) = y(t =1), x, (¢) = y(t —2) and 3 (f) =u(t —1) were

chosen usmg a variable selection algorithm (Wei et al., 2004) for this system and the wavelet-NARX model with
respect to the normalized variables for the rational system (29) was initially set to be the same as (27) for
Example 2. An identified wavelet-NARAX model was found to be

y@) = f(yE =D, y(t - 2),ut-1))
==0.0033y15 (y(t—2)) ~0.00409} (y(t ~ 1)@} (y(t—2)) —0.0063p5% (y(t — 1))@l (y(t —2))

+0.001441} (y(@ ~ )P (y(¢ — 2)) —0.00326%] (y(t - )P (y(t - 2))
+0.5983¢(2, (u(t —1)) +1.3329¢%4 (u(t — 1)) +0.0180p2, (u(z — 1)) +0. 004132 (u(z — 1))
~ 0.00470y 2 (u(t - 1)) - 0.0023y 14 (u(t 1)) +0.009562) (y(t — )¢, (y(z - 2))
+0.03544{3 (y(t = 1)PG (y(t ~ 2) +0.01956 (y(t 1) (y(t - 2))
—8.2873y/5 L5 (u(t 1)) +12.7305p4", (u(t - 1)) - 7.666645", (y(t — )P, (y(t ~2))
— 11709657, (y(t — D)5, ((2 = 2)) ~ 11270452, (y(¢ ~ 1)@, (vt - 2))

—7.9817¢5 (y(t - D)B 3 (3t — 2)) (30)

where @7 (x, @) =229 (27 x ,(#) — k) and Y} (x, (1)) =27 2™ (2’ x,(t)— k) are the mth order

B-spline and wavelet functions.

To inspect the performance of the identified model (30), an input signal u(f) =u,(t) + u,(f) , where

) () =7.5sin(27 / 50) and u,(t) was a random sequence that was uniformly distributed in [-2.5,2.5], was

used to drive the model (30). The model output from (30) was recovered to its original amplitude and this was
compared with the output from the original system (29), see Figures 6. The result clearly indicates that the

identified model (30) provide an excellent representation for the original rational system (29).
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Figure 6 Performance of the identified model (30) for the TARSO system (29) by setting the input signal
u(t) =u,(z) +u,(t), where u,(t) =7.5sin(27z / 50) and u, () was a random sequence uniformly distributed

in[-2.5, 2.5]. (a) The input. (b) A comparison between the recovered signal from the model (30) and the output from the
original system (29). (The solid line in (b) indicates the real output, and the dashed line indicates the simulated output from
the identified model (30)). (c) Model predicted errors.

Example 4 A multi-mode hinging hyperplane ARX (HHARX) system (Roll, 2003) described by the piecewise
ARX model

4
¥(8)=1.1515-0.5557 y(t ~1) - 0.3370y(z - 2) +1.3795u(t -1) + ¥ A, max{£(¢).0} (31)

i=1

where A, =4, =1,4, =4, =-1 and

£ (0)=-0.3918+0.0538y(r — 1) +1.5396 (1 — 2) — 0.2742u(t — 1) (31a)
£, (1) =-0.0293+0.3517y(t —1) + 0.1249y(z — 2) = 1.1005u(z — 1) (31b)
£, (1) =-0.3097 — 1.3018y( — 1) + 0.3074 y(¢ — 2) +1.3506u(t — 1) 7 (31c)
£, ()= 0.9393-0.0503y(z —1) +0.7998 y(z — 2) = 1.1129u(t — 1) (31d)

Note that by setting the input signal u(z) =(~1)", the output of the system is subharmonic, that is, the output

oscillation is at a fraction of the input oscillation frequency (Tong, 1990), see Figure 7.
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Figure 7 The HHARX system (31) is subharmonic driven by the input u(t)= (-1’

This system was simulated by setting the input signal u(z) = sin(27z/50) and 500 input-output data points
were collected, the first 300 points with additive noise £(¢) ~N (0,0.02%) were used for model estimation and
the others for model validation. Using the information ¥ <u(f) Su and y = ()<Y, where u =—u=l, y=
15 and y =2.5, the observational data were normalized. The three most significant variables,
X, () =y(@—1),x,(#)=y(t —2) and x;(t) =u(z —1) were chosen using a variable selection algorithm (Wei
et al., 2004) for this system and the wavelet-NARX model with respect to the normalized variables for the
HHARX system (31) was initially set to be the same as (27) for Example 2. An identified wavelet-NARAX
model to represent the input-output relation of the given observational data set for the HHARX system was

found to be
YO = F(y(E -1,y - 2)u( -1)
= fU(y(e -1, yt = 2),u)t = 1) + Py =D, y(t = 2),u) 1))
+ (e -1, y¢ -2, -1)

=~0.0013p 2 (y(t — 1)) +0.0005p L], (y(t — 1)) - 0.029 1y} ( y(t _ 2))
—~ 00096y} (y(t — 2)) —0.0007y % (u(z — 1)) +0.0025 53 (u(z - 1))
—0.0023pL% (y(r - 1)
+1.2958¢%4 (y(t 1)) —0.0006y L, (y(t —1)) —0.0038y13 (y( —2))
+0.0026y 2 (u(t — 1)) +1.08164{% (y(t — D)7 (u(t 1)
+0.2270¢1%, (y(t ~D)@{5 (u(z — 1)) +0.44084{7 (y(t ~1)g7 (y(t - 2))
-0.33118(3 (y(t - 1)LF (vt —2)) - 0.1221%, (y(z - 2)4{3 (w(t ~ 1)
+5.614508%, (y(t — D)@l (y(t — 2)) —337.947793 (vt — )P, (u(z - 1))
—17.3846850 (vt — 285, (u(t = 1) (32)

The model predicted output over the test data set was compared with the original measurements and this is
shown in Figure 8, which clearly indicates that the identified model (32) provides an excellent representation for
the observational data set. To inspect how the output signal is recovered from the wavelet decompositions with
respect to the first, second, and fourth order B-spline and associated ‘wavelet functions; Figure 9 shows the

recovered signals from these decompositions in (32) with respect to the three fypes B-spline wavelets.
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Figure 8§ Performance of the identified model (32) over the test data set for the HHARX system (31). (a) Overlap of the
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5. Conclusions

A new identification approach for hybrid systems has been introduced based on a class of unified wavelet-
NARX models, where a hybrid system is described using some mixed multiresolution wavelet decompositions
with respect to different types of wavelet and associated scaling functions. Three types of wavelet and scaling
functions, the first, second and fourth order B-spline and associated wavelet functions, were considered in the
present study. First order B-spline (the Haar) scaling and wavelet functions, which are piecewise constant, in the
mixed wavelet multiresolution decompositions, are particularly appropriate to detect discontinuous dynamics in
a system. Second order B-spline and wavelet functions, which are piecewise ramp type functions, are capable of
capturing linear trends in the dynamics including sharp varying trends. Fourth order B-spline and wavelet

functions, which are smooth, can describe the system behaviour that varies smoothly. The combination of these
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different type wavelet and scaling functions makes the mixed wavelet decomposition capable of effectively
describing severely nonlinear systems, including systems with jumps or even discontinuities as shown in the

examples provided in Section 4.

At first sight, such a unified mixed wavelet-NARX model may involve a great number of wavelet terms for a
high-dimensional system. In most cases, however, many of the model terms are redundant and only a small
number of significant terms are necessary to describe a given nonlinear system with a good accuracy. More
fortunately, an efficient model structure and term detection algorithm can be employed to decide which model

terms should be included in the model and finally a parsimonious model can often be obtained.

Note that for modelling a hybrid system using the mixed wavelet-NARX model, no a priori knowledge was
- required for the system d}-'namics, but only an assumption that the system input and output were bounded in .
finite intervals. The new unified wavelet-NARX models are therefore flexible and effective while modelling

hybrid and other complex systems.
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