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A New Class of Wavelet Networks for Nonlinear
System Identification

S.A. Billings and H.L. Wei
Department of Automatic Control and Systems Engineering, University of Sheffield
Mappin Street, Sheffield, S1 3JD, UK

A new class of wavelet networks (WNs) is proposed for nonlinear system identification. In the new networks,
the model structure for a high-dimensional system is chosen to be a superimposition of a number of functions
with fewer variables. By expanding each function using truncated wavelet decompositions, the multivariate
nonlinear networks can be converted into linear-in-the-parameter regressions, which can be solved using
least-squares type methods. An efficient model term detection approach based upon a forward orthogonal
least squares (OLS) algorithm and the error reduction ratio (ERR) is applied to solve the linear-in-the-

parameters problem in the present study.

Keywords: Nonlinear system identification; NARX models; orthogonal least squares; wavelet networks

1. Introduction

Wavelet theory (Chui, 1992; Daubechies, 1992; Meyer, 1993) has been extensively studied in recent years and J
has been widely applied in various areas throughout sciencm_e and engineering. Dynamical system modelling and
control using artificial neural networks (ANNs) including radial basis function networks (RBFNs) has also been
studied widely and a number of systematic approaches have been proposed (Chen er al., 1990, 1991, 1992;
Na.rendré and Parthasarathy, 1990; Bi]lings et al., 1992; Chen and Billings, 1992; Haykin, 1994; Sastry et al.,
1994; Lin, et al.,, 1996; Narendra and Mukhopadhyay, 1997). The idea of combining wavelets with neural
networks has led to the development of wavelet networks, where wavelets were introduced as activation
functions of the hidden neurons in traditional feedforward neural networks with a linear output neuron. Although
it was considered that wavelet networks were popularized by the work of Szu et al. (1992), Zhang and
Benveniste (1992), and Pati and Krishnaprasad (1993) etc., the origin of wavelet networks can be traced back to

the earlier work of Daugman (1988), where Gabor wavelets were used for image classification and compression.

The wavelet analysis procedure is implemented with dilated and translated versions of a mother wavelet.
Since signals of interest can usually be expressed using wavelet decompositions, signal processing algorithms
can be performed by adjusting only the corresponding wavelet coefficients. In theory, the dilation (scale)
parameter of a wavelet can be any positive real value and the translation (shift) can be an arbitrary real number.
This is referred to as the continuous wavelet transform. In practice, however, in order to improve computation
efficiency, the values of the shift and scale parameters are often limited to some discrete lattices. This is then

referred to as the discrete wavelet transform.

Both continuous and discrete wavelet transforms have been introduced to implement neural metworks.

Existing wavelet networks can therefore be catalogued into two types:
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e Adaptive wavelet networks, where wavelets as activation functions stem from the continuous wavelet
transform and the unknown parameters of the networks include the weighting coefficients (the outer
parameters of the network) and the dilation and translation factors of the wavelets (the inner parameters of
the network). These parameters can be viewed as coefficients varying continuously as in conventional
neural networks and can be learned by gradient type algorithms.

e Fixed grid wavelet networlks, where the activation functions stem from the discrete wavelet transforms and
unlike in adaptive neural networks, the unknown inner parameters of the networks vary on some fixed
discrete lattices. In such a wavelet network, the positions aﬁd dilations of the wavelets are fixed (pre-
determined) and only the weights have to be optimized by training the network. In general gradient
type algorithms are not needed to train such a network. An alternative solution for training this kind of
network is to convert the networks into a linear-in-the-parameters problem, which can then be solved

using least squares type algorithms.

The concept of adaptive wavelet networks was introduced by Zhang and Benveniste (1992) as an
approximation route which combined the mathematical rigor of wavelets with the adaptive learning scheme of
conventional neural networks into a single unit. Adaptive wavelet networks have been successfully applied to
nonlinear static function approximation and classification (Szu et al., 1992; Pittner er al., 1998, Wong and
Leung, 1998), and dynamical system modelling (Cao et al., 1995; Alligham et al., 1998). Clearly, to train an
adaptive wavelet network, the gradients with respect to all the unknown parameters have to be expressed
explicitly. The calculation of gradients may be heavy and complicated in some cases especially for high-
dimensional models. In addition, most gradient type algorithms are sensitive to initial conditions, that is, the
initialization of wavelet neural metworks is extremely important to obtain a fast convergence for a given
algorithm (Oussar and Dreyfus, 2000). Another problem that needs to be considered for training an adaptive
wavelet network is how to determine the initial number of wavelets associated with the metwork. These
drawbacks often limit the application of adaptive wavelet networks to low-dimensional problems.

Unlike adaptive wavelet networks, in a fixed grid wavelet network, the number of wavelets as well as the
scale and translation parameters can be determined in advance. The only unknown parameters are the weighting
coefficients, that is, the outer parameters, of the network. The wavelet network is now a linear-in-the-parameters
regression, which can then be solved using least squares techniques. As will be discussed in Section 3.4, the
number of candidate wavelet terms in a fixed grid wavelet network often increases dramatically with the model
order. As a consequence, fixed grid wavelet networks are often limited to low-dimensions.

Inspired by the well known ANOVA (analysis of variance) expansions (Friedman, 1991; Chen, 1993), a new
class of fixed grid wavelet networks is introduced in the present study for nonlinear system identification. In the
new wavelet networks, the model structure of a high-dimensional system is initially expressed as a
superimposition of a number of functions with fewer variables. By expanding each function using truncated
wavelet decompositions, the multivariate nonlinear networks can then be converted into linear-in-the-parameter
problems, which can be solved using least-squares type methods. The new wavelet networks are therefore in
structure different from either the existing wavelet networks (Zhang and Benveniste, 1992; Cao et al., 1995;
Zhang et al., 1995; Zhang, 1997; Alligham et al., 1998) or wavelet mutiresolution models (Coca and Bﬂhﬂgs#d £y
1997; Billings and Coca, 1999). An efficient model term detection approach based on a forward ortho_‘gc’:)r}:-iai”l“ﬂlzas{ A




squares (OLS) algorithm, along with the error reduction ratio (ERR) criterion (Billings et al., 1989; Chen e al.,

1989; Chen ez al., 1991) is applied to solve the linear-in-the-parameters problem in the present study.

2. Representations of Nonlinear Dynamical Systems
A wide range of nonlinear systems can be represented using the NARX (Nonlinear AutoRegressive with
eXogenous inputs) model (Leontaritis and Billings, 1985; Pearson, 1995, 1997). Taking SISO systems as an

example, this can be expressed by the following nonlinear difference equation
YO = fOE =1,y =n,)u@ -1, u@-n,))+e) D

where f is an unknown nonlinear mapping, #(#) and y(¢) are the sampled input and output sequences,
n,and n, are the maximum input and output lags, respectively. The noise variable e(7) is immeasurable but is
assumed to be bounded and uncorrelated with the inputs.

Several approaches can be applied to realise the representation (1) including polynomials (Chen e al., 1989;
Aguirre, 1994; Chiras, 2002), neural networks (Chen et al., 1990, 1991, 1992; Billings et al., 1992; Chen and
Billings, 1992) and other complex models, see for example the book by Pearson (1999). In the present study, an

additive model structure will be adopted to represent the NARX model (1). The multivariate nonlinear function
f in the model (1) can be decomposed into a number of functional components via the well known functional

analysis of variance (ANOVA) expansions (Friedman, 1991; Chen, 1993)

y(r) = f(xl (I‘),xz (t)s X, (t))

=fo+ D HiG O+ Y F@x, @)+ Y i (50 x, (0,5, (6) + -
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where x(2) =[x, (£), x, (), -+, x, ()] and

y(t-k), ISkSny
x,(t) = (3)
ut—k+n,), n,+1<k<n=n, +n,
The first functional component f is a constant to indicate the intrinsic varying trend; f,, ﬁj,---, are

univariate, bivariate, etc., functional components. The univariate functional components ﬁ (x,) represent the
independent contribution to the system output that arises from the action of the ith variable X, alone; the
bivariate functional components f}; (X;,X;) represent the interacting contribution to the system output from the
input variables X, and x ;» etc. The ANOVA expansion (2) can be viewed as a special form of the NARX model

for input and output dynamical systems. Although the ANOVA decomposition of the NARX model (1) involves

up to 2" different functional components, experience shows that a truncated representation containing the




components up to the bivariate or tri-variate functional terms is often sufficient to provide a satisfactory
description of y(t) for many high dimensional problems providing that the input variables are properly

selected. The presence of only low order functional components does not necessarily imply that the high order
variable interactions are not significant, nor does it mean the nature of the nonlinearity of the system is less
severe. An exhaustive search for all the possible submodel structures of (2) is demanding and can be prohibitive

because of the curse-of-dimensionality. A truncated representation is advantageous and practical if the higher
order terms can be ignored. In practice, the constant term f0 can often be omitted since it can be combined into
other functional components.

In practice, many types of functions, such as kernel functions, splines, polynomials and other basis functions
can be chosen to express the functional components in model (2). In the present study, however, wavelet
decompositions, which are discussed in the next section, will be chosen to describe the functional compdnents in
the additive models (2), and this was referred to as the WAvelet-NARX model, or the WANARX model in Wei

and Billings (2004), where multiresolution wavelet decompositions were employed and a class of compactly

supported wavelets were considered.

3. Wavelet Networks—Truncated Wavelet Decompositions

This section briefly reviews some results on wavelet decompositions and wavelet networks which are relevant to
the present work. For more details about these results, see for example the work of Mallat (1989, 1998), Chui
(1992), Daubechies (1992), Zhang and Benveniste (1992), Meyer (1993), Zhang (1997). In the following, it is

assumed that the independent variable x of a function f € L*(R) of interest is defined in the unit interval

[0,1]. In addition, for the sake of simplicity, one-dimensional wavelets are considered as an example to illustrate

related concepts.

3.1 Wavelet decompositions

Let I be a mother wavelet and assume that there exists a denumerable family derived from i

1 x=b
Q=W 5y Wia by X)) =—F= “"L]’ar eR",heR 4
,/a, a,

where a, and b, are the scale and translation parameters. The normalization factor 1/4/a, is introduced so that

the energy of ¥, , , are preserved to be the same as that of 1/ . Rearrange the elements of £ so that

Q={y, :teT} %)

where I is an index set which might be finite or infinite. Note that the double index of the elements of €2 in (4)

is replaced by a single index as shown in (5). Under the condition that { generates a frame, it is guaranteed that

any function fe L*(R) can be recovered from the mother wavelet i in the sense that (Chui, 1992;

Daubechies, 1992; Zhang and Benveniste, 1992)




f@=> cw,(x) (6)
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where ¢, are the decomposition coefficients or weights. Eq. (7) is called the wavelet frame decomposition.

or

1 =
f(x):ch,l,lf(a”bl)(x) :ZCr —ﬁv{xa!

tel’ el

In practical applications the decomposition (7) is often discretized in both the scale and dilation parameters for
computational efficiency. Based on this discretization, wavelet decompositions can be obtained to provide an

alternative basis function representation. The most popular approach to discetize (7) is to restrict the dilation and
translation parameters to a dyadic lattice as @, =2/ and b, =k277 with j,k€ Z (Z is the set of all integers).

Other non-dyadic ways of discretization are also available. For the dyadic lattice case, (7) becomes
F=3 Y ealWisl®d )
. Tk

where ¥, (x) =27/ 2y(27 x~ k) and j,ke Z.

Note that in general a frame provides a redundant basis. Therefore, the decompositions (7) and (8) are usually
not unique, even for a tight frame. Under some conditions, it is possible to make the decomposition (8) to be
unique and in this case this decomposition is called a waveler series (Chui, 1992). An orthogonal wavelet
decomposition, which requires stronger restrictions than a wavelet frame, is a special case of a wavelet series.
Although orthogonal wavelet decompositions possess several attractive properties and provide concise
representations for arbitrary signals, most functions are excluded from being candidate wavelets for orthogonal
decompositions. On the contrary, much more freedom on the choice of the wavelet functions is given to a

wavelet frame by relaxing the orthogonality.

3.2 Wavelet networks

In practical applications for either static function learning or dynamical system modelling, it is unnecessary and
impossible to represent a signal using an infinite decomposition of the form (7) or (8) in terms of wavelet basis
functions. The decompositions (7) and (8) are therefore often truncated at an appropriate accuracy. Wavelet

networks are in effect nothing but a truncated wavelet decomposition. Taking the decomposition (8) as an
example, an approximation to a function f€ L*(R) using the truncated wavelet decomposition with the

coarsest resolution j, and the finest resolution j, can be expressed as below:

Jmax
FO=Y D ;@) ©)

Jj=igkeK;
where K; ( j=jy.Jo + L, jpuu ) are subsets of Z and often depend on the resolution level j for all

compactly supported wavelets and for most rapidly vanishing wavelets that are not compactly supported. The

details on how to determine K jata given level j will be discussed later. Define




Ql:{Wj,k:jzj[}’j0+1"":jmax=kEKj} (10)

Assume that the number of wavelets in £, is M. For convenience of description, rearrange the elements of £2;

so that the double index (j,k) can be indicated by a single index m=1,2,..., M in the sense that,

M
F)=Y e () (1)

m=1
The truncated wavelet decompositions (9) and (11) are referred to as fixed grid wavelet networks, which can be
implemented using neural network schemes by choosing different types of wavelets and employing different

training/learning algorithms. This will be discussed in Section 4.

Note that although the wavelet network (9) or (11) involves different resolutions or scales, it cannot be called
a multiresolution decomposition related to wavelet multiresolution analysis (MAR), which involves not only a
wavelet, but also another function, the associated scaling function, where some additional requirements should

be satisfied.

3.3 Extending to high-dimensions
The results for one-dimensional case described above can be extended to high-dimensions. One commonly used

approach is to generate separable wavelets by the tensor product of several one-dimensional wavelet functions.
(Mallat, 1989; Zhang and Benveniste, 1992). For example, an n-dimensional wavelet p'™:R" > R can be

constructed using a scalar wavelet I as follows

i=1

w @) = (g 2y, x,) = Jwx) (12)

Another popular scheme is to choose the wavelets to be some radial functions. For example, the n-dimensional

Gaussian type functions can be constructed as

—h

M =™ Gy Es X, Y= XK, X8 (13)

where ||Jc|]2 =xTx= Z; Jc,-2 . Similarly, the n-dimensional Mexican hat (also called the Marr) wavelet can be

expressed as J,{f["](x)=(n-"x"z)exp(—"xnz/ 2) . In the present study, the radial wavelets are used to

implement wavelet networks. The two-dimensional Gaussian and Mexican hat wavelets are shown in Figure 1.

Figure 1 The 2-D Gaussian and Marr mother wavelets. (a) Gaussian wavelet; (b) Marr wavelet.




3.4 Limitations of existing wavelet networks

It has been found that most exiting wavelet networks are limited to handling problems in low-dimensional space
due to the difficulty of the so called curse-of-dimensionality. The following discussion will suffice the

illustration that exiting wavelet networks are not suitable for high-dimensional problems.

Assume that a function f € L*(R") of interest is defined in the unit hypercube [0,1]". Let i be a scalar
wavelet function that is compactly supported on [s,,s,] . From Section 3.3, this scalar wavelet can be used to

[n]

generate an n-dimensional wavelet ™ :R" 1> R by (12). This multi-dimensional wavelet " can then be

used to approximate the n-dimensional function f € L*(R") using the wavelet network (9) as below:

Jmax
F= Fla%0 %)= ) D il id (X0, %,)

j=j°kEKj
Jmax n
= Z Z Z € jiky ok I IWj,ic,- (x;) (14)
© o j=hkeEk; k,=K; i=1 :

where k =[k,,k, ---,k,]" € Z"is an n-dimensional index. Noting that x, & [0,1] for i=1,2,..., n and that the
wavelet ¥ is compactly supported on [s,,s,]. Then for a given resolution level j, it can easily be proved that
the possible values for k; should be between — (s, —1) and 27 5 —1, thatis, — (5, ~1) Sk, £27 =5, —1.
Therefore, the number of candidate wavelet terms to be considered at scale level j will ben,,,, =s", where
s=27 +§, =5, —2. Setting n=5 and 5, — s, =5, this number will be n,,, = 43,55 7%, and 11° for
j=0,1,2 and 3, respectively. If n and (s, —s,) are set to be 10 and 5, the number of candidate wavelets will then

becomen, . = 4'°,5'% 7' and 11'° for j=0,1,2 and 3, respectively. This implies that the total number of

term
candidate wavelet terms involved in the wavelet network is very large even for some low resolution levels

( j<3). This means that the computation task for a medium or high-dimensional wavelet network is too heavy

to be implemented in a normal computer. Thus, it can be concluded that high-dimensional wavelet networks will
be very difficult if not impossible to implement via tensor product approach. This is the case where an n-

dimensional wavelet is constructed by the tensor product of n scalar wavelets.

Similarly, applications of existing wavelet networks, where the wavelets are chosen to be radial wavelets, are
also prohibited from high-dimensional problems by the above mentioned limitations. In addition, most existing
radial wavelet networks possess an inherent drawback, that is, every wavelet term includes all the process
variables as in the Gaussian and the Marr mother wavelets. This is unreasonable since in general it is not
necessary that every variable of a process interacts directly with all the other variables. Moreover, experience
shows that inclusion of the total-variable-involved wavelet terms (here a total-variable-involved term refers to a
model term that involves all the process variables simultaneously) may produce a deleterious effect on the
resulting model of a dynamical process and will often induce spurious dynamics. From the point of view of

identification studies, it is therefore desirable to exclude the total-variable-involved wavelet terms.




The limitations and drawbacks associated with existing wavelet networks described above suggest that new
wavelet networks need to be constructed to bypass the curse-of-dimensionality to enable the networks to handle

high-dimensional problems.

4. A New Class of Wavelet Networks

The structure of the new wavelet networks is based on the ANOVA expansion (2), where it is assumed that the
additive functional components can be described using truncated wavelet decompositions. The construction and

implementation procedure of the new networks is described as follows.

4.1 The structure of the new wavelet networks

Consider the m-dimensional functional component f;

i iy

(x; (1), x;, (©),---,x; (1)) inthe ANOVA expansion

(2). From (9) or (11), f,

hige oy

(Jri1 (f),xiz (t),u-,x[.m (2)) can be expressed using an m-dimensional wavelet
network as

I
Figt, Gy @ )= D D Y Cn W o (5, @)oo, (©)) (15)

j=inkeK;  k,EK;

[m]

where the m-dimensional wavelet function ¥,

e (x,.l (#),--+,x; (t) can be generated from a scalar wavelet

as in (12) or (13). Taking the two-dimensional component f,, (x, (#),x, (1) ( 1=p<g=<n)in (2) as an
example, this can be expressed using a radial wavelet network as

Iz
Fog Gy @2, @) =2 D" > ¢ WH L (2, (0,3, 0))

J=ih ko ks

Jy . . .
=33 €2 (21272, -k 1 —[2/ 5, () -k, 1 Je

=iy kb ky

[ ; o
—q2! ke P27 -k 1
2{[ X, (O-k 17 +[2) x, (D-k, 17} (16)

where the Mexican hat function is used. Other wavelets can also be employed.

By expanding each functional component .in (2) using a radial wavelet network (15), a nonlinear wavelet
network can be obtained and this will be used for nonlinear system identification in the present study. Note that
in (16) the scale parameters for each variable of an m-dimensional wavelet are the same. In fact, the scales for
different variables of an m-dimensional wavelet are permitted to be different. This may enable the network to be
more adaptive and more flexible. However, this will also make the number of candidate wavelet terms increase
drastically and even lead to prohibitive calculations for high-dimensional systems. Therefore, the same scales for

different variables will be considered here.

4.2 Determining the number of candidate wavelet terms
Assume that both the input and the output of a nonlinear system are limited to be in the unit interval [0,1]. If not,
both the input and output can be normalized into [0,1] under the condition that the input and output are bounded

in finite intervals (Wei and Billings, 2004).




The number of candidate wavelet terms is determined by both the scale levels and translation parameters. For
a wavelet with a compact support, it is easy to determine the parameters at a given scale level j. For example, the

support of the 4™ order B-spline wavelet (Chui, 1992) is [0,7]. At a resolution scale j, the variation range for the

translation parameter kis —6<k < 27 —1. The number of total candidate wavelet terns at different resolution

scales in a wavelet network can then be determined.

Most radial wavelets are not compactly supported but rapidly vanishing. The variation range for the translation
parameter k at a given scale level j can be determined as follows. Taking the one and two-dimensional Gaussian

wavelets (13) as an example, it can be found that
b () =[] £0.0013, |4z 4 | a7
[ (2,2, 00202, || 23 or [x[23 (18)
The support of the one and two-dimensional Gaussian wavelets can then be defined as S™=[-4,4] and
S =[-3,3]%[-3,3]. Similarly, for the one and two-dimensional Mexican hat wavelets, |l,t/(x)l£ 0.005 for
ixl >4 and |W[2] (x,,x, )| <0.08 for ‘x1| =3 or |x2| >3 . Therefore, the one and two-dimensional Mexican hat

wavelets can also be defined as S and $'™. The compactly supported one and two-dimensional Mexican hat

wavelets can be defined as

1.,
yUn=ld-x"e 2 xeSW=[-44] (19)
0 otherwise
2 —
pP()={@=de 2 xesH=[-331x[-33] (20)
0 otherwise

The compactly supported Gaussian wavelets can be defined in the same way. The support for 3-dimensional

Gaussian and Mexican wavelet can be defined as S =[-3,3]x[-3,3]x[-3.3] .

For the scalar Gaussian or Mexican hat wavelet, given a resolution scale j, since |2j o kl <4 and 02 x <1,

the choice for the translation parameter k should satisfy —3<k <27 +3 . This means that the number of
candidate one-dimensional wavelets at a given scale j can be determined beforehand. Similarly, the number of
candidate m-dimensional candidate wavelets terms can be determined. Therefore, the number of the total

candidate wavelet terms is now deterministic. -

4.3 Significant term detection
Assume that M candidate wavelet terms are involved in a wavelet network. The wavelet network can then be

converted into a linear-in-the-parameters form

Y1) =Y 6,0, +e) | o1

m=1




where p_(f) (m=1,2,...,M) are regressors (model terms) produced by the dilated and translated versions of
some mother wavelets. For a high-dimensional system, where n,and/or n, in Eq. (1) are large numbers, the

model (21) may involve a great number of model terms. Experience shows that often many of the model terms
are redundant and therefore are insignificant to the system output and can be removed from the model. In other

words, only a small number of significant terms are necessary to describe a given nonlinear system with a given

accuracy. Therefore, there exists an integer M, (generally M ; << M ), such that the model

My
y@®) =6, p, @) +e@) 22)
k=1
provides a satisfactory representation over the range considered for the measured input-output data.

A fast and efficient model structure ‘determination approach has been implemented using the forward
orthogonal least squares (OLS) algorithm and the error reduction ratio (ERR) criterion, which was originally
introduced to determine which terms should be included in a model (Billings ez al., 1989; Chen et al., 1989).
This approach has been extensively studied and widely applied in nonlinear system identification, see for
example, the papers by Chen et al. (1991), Wang and Mendel (1992), Zhang (1997), Hong and Harris (2001),
Billings and Wei (2003). The forward OLS algorithm involves a stepwise orthogonalization of the regressors and

a forward selection of the relevant terms in (21) based on the error reduction ratio (ERR) (Chen et al., 1989).

4.4 A procedure to implement the new wavelet networks

Two schemes can be adopted to implement the new wavelet network. One scheme starts from an over
constructed model consisting of both low and high dimensional submodels. This means that the library of
wavelet basis functions (wavelet terms) used to construct a wavelet network is over-completed. The aim of the
estimation procedure is to select the most significant wavelet terms from the deterministic over-completed
library, and the selected model terms can often describe a given system well. Another scheme starts from a low-
order submodel, where the library of wavelet basis functions (wavelet terms) used to construct a wavelet network
may or may not be completed. The estimation procedure then selects the most significant wavelet terms from the
given library. If model tests suggest that the selected wavelet terms cannot adequately describe a given system
over the range of interests, higher dimensional wavelet terms should then be added to the wavelet network
(library). Significant terms are then re-selected from the new library. This procedure may repeat several times
until a satisfactory model is obtained. These two identification procedures to implement the wavelet network are

summarized below.

44.1 Implement a wavelet network starting from an over-constructed model

This identification procedure contains in general of the following steps:

Step 1: Data pre-processing
For convenience of implementation, convert the original observational input-output data u(t) and y(?)

(r=1,2, ...,N) into the unit interval [0,1]. The converted input and output are still denoted by u(¢) and y(#).

Step 2: Determining the model initial conditions. This includes:

10




(i)  Select initial values for7 and 7, .

(ii) Select the significant variables from all candidate lagged output and input variables {y(z-1), y(-2), ...,
y(it—n ; ), u(z-1), u(z-2), ..., u(t —n,) .This involves the model order determination and variable

selection probléms.

(iii) Determine m, the highest dimension of all the submodels (functional components) in (2).

Step 3: Identify the wavelet network consisting of functional components up to m-dimensions
() Determine the coarsest and finest resolution scales j,,---, j,. and J,,---,J, ,where J, (1=k <m)
indicates the scales of the associated k-dimensional wavelets. Generally the initial resolution scales
Ji =0, and the finest resolution scales J, (1=<k <m) can be chosen in a heuristic way.
(i) Expand all the functional components of up to m-dimensions using selected mother wavelets of up to
m-dimensions

(iii) Select the significant model terms from the candidate models terms and then form a parsimonious model
of the form (22).

4.4.2 Implement a wavelet network starting from low-order submodels

This identification procedure can be summarized below:
Step 1: The same as in 4.4.1

Step 2: Determining the model initial conditions. This includes:
(i) and (i) The same asin4.4.1
(iii) Set m=1.

Step 3: The same as in 4.4.1

Step 4: Model tests

If the identified mth order model in Step 3 provides a satisfactory representation over the range

considered for the measured input-output data, then terminate the procedure. Otherwise, set m=m-+1

and/or J, =J, +1(k=1,2..., m+1), go to and repeat from Step 3.

5. Examples

Three bench test examples are provided to illustrate the performance of the new wavelet networks. The first data
set comes from a simulated continuous-time input-output system, the second come from a high-dimensional

chaotic time series, and the third is the sunspot time series.

5.1 Example 1—a nonlinear continuous-time input-output system

Consider the Goodwin equation described by a nonlinear time-invariant continuous-time model (Coca, 1996)

y2 (1) -1

y(t) +a 5 er Y1)+ by(t) + ¢y’ (£) = u(2) (23)

where a, b, and ¢ are time-invariant parameters.
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Under the initial conditions y(0) = y(0) =0 and with u(f)=Acos(z), a=0.1, b= -0.5, ¢=0.5, A=37 , a 4th-order

Runge-Kutta algorithm was used to simulate this model with the integral step Az=0.01, and 3000 equi-spaced
samples were obtained from the input and output with a sampling interval of T =0.02 time units. The sampled
input and output sequences, i, =u(k)=u(kT)and y, = ¥(k) = y(kT), were normalised into the unit interval
[0,1] using the fact that #, € [~37,37] and y, € [-7,7]. Designate the normalised input and output sequences

by u; =u(k)=u(kT) and y, = y(k) = y(kT).

The 3000 data points of input-output samples were divided into two parts: ‘the estimation set consisting of the
first 1000 data points was used for wavelet network training and the test set consisting of the rest 2000 data
points was used for model tests. A variable selection algorithm (Wei et al., 2004) was performed on the
estimation data set and three significant variables {y(k-1), y(k-2), u(k-1)} were selected. The initial wavelet

network was chosen as
y(k)=f(y(k -1, y(k —2),u(k —1))

- 3 2 3 i
= £,y N+ DD foo (e, (K, %, (kD) + fra (5, (), % (), x5 () (24)

p=1 p=l g=2

where x, (k)=y(k — p)for p=1,2 and x;(k) = y(k —3). The one, two and three-dimensional Mexican hat
radial wavelet networks were used in this example to approximate the univariale functions f,, the bivariate
functions f,, . and the tri-variate function f),; , respectively, with the coarsest resolutions j, = j, = j; =0 and

finest resolutions J, =3 and J, =J; =2. A forward orthogonal least squares (OLS) algorithm, together with
the error reduction ratio (ERR) criterion (Billings et al., 1989; Chen et al., 1989; Chen et al., 1991) was applied

to select significant model terms. The final identified model was found to be .

y(k) =0.070723y7, (y(k 1)) +1.8465397, 5 (y(k —2))

+1.734865p53 o (y(k —1), y(k — 2)) —1.300637y, ¢ (u(k ~1)) (25)

where yfjik(x)=2”2w(2jx—k) and Wﬁl,}ca (x],xz)=2quf(2j_x:1 —k1,2j:|:2 —k,) are the one and two

dimensional compactly supported Gaussian wavelets, where j,k,k,k,€Z.

Setting the input signal wu(k)=cos(kT), T=0.02, and starting from the initial value y(1)=y(2)=0.5 (this is
equivalent to the original y(1) = y(2) =0, where y indicates the original signal), the model (25) was simulated
and the output y was recovered to its original amplitude by the inverse transform Yy (k)= Y,

+ (Ymux = Yumin ) Y(K) , where y_. =—y_. =7. The system output yy, from the model (25) was compared
with that from the original model (23) over the validation set and is shown in Figure 2(a) and (b), which clearly
indicates that the model (25) provides an excellent representation for the original system (23). For a closer
inspection of the result, the interval [1600, 2400], where the maximum errors appear as shown in (b), was
expanded and this is shown in Figure 2(c). It follows that a conventional wavelet network, where only the total-
variable-involved wavelet terms in (24) were considered, could not reach a result as good as that shown in Figure

2 under the condition that only the 3-dimensional wavelets were used.
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Figure 2 Comparison of the model output based on the wavelet network (25) with the measurements over the test set. (a) Overlap of the
output of the wavelet network (25) and the measurements. (b) Discrepancy between the output of the wavelet network (25) and the
measurements. (c) The interval [1600, 2400] was expanded for a closer inspection. In (a) and (c), the solid lines indicate the measurements
and the dashed lines indicate the model predicted outputs.

5.2 Example 2—a high-dimensional chaotic system
Consider the Mackey-Glass delay-differential equation (Mackey and Glass, 1977)

dx(t 0.2x(t—7

) o158+ _+)_ (26)
dt 1+x°(t-7)

where the time delay 7 was chosen to be 30 in this example. This example was chosen to facilitate comparisons

with other results (Cao et al, 1995; Bone et al, 2002). Setting the initial condition x(#)=0.9for0<t<7, a
numerical integral algorithm was applied to calculate Eq. (26) with an integral step Az =0.01 and 6000 equi-
spaced samples, x, =x(k) = x(kT), (k=1,2, ..., 6000) were recorded with a sampling interval of T =0.06 time

units.

The recorded sequence was normalised into the unit interval [0,1] using the a priori knowledge
x, €[0.2,1.4] . Designate the normalised sequence by y, = y(k) = y(kT) . The 6000 points was divided into two

parts: the estimation set consisting of the first 500 points was used for wavelet network training and the
validation set consisting of the remaining 5500 points was used for model tests. Following Casdagli (1989), the
dimension of the recorded time series was assumed to be n=6, and the significant variables were therefore

chosen to be {y(k-1), y(k-2), ..., y(k-6)}. Similar to Example 1, the initial wavelet network was chosen to be

6 5 6
Y= fOk =D, y0e=2),, 3k =) =D f, (k= PN+ 3D Fig (3k = p), y(k =)

=1 =1 g=2

P4 © p=lg
O Fo YKk = ). y(k = @), y(k ~ 1)) @7

p=l g=2 r=3

LN




where the one, two and three-dimensional compactly supported Mexican hat radial wavelet networks were used

in this example to approximate the univariale functions fp, the bivariate functions f - and the tri-variate

q

function f respectively, with the coarsest resolutions j, = j, = j; =0 and finest resolutions J, =3,

par
J, =1 and J; =0. A forward OLS-ERR algorithm (Billings ez al., 1989; Chen et al., 1989) was used to select

significant model terms. The final identified model was found to be

(k) =—2.12656437x107 y5 o (y(k —1)) —3.22204781x10 7> 5 35 (y(k —1))
+1.63619675x10 3 3 (y(k —3)) +1.15434412x107 5 , (y(k - 3))
~6.93238261x10 2y 5 (y(k—5)) +1.39111531x107 3o (y(k —6))

+8.65313332x10°p, , (y(k —6)) +3.60856265x10 >y, (y(k -1, y(k —2))

-2.37718815x10° w52, | (y(k —1), y(k —3)) —1.71181790x10 ™ w3, (y(k ~ 1), y(k - 5))
. —8.49930598x10 2y, (y(k -1), y(k —6)) +9.93000674x10 2T, (y(k —2), y(k - 6))

+2.09585403x107 wl? | (y(k = 3), y(k —4)) +4.94735553x10 " w2, | (y(k-3), y(k =5)) (28)

0;-1,1

where ¥, () =272y @ u~k) and Y% | (u.u) =279 @74~k 27y ~ky) are the one and two

dimensional compactly supported Mexican hat wavelets, where j,k,k;,k, € Z.

Most of the results in the literature concern one-step-ahead predictions of the sampled time series. In this
example, however, two-step-ahead predictions were consi&ered and the predicted results were compared with
other work (Cao et al, 1995; Bone et al, 2002), where only one-step-ahead predictions were considered. To
facilitate comparisons, a measurement index, the relative error (Cao et al, 1995) , was used to measure the

performance of the identified wavelet network. This index is defined as

Ey ={mp < 2l (29)

where x,, and X, are the measurements on the test set and associated two-step-ahead predictions, respectively.
The results of two-step-ahead predictions of the wavelet network (28) were compared with the measurements
and these are shown in Figure 3, where the data are plotted once every 100 points to obtain a clear inspection.
The relative error E, is shown in Figure 4, which clearly indicates that the underlying dynamics have been

captured by the identified wavelet network (28). Notice that from Figure 4 the result of two-step-ahead
predictions of the wavelet network (28) is by far better even than that of the one-step-ahead predictions provided

by the wavelet networks proposed by Cao et al (1995), In fact, simulation results show that the relative error
E, with respect to the one-step-ahead predictions provided by the wavelet network (28) is by far smaller than

those with respect to the two-step-ahead predictions. The standard derivation was calculated to be 0.0029 with
respect to the two-step-ahead predictions of the wavelet network (28), which is by far smaller than that given by
Bone et al (2002), where the one-step-ahead predictions were considered. These results obviously show that the

new wavelet networks are more effective and efficient than conventional networks.
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Figure 3 Two-step-ahead predictions for the Mackey-Glass delay-differential equation (26) using the identified wavelet
network (28) over the validation set. The stars ‘** indicate the measurements and the circles ‘o’ indicate the predications. For
a clear inspection, the data are plotted once every 100 points.
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Figure 4  Relative errors between the two-step-ahead predictions from the identified wavelet network (28) and the
measurements for the Mackey-Glass delay-differential equation (26) over the validation set.

5.3 Example 3—the sunspot time series

The sunspot time series considered in this example consists of 300 records of the dark spots on the sun from
1700 to 1999, see Figure 5. The objective here is to identify a wavelet network model to produce one-step-ahead
predications for the sunspot data set. Again, the original measurements {y(z)}(1<¢<300} were initially
normalized into the unit interval [0,1] using the information 0 < y(#) <200 . Design the normalised sequence by
{y(#)}. The data set was separated into two parts: the training set consists of 250 data points corresponding to

the period 1700-1949, and the test set consists of 50 data points corresponding to the period 1950-1999.

Following Wei et al. (2004), the model order was chosen to be n=9 here. It was also pointed out that y(s-1),
¥(t-2) and y(#-9) are the three most significant variables (Wei et al. 2004). The initial wavelet network model was

therefore chosen to be
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Figure 5 The sunspot time series for the period from 1700 to 1999.

YO = F(y(t =1, y(t = 2),--, y(t —9))
9 2 3 .
=D Fo )+ DY £ (2,002, (O) + fias (2,(8), 2, (0,25 (1)) (30)

p=1 p=1g=2
where x, (1) = y(t — p) for p=1,2,....9, z, ()= y(t — k) for k=1,2, and Z3(t)=y( —=9) . The one, two and
three-dimensional compactly supported Gaussian radial wavelet networks were used in this example to

approximate the univariale functions , the bivariate functions , and the tri-variate function ;
pp! ) p 123

respectively, with the coarsest resolutions j, = j, = j; =0 and finest resolutions J, =2, J, =J ;=0. A

forward OLS-ERR algorithm (Billings er -al., 1989; Chen et al., 1989) was used to select significant model terms.
The final identified model was found to be

24
Y6)=Y 6, pi(® (31)
k=1

where p, () are the wavelet terms formed by compactly supported Gaussian wavelets. The identified wavelet

terms, the corresponding parameters, and the associated error reduction ratios (ERRs) are listed in Table 1.
Roughly speaking, the values of the ERRs provide an index indicting the contribution made by the
corresponding model term to a signal of interest, and in general, the larger a ERR value is, the more significant
the corresponding model term is for representing a given signal. For details about the meaning of ERR, see for
example Billings et al. (1989) and Chen et al. (1989). The result of the one-step-ahead predictions based on the
wavelet network (31) over the test set is shown in Figure 6 (the dashed-star line), which clearly shows that the

identified model provides an excellent representation for the sunspot time series.

In order to compare the predicted result of the wavelet network with other work (Soltani, 2002), the following
index, the normalized error on the test set, was used to measure the performance of the identified wavelet

network
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(32)

E_ZNWI)C _3 lz/ZN,mlx _}—C|2
T L= TR TR k=1 17K

where x;, and X, are defined as in Eq. (29), N

test

- N
is the length of the test set , and X =Zk_] X, . It was

test

calculated that E =0.0651 for the identified wavelet network (31) and this is smaller than that given by a wavelet

decomposition model proposed in Soltani (2002).

Table 1 The wavelet terms, parameters and associated error reduction ratios for the sunspot time series.

Terms No. k Wavelet terms p, (1) Parameters 6, ERR, x100%
1 yfé?g‘_lv L, (Y@ =D, y(t=2),y(t=9)) | 151298827e+000 | 9.24528866e+001
2 Va3 (¥ —=2)) 5.41812968e-003 1.19512777e+000
3 W, (y(t—=2)) 5.37704026e-001 8.34773530e-001
4 W{[)fé,l (y(t-1), y(—9)) -2.65654782e+000 4.17087285¢-001
5 W, s (y(—1) -2.27744202¢-001 3.15221310e-001
6 W7 (¥(-1) -6.67540058e+000 2.82572747e-001
7 Wi, (it =2), y(t -9)) 6.89573412e+000 1.01940451e-001
8 y,gfj 50 (Y1), y(t=9) -8.102061782+000 1.37984742e-001
9 Wes L, (y(t=1), y(t-9)) 2.04730652e+001 1.11760613e-001
10 Wy (y(t—4)) 6.65007554¢-002 1.24850577e-001
11 v, (v -1), y(z - 9)) 1.45025760e+000 6.36718843¢-002
12 Wy, (¥ —3)) -4.43226358¢-002 8.08322664¢-002
13 Wy, (y(=T) -6.81401148¢-002 1.00811211e-001
14 W5 (y(t-3)) 7.99121974e+000 | 5.07384329¢-002
15 W4 (@ -2)) -9.59979407e-001 6.99589742¢-002
16 Wy, (y(t—4)) 5.19552579¢-002 6.77180550e-002
17 W,3(y(t—28)) 4.47442151e-002 3.71432968e-002
18 W, (y(t—=T7)) -2.09739189¢-001 4.93876251e-002
19 W,y (¥ —8)) 1.31932809¢+000 6.76831534e-002
20 W, (y(t—6)) 4.02514721e+000 3.82428793e-002
21 Wy o (y(t—6) -4.46511248e-001 5.79397319¢-002
22 W, (y(t=9) 5.92505836e-002 6.85987322¢-002
23 W, ,(y(t=9) -1.43930547e-001 3.48667548e-002
24 v, (y(E-9) 1.95271113e+000 1.73543459%¢-002
Note: ¥, ,(x)=2""2y (27 x-k), v e ) =27y P (20 5 — k27 %, k), and
I,tffl.?}c]’kz‘k] (B Xy )= gz WB] (27 X —k; 27 Xy~ &5 27 X3 —k3) are the compactly supported
Gaussian wavelets.
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Figure 6 One-step-ahead predictions for the sunspot time series based the wavelet networks (31) and (33) over the test set.
The point-solid line indicates the measurements, the dashed-star line indicates the predictions from (31), and the dotted-circle
line indicates the predications from (33).

An important point revealed by Table 1 is that the three variables y(z-1), y(z-2) and y(z-9) are far more
significant than the other variables. This is consistent with the result given in Wei et al. (2004). In fact, the
sunspot time series can be satisfactory described using a wavelet network with respect to only these three

significant variables. This model is given below
y(®) = —0.12759, (y(t — 1)) —9.41469y, , (y(t — 1))
+0.05504y, 5 (¥(t — 2)) +1.30897y, _; (y(t —2))
—3.67994p %, s (y(t = 1), (2 = 9)) —1.57733p3, (y(t = 1), y(t = 9))
+6.4743Tyi)_, (vt = 1), y(t —9) +4.22507p 2, | (3(2 — 2), y(z — 9))
~ 241246y 1, (¥ = 1), y(t —2), y(t - 9)) (33)

The one-step-ahead predictions from the wavelet network (33) over the test set is shown in Figure 6 (the dotted-

circle line), where the normalized error E was calculated to be 0.1044, which is still very small.

6. Conclusions

A new class of wavelet networks (WNs) has been introduced for nonlinear system identification. The main
advantage of the new identification approach compared with existing wavelet networks is that the new wavelet
networks are more practical and applicable for handling problems in medium and high-dimensions as well as in
low-dimensions due to the fact that the structure of the new wavelet networks bypass the dilemma of the curse-

of-dimensionality.
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It has been noted that a conventional wavelet network always includes the total-variable-involved wavelet
terms, but this is not the case for most systems in the real world. In addition, a model that includes only the high-
order terms is liable to produce a deleterious effect on the output behaviour of the model and can often induce
spurious dynamics. From this point of view, the new wavelet networks are more reasonable compared with
conventional wavelet networks by decomposing a multi-dimensional function into a number of low-dimensional

submodels.

In theory, any wavelets can be used to approximate the low-dimensional submodels by a scheme of taking
tensor products or adopting radial functions. For convenience of network training, it is often preferable to use a
wavelet that is compactly supported, since the number of compactly supported wavelets at a given resolution
scale can be determined beforehand and thus the total number of candidate wavelet terms involved in the
network is deterministic. Radial wavelets are not compactly supported but rapidly vanishing. It is therefore
reasonable to truncate a radial wavelet to make it become quasi-supported, this can then be used as a normal
compactly supported wavelet to implement a wavelet network. Most radial wavelets including the Gaussian and
Mexican hat wavelets are easy to calculate with very slight computation load and can therefore be chosen to
implement a wavelet network. Other non-radial wavelets, which are either compactly supported or not, can also
be available if there is strong evidence that these wavelets can easily be performed to implement a wavelet

network.

A wavelet network may involve a great number of wavelet terms for a high-dimensional system. However, in
most cases many of the model terms are redundant and only a small number of significant terms are necessary to
describe a given nonlinear system with a given accuracy. An efficient term detection algorithm was employed to

train wavelet networks and finally parsimonious models were obtained.

In summary, the new wavelet networks are advantageous over existing conventional wavelet modelling
schemes and provide an effective approach for nonlinear system identification. The results obtained from the

bench test examples demonstrate the effectiveness of the new identification procedure.
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