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Analytical description of the effects of system nonlinearities
on output frequency responses: A case study
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The output spectrum of a linear dynamic system is equal to the mput spectrum
multiplied by the system frequency response function. This well known
relationship analytically exposes the effects of the system parameters on the
output frequency response. In this paper, the extension of this relationship to the
nonlinear case is investigated via a case study where an analytical relationship
between the output frequency response and the nonlinear damping characteristic
parameters is derived for a SDOF spring damper system. The analysis-is-based
on the frequency domain analysis of nonlinear systems, the basic idea can be
extended to general situations. Simulation studies are included to verify the
theoretical analysis and demonstrate the effectiveness of the new relationship.
The results provide an important basis for the analytical study and design of
nonlinear engineering systems and structures in the frequency domain.

1. Introduction

The output. f(% equency response of engineering systems has been widely used in many
areas to investigate and study system behaviours. If the underlying system is linear the
relationship between the system output frequency response and the input is well
known; the output spectrum Y (j@) 1s equal to the input spectrum U(jw) multiplied
by the system frequency response function (FRF) H(j®). The FRF is the frequency
domain description for linear systems, and the simple linear frequency domain
relationship Y(jw) = H(jo)U(j@) analytically describes the effect of system
properties on the output frequency response. This analytical relationship has been
applied in control engineering for controlled plant analysis and controller design, in
electronics and communications for the synthesis of analogue and digital filters, and

in mechanical and civil engineering for the analysis of vibrations in the analysis and
design of associated structures.

Nonlinear systems have been widely studied by many authors and significant progress
towards understanding these systems has been made. Many of these studies have been
based in the time domain with results relating to the Volterra series [1 2] [3),

NARMAX (Nonlinear AutoRegresive Moving Average with eXogenous input)
models [4] [5], neural networks and fuzzy systems [6], and classical nonlinear models
such as the Duffing equation [7] [8] and the Van der Pol oscillator [9]. The study of
nonlinear systems in the frequency domain is based on the concept of generalised

frequency response functions (GFRFs) [10] that extend the linear FRF concept to the




nonlinear case. Many studies in the frequency domain have been focused on system
modelling which involves the determination of the GFRFs from input output data or
the establishment of system frequency domain models from input output spectra [11]-
[16]. Output frequency responses of nonlinear systems were recently studied by Lang
and Billings [17] [18] [19] and Billings and Lang [20] [21] [22]. These studies
extended the above basic linear relationship between the input and output spectra and
introduced explicit relationships between mput and output frequencies of nonlinear
systems. Based on these relationships, Billings and Lang [23] proposed the concept of
energy transfer filters and developed a general procedure for the design of the energy
transfer filters which can be implemented using the NARX (Nonlinear
AutoRegressive with eXogenous input) model with input nonlinearity.

Unlike linear systems, the relationship between the mput and output spectra of
nonlinear systems is much more complicated. The relationship involves sophisticated
multi-dimensional integration known as association of variables and a summation
with a possibly infinite number of terms [2]. This complicates the effect of the system
parameters on the output frequency response. Consequently, the linear system
frequency domain analysis and design approaches cannot be easily extended to the
nonlinear case.

As an attempt to solve this problem, in this paper a case study is conducted on a
single-degree-of-freedom (SDOF) spring damper system with a nonlinear damping
'm this study, an analytical relationship between the system output
frequency response and the characteristic parameters of the system damping
nonlinearity 1s derived for the first time using the frequency domain theories of
nonlinear systems. The results explicitly reveal how the system output frequency
response depends on the damping characteristic parameters which define the system
nonlinearity. Simulation studies are performed to evaluate the accurate system output
frequency responses at different input frequencies and magnitudes, and to compare
these with the analytically determined results. The results verify the effectiveness and
significance of the theoretical derivations. The study presented in the paper is focused
on a relatively simple SDOF system to emphasize the idea of the basic approach, but
the results can be extended to very general cases. The work provides an important
basis for analytical studies and the design of nonlinear engineering systems and
structures in the frequency domain.

2. System description

In order to demonstrate the idea of analytical analysis of the effects of system
nonlinearity on the output frequency response, a simple SDOF system will be
considered, as shown in Figure 1. The mass, m, supported on the nonlinear damper
and parallel spring, is subject to a harmonic disturbance of amplitude, F,, and

frequency, €2. The nonlinear damping effect is described by a third order polynomial
such that

_f(-):a:(-)+az(-)2+aj(-)3 (1)

where a,, a,, a, are the parameters of the damping characteristic, and a, and a,

represent the system nonlinearity. The analysis of the effects of parameters a, and a,




on the system output frequency response is the focus of the present study. The spring
with characteristic parameter k in parallel with the nonlinear damper f{.) provides an
isolation between the disturbance force, F,sin), and the force transmitted to the

support, F.(7).

The equilibrium equation for the system i Figure 1, and the corresponding force at
the support, can be expressed as

mx(r) +ax(t)+ aj,\"z (1) + (:'3_\"3(? )+ kx(t)=F, sin(Qr) (2)
F (=4 Z(t)+ u:f (r)+ ('.'3,‘;’3 (1) + kx(t) (3)

For convenience of analysis, denote

V() = x(1) (4)
v (1)=F (1) (5)
and

u,(t) = F, sin(€2r) (6)

The system can then be described by a single input two output system

i (1) + a, v, (1) + a3, () + a3, () + oy, () =, (¢) (7)

v (1) = a3, (1) + 4y, (£) + @y 3, (1) + ky, (£) (8)

What is interesting in this study is how the spectrum of the second system output
v,(f) depends on the parameters a,,a, of the nonlinear damping characteristic f().

Although this appears to be a relatively simple problem, surprisingly, there are no
results in the literature that can address this fundamental problem. The reason for this
omission is the complexity that is introduced by the nonlinearities even for this
apparently simple system. The objective therefore is to establish an analytical
relationship between the output spectrum and the system parameters.

3. Volterra modelling of the system in the time and frequency
domain

The output v(r) of a single input single output analytical system can be expressed as
a Volterra functional polynomial of the input u(z) [24] to give

W =39 (r) )

n=1

where N is the maximum order of the system nonlinearity, the nth order output of the
system y'"'(z) is given by

_’)"(“)(I): j:' ‘[;h.u(r}’”.’z-n)]f—,[u(t_Ti)dri n>0 (10)
i=1




and h,(r,,---.7,) is a real valued function of 7,,---,7, called the nth order impulse

n

response function or Volterra kernel of the system.

The multi-dimensional Fourier transform of the nth order impulse response function

yields the nth order transfer function or generalised frequency response function
(GFRF)

lﬁ[”(‘li(’)\ LR .j(").u ) - '[’I . '[Ig hu (TI > Tu )el_j{(dlfl Ty )drl o 'dZ’ (1 I)

i

Using the concept of GFRF, the relationship between the input spectrum U(jw) and
output spectrum Y(/jw), i.e., the frequency domain input output description of the
system, can be obtained as [17]

h n
}{JI(U) :Z_]_\/,__J_ J- IL[H(J{(1""-;ja)u)HU(.j([);')(lovrzhr (12)
i=1

1=
7 )
n=| ("‘ﬁ— )+t (0, =@

where _[ . (o

am
L, =00

denotes the integration of (.) over the n-dimensional

hyperplane o, +---+ o, = o.

When the system 1s subject to a multi-tone input such that

%

u(f):z

=1

!4}

cos(wit + £A,) (13)

Lang and Billings [17] showed that equation (12) can be expressed as

N

Vo)=Y, o SH, (e, W@, ) A,) (14)

n=1 gy +otwy, =0
where

ke =K, =1l K} I=1,+,n,

Aw)= {\A,JGJ_A., if oe{m, k=11, K}

otherwise
@, =—,
and

4 |imdei iy
‘Aﬁ,\_‘e" “=|Ak|e =




The extension of the above theoretical results to the single input two output nonlinear
system case is straightforward. The results in the time domain, which are the
extensions of equations (9) and (10), are given in [25][26]

71-;}([) :Z_“_jlltr’(!) ‘Ji"] :1,2 (15)
n=1
where
.em /) [ [ f} ! T|_J'-'-,T”)HI[I(T—Tj_)(lrfi j|:152 (16)
=l :

A . )
and /i, 7 (z,,---,r,) is the nth order Volterra kernel of the system corresponding to the
J;th output. The results in the frequency domain, which are the extensions of
equations (12) and (14), are

N i L’_i‘ ) . n ) )
j(() 2 H’ 1 J. Hli ! (Jra)l""’Jwir)HU(.]wi)dO’nm -]l = 1’2
=1 O+, =0 i=1
(17)
and

b of]

N IR !
Y, (jow)= Z % ZH”] ' (.fa)x-, @ )A(a)k, ) "A(a)f.»,,) Si=12
n=l = @y ek, =0

(18)

where

.’.1 |

1, T (oejo)= [ [ h T aear, g dr(19)

It is obvious that the Volterra time domain model of the system (2) (3) is given by
equation (15), and the output frequency response of the system when subject to the
input in (6) is given by equation (18) with

kef-1a1}  [=1..n -
4((1)) = ”Ak‘e‘j—‘lﬂ fowe {a)k,k = i_l}’ A+1 = Fd: mil = iQ, and ZAil = ¢7-T/2
| . otherwise

(21)

Equation (18) is the starting point for the derivation of an analytical expression for the
effects of nonlinearity on the output frequency response of the system (2) (3).




4. The effects of system nonlinearity on the output frequency
response

The focus of this section is to investigate the effects of the nonlinear damping
characteristic of the system (2) (3) on the output frequency response when the system
is subject to a multi-tone or a harmonic input under the condition that the system can
be described by the frequency domain Volterra model (18). This study involves two
steps. First the GFRF matrices of the system

[ 2 :
V-f” (Joprsgm ) H (_ja),,---,_j(o”)} n=123..

are derived using the probing method [27]. Then an analytical relationship between
the system output frequency response Y,(j@) and the parameters of the nonlinear
damping characteristic 1s determined.

4.1 The probing method

Given a parametric model of a nonlinear system, the GFRFs of the system can be
derived analytically using the probing method. In the case of single input single
output nonlinear systems, the basic 1dea of the probing method can be introduced as
below.

It was shown by Rugh [2] that for nonlinear systems which are described by the
Volterra model (9) (10) and excited by a combination of exponentials

R

u(ty=y e 1SRN (22)

i=1
the output response can be written as

N R

R 5
: : Sy +ete, W
UEDID RO W ATTRENCH C

n=l i=I =1

\
= 2 i : Jlmy (e +-+my (n)ewy |t
- Zz(Jm;(u)-'-ms:(n)(‘jfl)|5'”’.]a)l{)e [ I ' g R] (23)

n=lmin)

where Z mdicates a R-fold sum over all integer indices m,(n),---,m,(n) such that

min)
O<m(n)=n, m(n)+---+m,(n)=n,and

: ; n! : : . ;
Gm,(n)-‘-m‘,‘.(n)(.)ra)l’-”5.](")}2): 1 'Hn(-]wli-“a.]a)]:"':_]w]aa"':_]a)R)
m,(n)l--m,(n)! .

my(n) mp(n)

‘ (24)
Notice that in (24) when n=R, m,(n)=1,i=1,...,R , therefore




G I‘”ru.‘-.[fa’w(.]'{")! B '.].(UN): RH,(jo, -, jo,) (25)

Considering (25), (23) can be written as

A
. _ + . o j[m!(’H)m!+-~+m;\.(;r}rr}‘.]F
-1([)‘ Z Z('}nl.(ﬂj'““h;Elll(<]a)1’ "-/'(UR)G }
n=lon=K min) (26)
. . ey + )
+RH ,(jo,, -, jo, e+

For nonlinear systems which have a parametric model with parameter vector

(1) = [ (1,0, 0(1),u(?)) (27)

and which can also be described by the Volterra model (9) (10), substituting (22) and
(26) into (27) for v(¢) and u(¢), and extracting the coefficient of e/ ***) from the

resulting expression will produce an equation from which the GFRF H ,(j@,, -, jo,)

can be obtained.

For single input two output systems, which are described by the Volterra model
(15)(16), and excited by input (22), it can be shown, based on the same idea as used
for the single input single output system case above, that the output response is given

by

N pe ,
¥ (1= Z ZGm.(n")..-m;e(n)(j(lh1"',J'.(Uff)e-’[m'("””‘+'"+"’R(”)‘”ﬂ]’
n=lLn=R m(n) .jl 2132
+RIH, * (j(ol,---,j(ok)e-’(m””'m“}'

(28)
where
S n! wikd
(r‘nn(r:)--‘;n;;(li)(-jwl""’.jwfe): p (n)'---m (]1)1H” ! (La)]"'.ﬂja)hz'"Jja)Rﬂ"'sja)}i)
! ' . ’ my(n) my ()
(29)

[f the system can be described by the parametric model

[31(6) = £(6,0,3,(0), 3, (6),1,(0)) 50
135(0) = (1,0, 3,(1), 5 ()1, (2))

R
then substituting u,(¢) :Ze-"”f’ , and y,(t) and y,(t) given by (28) into (30), and

i=l

j(m, ekt

extracting the coefficient of e
two coupled equations for which the GFRF matrix

" from the resulting expressions will produce




—

e Bl ]
H o ¥ (08~ Jis ), Hy * (',r(ul,---,_/mﬁ)J

can be obtained.

4.2 Derivation of the system GFRF matrices

Following the probing method for single input two output systems introduced above,
the GFRF matrices of the system (2) (3) up to third order are determined in the
following.

To determine the first order GFRF matrix

[}L]II:I (‘]-(L)] )-’ Hlll(_]-a)w )J

the probing input

w{D=el™ (31)

is used and, by taking R=1, equation (28) can be written as

l_r:(r) =H™(jo)e’™" +---

Substituting (31) and (32) into (7) (8) for u,(¢), y,(z), and y,(¢), and extracting the

Jleoy )

coefficient of e from the resulting expressions yields two equations for

[H"(jo,), H(j®,)] which can be expressed in a matrix form such that

[ .r71(_]"c-)])2 1:||:Hlizi(.jwl)}:|:l} (33)
~k—a(jo) 1] H'(ja)| [0

Consequently the first order GFRF matrix is determined as

H'Go)| [ flmGo) +ajo +k) 34)
H'S;] (.].CU|) B (ﬂjjwl * k)/(m(ja)l)z tajo,+ k)

To determine the second order GFRF matrix
|HY oy, ), HE (o, joy)]
the probing input

jw,

u (1) =e'™" +e’ (35)




is used and, by taking R=2, equation (28) can be written as

[ '1 _] (f) - HWH:“(_]‘(UI )ejm‘f - HIH:”(_].(L)E ){? peesi - 2}{;11(]({)1 ,.].a)z )ei(ru,-i-ml)ﬁ o

(0= HEGeo)e™ + HE (joy)e™™ +2H3 (o, jo,)e’ )+

(30)
Substituting (35) and (36) into (7) (8) for u,(r), »,(t), and y,(z), and extracting the
,Nr-r‘ ey W

cocflicient of ¢ from the resulting expressions yields two coupled equations
for [H'' (jw,, jo,), HY''(je,, jo,)]

[ mH (oo, jo)(jo, + jo,)" + Hy' (jo, jo,) =0
THI o, jo,) - kHY (o, jo,) - aH (o, jo,)(jo, + jo,) (37)
l ~a, "' (jo)H" (jo,)(jo ) jo,)=0

So the second order GFRF matrix 1s obtained as

azHllt] (Jo, )hr::i (J,)(ja)(jw,)
m(jo, + ja)z)2 +a(jo, + jo,)+k

{ HM (o, jo,) =~

l e oy M GO Go)Ge)eo + oy O
m(jo, + jw,) +a(jo, + jo,)+k

To determine the third order GFRF matrix

(H oy, jay, jo), HE (o, jo,, jo,)]

the probing input

u, (1) =e'™ + e/ + g/ (39)

1s used and, by taking R=3, equation (28) can be written as

_Hlﬂzi)(ja)i)cfrqf +£{](lrl)(ja)2)ejm_.r _’_H'](l:l)(ja)})e,imj.' +2H;l 1(‘]-@,‘]-(02)8,‘(@@}1 P

Jl@y+ay+an)t

(0 =| 28" (o, jeo)e" ™ +2H, (@, jay)e" ™ + 61 ja, jeo,, jeo)e

HEP (e + HE(jay)e"™ + HE (jy)e™ +217 (a3, jeo)e ™ +
30 =| 2", j)e N + 2L (3, j)e Y +6H (s )

(40)




Substituting (39) and (40) into (7) (8) for u,(t), y,(¢), and y,(¢), and extracting the
" from the resulting expressions yield two coupled equations

coefficient of ¢/'" ==
for [H"'(jo,, jo.,, jo,), H"'(jo, jo,, jo,)]

HI' o, jo., jo,)-mli(o,+ o, +0)FH" (o, jo,, jo,) =0

|

|

‘ 6H (e, jo,, jo,)-6kH " (jo,, jo,, jo,)
J ~6a, 1" (jo,, jo,, jo)]jio + o, + w,)] (41)
i = 2u,H M (jo ) H" (jo,, jo,) jo ) jo, + jo,)

' =20, H " (jo, ) H (jo,, jo,) jo, ) jo, + jo,)

- 2u,.H (jo ) HY (jo,, jo, ) Jo ) jo, + jo,)

—aH " (jo)H" (jo,)H" (jo,)jo ) jo,) jo,)=0

Thus the third order GFRF matrix is obtained as

MG T 1
. Jwy, jo,, jo,) = X ; 3 3 ; ; )
{m(]a)l +jw,+ ja,) +a(jo, + jo, +_](D3)+k}

H'(jo)H," (jo,, jo)(jo,)jo, + jo,)
a, i s ey ] . . .
£y +H' (jo,)H," (jo, jo,)ja, ) jo,+ jo,)

+H"(jo,)HY (ja,, jo, N jo)(jo, + jo,)

-1 (o) (o) HY o) o) e,) o)

H'" (o, jo,, jo,)=-m|j(o+o, + o, )]ZH;:“‘(ja)l,ja)z,ij

(42)

Del]Ote
C.,,Hl:l 1) Hl:l -Cl), [ (0, ‘CO-, i i
f_ 1 (] I) 1 (] g)(_] J)(] _) a2 Fvo(']a)”]a)z) (43)

H"(ja, jo,) = ——= = . :
: m(jw, + jw,) +a(jo, + jo,)+k

and

H' (jo)HY (o, jo)jo)jo, + jo.)
L+ H G HE o, o) os) o, + jo,) | =
+ H," (oo, ) Hy" (jo,, jo,)(jo,)(jo, + jo,)
H (o) Fy(j@,, jo,)jo)(jo, + jo,)
-2 HIY o) Fy(jay, jo) (o) o, + jo,) |=-a,F (e, jo,. jo,)

+H ' (jo,)F,(jo, jo,)jo,)jo, + jo,)
(44)

where

10




H' (jo)H (o) o) jo,)
m(jo, + jo,) +aljo, + jo,) +k

F,(jo, jw,) =

and
|HY (o) F (o, jo) o) jo, + jo,)
Fjo. jo,. jo) ==+ H(jo,)F,(jo,. jo)jo,) jo, + jo,)
Z¥
+ H N (jo,)F(jo,, jo,)jo)jo, + jo,)

and define
F.(je,, jo,, jo,)= ?H"'E(‘;m, VH' (jeo, ) H " (jeo, ) o) j)( jo,) (45)
)

Substituting these results into (42) yields

HM" (e, jo,, jo,) =
LT Bljey + jo, + jo,)

{a;}ﬂ(jwl,jwz,ja)_;) —a,F, (J'.(Olajmzaja)})}

—m|j(@, +w, + @) (46)

Bljw + jo, + ja,)

{afF, (_ja)l,j(uz,j(%)—u}Fz(.ja),,.ja)z,ja)B)}

B fa; dmasdm)=

E

where f(jo, + jo, + jo,) = {m(_,m)l +jw, + ja)3)2 +a,(jo, + jo, + _jw3)+k}.

Substituting the definition of F, (jw,, j@,) into equation (38) yields

[ H;“(_}{(ola.jwz) :—agEJ(.jwp.ng) (47)
| G, ja,) = ma,(jo, + jo,) Fy(jo, jo,)

giving a more concise expression of H,"'(jw, jw,) and H"(jo,, jo,).

Equations (34) (47) and (46) give the system GFRF matrices up to third order. Notice
that F,(.,.), F(.....), F,(.,.,.), and B(.) only depend on m,a,,k, the parameters
which describe the system linear characteristics. Therefore, given the system linear
characteristics, equations (47) and (46) explicitly reveal how the second and third
order GFRF matrices depend on the parameters a, and a, of the system nonlinear

damping characteristic.

4.3 The effects of system nonlinearity on the output frequency
response

Having derived expressions for the system GFRF matrices in terms of the nonlinear
damping characteristic parameters a, and a,, how the output spectrum Y, (j@) of the

system depends on the parameters when subjected to a general multi-tone input can be

11




revealed by substituting equations (47) and (46) into (18) for H;"'(jw,, jo,) and

H'" (e, jeo,, jor) to yield

EY 1 AR | .

S H, 7 i@, jo, Ao, ) Ao, )

[y, e =1
! i

| —— o1 s pf ;
:Elfli'"(_;m)A(ru)Jr? ZH;“(,/(U,‘],](U,‘_E)A(a),l_l)A((u,‘_l)Jr

- M'»I +m=1 =

ZHS" . (_ja),‘,j @ jo, )A(a),{l JA(w, VA, )+

(e ) =

RS
2;

o (o)’ o
=~ 1 (jo)A(©) +m§ﬂ S Ao, ) Ao, VF, (o, . jo,,)
m(jw) a; : : .
TG oy IO T A, A A
171(_,"(0)3613 . . .
TRID) i TSI A,
+ ......
=pjo)+ p,(jo)a, — ps(jw)a; + p,(jo)a, +----- (48)
where

| s
pjo)==H"(jo)A(@)

. m( jw)’ . .
VO D WICRY CRVIN

W+, =

g | m( jew)’ . . .
pjo) = m N mﬁ?‘f_&f o, Jjo, , Jo, )A(e, ) Ao, YA(o,)

m( jew)’ . _ _
m Oy +m§*fi£j a)kl ? ] mi‘ﬁ ) j a)f"l )A(mki )A(mf"z )A(a)kj )

pjow)=
depend on the applied multi-tone input and the parameters which describe the system
linear characteristics but are independent of a, and a,.

Equation (48) is a very important result which describes the relationship between the
system frequency response and the characteristic parameters of the system
nonlinearity. As far as we are aware, little effort if any has previously been made to
arrive at such an explicit description for this relationship. The result extends the
fundamental analytical relationship between the linear characteristic parameters and
the output frequency response to the nonlinear case for the system (2) (3) when the

12




system is subject to a multi-tone input, and can be further extended to very general
situations.

Under the condition that the system can be well approximated by the terms in the
\'olterra model up to third order of nonlinearity, equation (48) can be written as

Yi(jo)= pjo)+ ps(jw)a, —p;(ja})af + p,(jo)a, (49)

Il «, =a, =0, then the system is a simple linear SDOF spring and damper system,
and

(a,jo, +k)

L(jo)=pjo)=—H"(jo)dw)= Alw) (50)

2 2(111(_;’(0,)2 +a,jo, +i()

Given an applied multi-tone input, equation (50) shows an explicit analytical
relationship between the system output frequency response and the system linear
characteristic parameters m, a,, and k. This relationship is well-known and is used
for the analysis and design of lImear SDOF spring and damper systems.

When @, #0 and/or a, # 0, the system behaves nonlinearily. In the case of nonlinear

systems, it has generally been believed that the relationship between the system
output frequency response and the system characteristic parameters is very
complicated, and researchers and engineers basically relied on numerical analysis,
rather than analytical studies as in the linear case, to investigate the effect of system
parameters on the output frequency response. Equation (49), however, reveals the
relationship, and shows that the analysis of the nonlinear SDOF system can be
achieved via two steps if the system description is valid over the considered operating
conditions. In the first step, the analysis of the effect of the system linear
characteristic parameters on the output frequency response is conducted based on
equation (50). This can be achieved in the case where the system is excited by an
input with a low amplitude such that the system basically works over the linear
regime. Secondly, the analysis of the effects of the system nonlinear characteristic
parameters on the output frequency response is performed based on equation (49)
with fixed linear characteristic parameters. This covers the operating scenarios where
the system works under a regime where the description (49) is valid or approximately
valid. The first step is straightforward and is the same as the widely applied linear
system analysis approach. The second step deals with the nonlinear system analysis
issue in a very novel way. Based on this idea the frequency domain design of
nonlinear systems can be performed in a totally new and systematic manner, this will
be the subject of a series of our later publications. In the following discussions,
however, the emphasis will be focused on studying how well equation (49) can be
used to represent the effect of the nonlinear characteristic parameters @, and @, on

the system output spectrum to reveal the implications of this important relationship
for the analysis and design of nonlinear systems.

From the definitions of p,(j®) i=1,2,3,4, it is known that given an applied multi-
tone input and the linear characteristic parameters m, a,, k, p,(jw) i=123,4 are
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known functions of frequency @ . Therefore equation (49) indicates that the system
output spectrum is a polynomial function of the nonlinear damping characteristic
parameters «, and «, at each frequency. In the case where the system is subject to the
harmonic input (6), and the output frequency of interest in the analysis is the same as
the input frequency Q, p,(jw) i =12.3,4 can be further written as

| -
P Q) =—H " (JQAQ) (51)

H!

ZA(O, YA(o, VE (o, . jo)

= CPRE L0 =r’

m ]Q

(jQ) =

S A, )AQ -0, (o, . (Q-a,))

2 ky=-1
- | (52)
_m(jQ r(coI)A(Q @) U(ja)_,,j(Q—a)_,))+}

’ A(a),)A(_Q—a)I)E,(_ja)],j(Q—a),))
_m(jQ)’ {A(—Q)A(ZQ)E)(—QLJZQ) 1 _

34

-

27| AQ)A(0)F,(jQ, jO)

) m(,fQ)2
() = \ A A A
P () 5. +; 1((,: e J O 0, ) A, ) M@, A(w,,)

Q
B ,111(6,](]2))“2_“24 oy, ja,,, Q- —o, Ao, )A(e, JAQL -0, —o,,)

F(=£Y = €2, J3Q) A(-L) A(-Q) A(3Q) +
_om(jQ)” | Fi(=JE, JE, JE A(-E) A(C) A(C) +
2 B(Q)| K0, JQ)AQ) A-Q) AQ) +

F (7€, jQ~ ) AC) A=)

Sm(]Q)
=————F(—jC, Q) TEIA(Q) A(L2
=T A0 (—J €% 7, J A AQ)
(53)
o LY o o e o6 :
Q) =3 S0/D F (=€, j€2, jQ) |A(Q)| A()
(54)
Substituting

F (=78, jQ, JQ)— lm V(—JQF, (7€, (2 Q)(- /)

21H:‘usz)FH:“ R
3p(2)€)

and
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o | - - 2
Fu—jﬂaﬂljﬁ):?ﬁﬂWjQ)fﬁWjQKjQW
B

into (53) and (54) yields

QmlH [ HY' () . )
p(jQ)=———— : A A(Q) (55)
27 B(jQ) (2 )
and
S mlHE" Gl = () .
pjQ)=- | | A 4() (56)

2° B
So, in this case, equation (49) can be written as
V() = p(JQ) - ps(jQ)a; + p,(jQ)a (57)
with p.(jQ),i=13,4 defined by (51), (55) and (56).

Simulation studies will be conducted in the next section for the system (2)(3) to
evaluate the output frequency responses for a harmonic mput (6) under different
values of «, and «,. The results are then compared with the output spectrum Y, (jC2)

determined using (57), an analytical relationship between the system nonlinear
damping characteristic parameters and the output frequency response when the system
1s subject to the harmonic input. The objective is to verify the effectiveness of the
theoretically derived analytical relationship and to show the potential of using the
relationship in system analysis and design

5. Simulation studies and discussions

Consider the system (2) (3) subject to the harmonic input (6), and take the system
linear characteristic parameters as

a, =2960
m =240 kg

k=16000 N/m

Over a considerable range of a, and a,, conduct simulation studies for the system to

generate the output frequency response Y, (j€2) and compare this with the result
analytically determined from (57) in the following five cases:

(i) Q=20rad!s, F,=50, a,=0;

(1) Q=20rad/s, F, =150, a,=0,
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]

() Q=50rad /s, F, =100, a,=0;
(iv) Q=10rad /s, F, =100, «,=0;
(v) Q=20rad /s, F, =100, a, =0,

Figures 2. 3, 4, 5 show the results in cases (i) (i1) (111) and (iv) and Figure 6 (a) (b) and

(¢) show the results in case (v). L 7|Y (1Q | 1s used to

show the output spectrum. Thi

represents the physical

magnitude of the system output y,(7) at frequency €.

The results in cases of (i)-(iv) reflect how the magnitude of the system output
frequency response changes with the single nonlinear damping characteristic

parameter «,. The solid line shows the magnitudes of the output spectrum 2V, ( j€2)
determined using the analytical description (57) over a range of values of a,. The
circles show the computed results of the spectrum over a set of discrete points of a,,
which are obtained by performing a FFT operation on the time domain output y,(f)
to give the numerical simulation results for the system. The effects of the amplitude
F, of the harmonic input on the relationship between Y, (jQ) and a, can be
observed from Figures 2 and 3 where the input frequency is fixed to be € =20, and
the input amplitudes are F, =50 and F, =150 respectively. The effect of the
frequency €2 of the harmonic input on the relationship between Y, (j€2) and a, can
be observed from Figures 4 and 5 where the input amplitude is fixed to be F, =100,
and the input frequencies are Q =50 and Q =10 respectively.

Figure 6 (a) shows how the magnitude of Y, (jQ) changes with the nonlinear
damping characteristic parameters a, and @, according to the analytical expression
(57). Figure 6 (b) shows the same result but from a different perspective to reveal the
effect of parameter a, on the output frequency response. Figure 6 (c) shows a
comparison between the magnitude of the analytically determmed output spectrum

and the magnitude of the spectrum obtained using the FFT from the numerically
simulated system output over a set of discrete points of (a,,a,).

The results in Figures 2-6 indicate that the analytically determined system output
frequency responses match the simulation results quite well over a considerable range
of values of a, and «a, in the five different cases. This verifies the theoretical analysis

in the previous sections and demonstrates the effectiveness of the derived analytical
description for the effect of system nonlinearity on the output frequency response.

An observation of Figures 2 and 3 indicates that the analytically determined output
spectra match the simulation results well over a wider range of values of a, when the

applied harmonic input has a smaller amplitude. A similar observation for Figures 4
and 5 indicates that the analytical results match the simulated spectra well over a

wider range of values of a, when the applied harmonic input has a higher input
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(requency. The difference between the theoretical and the simulation results is due to
the effects of the system nonlinearity that can not be covered by the analytical
expression (57), which simply assumes that the system can be approximated by a
Volterra model with terms up to third order of nonlinearity. Inputs with a greater
amplitude can obviously cause more severe nonlinear effects in the system than just
third order. The reason the mput with a lower frequency induces a more severe
nonlinear effect is that the lower frequency is much nearer to the system resonant
frequency, which is 8.16 rad/s for this partriculer system. At resonant frequencies, the
system frequency responses due to both linear and nonlinear effects are amplified.

In order to increase the accuracy of the analytical description for the output frequency
response when more severe nonlinear effects on the system response have to be
considered, higher order system nonlinearities need to be included in the analytical
description, and other nonlinear behaviours such as subharmonics may also need to be
included. These problems are currently being investigated and the results will be
reported in a later publication. However, the considerable significance of an analytical
description for the output frequency response of a nonlinear system has been
demonstrated in the present case study.

This study has shown that although the analytical expression (57) only includes terms
up to third order of nonlinearity, given a,,m,k,F,, and Q, the expression can be used

to represent the relationship between Y, (j€2) and a,, a, over a considerable range of

the parameters. Because of this, over this range of @, and a,, the analytical

description (57) can be used directly in system analysis to study how the parameters
affect the system output frequency response. Moreover, equation (57) can also be
used for the design of the damping characteristic parameters. The basic idea is
straightforward. Given a desired output frequency response which can be realised
within the range of the parameters where the analytical relationship (57) is valid, the
values of the parameters which make the system output reach the desired response can
be determined from (57) via an optimisation procedure.

6. Conclusions

In this paper, an analytical description of the effects of system nonlinearities on the
output frequency response has been investigated. A case study has been conducted
where an analytical relationship between the output frequency response and the
nonlinear damping characteristic parameters has been derived for a SDOF spring
damper system. The derivations are based on the frequency domain analysis of
nonlmear systems. Results from the simulation studies verify the theoretical analysis
and demonstrate the effectiveness of the derived analytical relationship.

The basic ideas of this work can be extended to general situations to arrive at a
comprehensive analytical description for the relationship between nonlinear system
output frequency responses and model parameters. As demonstrated in the present
study, this analytical relationship can be very powerful and can be used to
considerably facilitate the analysis and design’ of a wide range of nonlinear
engineering systems and structures.
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Figure 1 The single degree of freedom spring damper system considered in the study
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Figure 6 (a) The analytically determined relationship between the nonlinear damping
characteristic parameters «,, a, and the system output frequency

response when Q =20rad/s and F, =100
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Figure 6 (b) The analytically determined relationship between the nonlinear damping
characteristic parameters a,, a, and the system output frequency

response when Q =20rad/s and F, =100 observed from a different

perspective
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