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Abstract. Object detection is an important step in automated scene un-
derstanding. Training state-of-the-art object detectors typically require
manual annotation of training data which can be labor-intensive. In this
paper, we propose a novel algorithm to automatically adapt a pedestrian
detector trained on a generic image dataset to a video in an unsupervised
way using joint dataset deep feature learning. Our approach does not re-
quire any background subtraction or tracking in the video. Experiments
on two challenging video datasets show that our algorithm is effective
and outperforms the state-of-the-art approach.

1 Introduction

Object detection has received a lot of attention in the field of Computer Vision.
Pedestrians are one of the most common object categories in natural scenes.
Most state-of-the-art pedestrian detectors are trained in a supervised fashion
using large publicly available generic datasets [1, 2].

However, it has been recently shown that every dataset has an inherent
bias [11]. This implies that a pedestrian detector that has been specifically
trained for (and is tuned to) a specific scene would do better than a generic
detector for that scene. In fact, it has been shown that generic detectors often
exhibit unsatisfactory performance when applied to scenes that differ from the
original training data in some ways (such as image resolution, camera angle,
illumination conditions and image compression effects) [2].

We tackle this problem by formulating a novel unsupervised domain adapta-

tion framework that starts with a readily available generic image dataset and
automatically adapt it to a target video (of a particular scene) without requiring
any annotation in the target scene, thereby generating a scene-specific pedestrian
detector.

Domain adaptation for object detectors is a relatively new area. Most state-
of-the-art research use some variations of an iterative self-training algorithm [12,
7]. Unfortunately, self-training carries the risk of classifier drifting. In this paper,
we investigate a different approach: domain adaptation purely by exploiting the
manifold property of data.

High dimensional visual data usually exist in a nonlinear manifold that has a
much smaller number of dimensions than the original data. This manifold can be
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learnt using unsupervised approaches. The most relevant works to our research
in this area are [6, 5]. Gopalan et al . [6] propose building intermediate represen-
tations between source and target domains by using geodesic flows. However,
their approach requires sampling a finite number of subspaces and tuning many
parameters such as the number of intermediate representations.

Gong et al . [5] improved on [6] by giving a kernel version of [6]. However
both [6, 5] are dealing with only image data for both source and target domains
and not videos. For videos, unique challenges are present such as the largely
imbalanced nature of positive and negative data. Moreover, their approach does
not learn deep representations required for manifolds that are highly non-linear.

In this paper we propose, using state-of-the-art deep learning, to learn the
nonlinear manifold spanned by the union of the source image dataset and the
sampled data of the target video. The intuition is that by learning a represen-
tation in that manifold and training a classifier on data in that representation,
the resulting detector would generalize well for the target scene. This can then
be used as a scene-specific detector.

Contributions. We make the following novel contributions:

1. An algorithm that adapts a pedestrian detector from an image dataset to a
video using only the manifold assumption.

2. An application of state-of-the-art deep feature learning for detector adapta-
tion in videos and showing its effectiveness. Furthermore, instead of starting
with raw pixel values (as in standard deep learning), our approach takes as
input, features such as Histogram of Oriented Gradients (HOGs) [1].

3. For videos, due to huge class imbalance, random sampling of data will result
in almost all samples to be from non-pedestrian class. We propose a simple
and effective biased sampling approach to minimize this problem.

4. A technique to automatically set the deep network structure with no tuning.
5. The integration of all of the above components into a system.

2 Proposed Approach

2.1 Overview

The overview of the algorithm is illustrated in Fig. 1. The algorithm is made
up of two stages: (1) unsupervised deep feature learning (no supervision labels
used) and (2) non-linear projection and classifier training (with labelled data).
We use HOGs as the base features (before learning higher non-linear represen-
tations). In Fig. 1, we have omitted the HOG feature extraction for clarity. Our
algorithm can work with any type of base features and classifier combination.
However, for simplicity, we use HOGs and a linear Support Vector Machine
(SVM) respectively.

Let the generic pedestrian dataset G = {Gpos, Gneg} be a set of fixed-sized
pedestrian and non-pedestrian patches, Gpos = {p+1 , p

+
2 , . . . , p

+
N1

} and Gneg =

{p−1 , p
−

2 , . . . , p
−

N2
} respectively where N1 is number of pedestrian patches and
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Fig. 1. Overview of the proposed algorithm.

N2 is the number of non-pedestrian patches. Let the target video be V =
{I1, I2, . . . , IM} where M is the number of frames in V. Furthermore, let the
H be the function to extract base features on a given image patch.

Algorithm 1 describes the detector adaptation process. The patches obtained
from the generic dataset G are combined with the patches sampled from the tar-
get video V. The sampling technique is detailed in Algorithm 2. After obtaining
all the patches Dpatches, we extract HOG features from each of them, producing
a feature vector for each patch. These feature vectors are input to the deep learn-
ing algorithm described in Algorithm 3. The deep learning algorithm produces,
as output, a function H which takes in a HOG feature vector and produces a
feature vector of much smaller dimension by projecting the HOG feature vector
onto the learnt manifold. We then project all the HOG features of the positive
and negative data of the generic dataset into this space and train a linear SVM.

Algorithm 1 Detector adaptation overview

Input: G, V, H
Output: Scene-specific detector = {F , C}
1: Dpatches ← G
2: S ← SamplePatchesFromVideo(V,G,H)
3: Dpatches ← Dpatches ∪ S

4: D← H(Dpatches)
5: F = LearnDeepFeatures(D)
6: C = TrainSVM(F(H(Gpos)),F(H(Gneg)))
7: return {F , C}
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Algorithm 2 Biased sampling of patches from video

Input: V, G, H
Output: Sampled patches, Dpatches

1: C = TrainSVM(H(Gpos),H(Gneg))
2: Sample N frames from V.
3: Run sliding-window detector with C on the N sampled frames
4: Dpatches ← positive detections from detector
5: return Dpatches

Algorithm 3 Deep Feature Learning

Input: HOG features, D
Output: Learnt non-linear projection function, F
1: Apply PCA on D and keep 99% variance
2: D← Project D onto principal component space
3: ndimsIn← number of dimensions of D
4: Estimate intrinsic dimension of D using [8]
5: ndimsOut← Estimated intrinsic dimension
6: A ← SetUpAutoEncoder(ndimsIn, ndimsOut)
7: A ← initialise A using [4]
8: A ← Min LossFunc(A,D) using mini-batch L-BFGS
9: F ← Remove the decoder part of A
10: return F

2.2 Sampling representative data from video

Although we are not concerned with any supervision labels during the fea-
ture learning stage, we would like to get a mixture of both pedestrian and
non-pedestrian patches from the video. However, naive random sampling of
pedestrian-sized patches from video in the space of multi-scale sliding windows
would result in pedestrian patches being sampled only with extremely low proba-
bility. Therefore, we propose a biased sampling strategy as given in Algorithm 2.

2.3 Deep feature learning

In order to learn deep non-linear features, we use a deep autoencoder. We do not
use any layer-wise stacked pre-training for initialization since recent research [10,
9] has shown that one of the main problems with deep networks is pathological

curvature which looks like local optima to 1st-order optimization techniques such
as gradient descent, but not to 2nd-order optimization methods.

Therefore, combined with a sensible weight initialization proposed in [4], we
use the limited-memory version of Broyden Fletcher Goldfarb Shanno (L-BFGS)
algorithm which is an approximated 2nd-order method. This also has the added
advantage that there is no need to set or tune the learning rate. We use mini-
batch training for efficiency and robustness. The formal description is given in
Algorithm 3 and explained below.
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Data normalization & intrinsic dimensionality estimation. We first
perform PCA and keep 99% of the total variance to condition the data for faster
convergence during subsequent deep learning. After projecting the data using
PCA coefficients, we estimate the intrinsic dimensionality of the data using [8].

Setting up the deep autoencoder architecture & initialization. The ar-
chitecture is shown in Fig. 2. Note that the network structure is obtained auto-
matically and systematically and we do not have to manually tune it. After the
network has been set up, we randomly initialize it using the method in [4].
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Fig. 2. The deep autoencoder architecture. Nin is the number of data dimensions af-
ter normalization. Ngoal is the automatically estimated intrinsic dimensionality. Each
hidden layer has half of the number of hidden neurons as its previous layer and this
is repeated until Ngoal is reached. After that, the decoding layers is mirrored to the
encoding layers. The encoding and decoding parts are symmetric and weights are tied
(but not the biases). All hidden layers have hyperbolic tangent nonlinearity activation
(represented by σ(•)). There are a total of L hidden nonlinear layers in the encoder
(which produces a total of 2L layers feed-forward neural network.)

Network optimization. In order to train the autoencoder, the network in
Fig. 2 can be mathematically written as a smooth differentiable multivariate
loss function which should be minimized. This is given in Equation 1; m refers
to the number of data in each mini-batch, Wj is affine projection matrix for layer
j, x(i) is a column vector of data point i and bj is a vector of bias for layer j.

arg min
W1,...,WL,
b1,...,b2L

1

2m

m
∑

i=1

{
∥

∥

∥

∥

L
∑

j=1

σ(Wjx
(i) + bj) +

2L−1
∑

j=L+1

σ(WT
(2L−j+1)x

(i) + bj)+

WT
1 x(i) + b(2L) − x(i)

∥

∥

∥

∥

2

2

}

(1)
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Removing the decoding part. After training the deep network, the decoder
part is no longer needed and is thus removed. We now have a deep non-linear
projection function F with the number of projection layers given by L.

2.4 Training scene-specific detector

We use the learnt encoder, F , to project the generic dataset G and train a SVM
on these features. This is illustrated in Fig. 3.
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Input layer: 

Encoder 
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... 

Linear SVM 

posG negG

Fig. 3. Training the scene-specific detector.

3 Experimental Results

Datasets. INRIA pedestrian dataset [1] is used as the source dataset. We eval-
uate on two target datasets: CUHK Square (a 60 mins video) and MIT Traffic
(90 mins) [12]. Frame samples are shown in Fig. 4. Each dataset is divided into
two halves: the 1st half is used for unsupervised detector adaptation and the 2nd

half for quantitative evaluation. These datasets are very challenging: they vary
greatly from the INRIA dataset in terms of resolution, camera angle and poses.

Fig. 4. A frame sampled from the CUHK video (left) and from the MIT video (right).
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Deep learning parameters. For CUHK experiments, the layer sizes for en-
coder part of the deep network are found to be E = [1498, 749, 375, 187, 94, 35].
The decoder layer sizes are D = [94, 187, 375, 749, 1498]. The complete layer
sizes for the whole network is therefore given by R = [E ,D]. The first and
last elements of R correspond to input and output layer sizes respectively (i.e.
the number of dimensions after PCA projection) and the ones in the middle
are hidden layers. In this case, 35 is the size of the bottleneck layer. For MIT,
E = [1536, 768, 384, 192, 96, 48, 23]. Mini-batch size for training is fixed at 1000
for both CUHK and MIT.

Evaluation and discussion. We use precision-recall (PR) curves in order to
compare the performance. Detection bounding boxes are scored according to the
PASCAL 50% overlap criteria [3]. Average Precision (AP) is calculated for each
PR curve by integrating the area under the curve. For each target dataset, we
perform 3 different types of experiments:

1. Generic: The detector (HOG+SVM) trained on INRIA dataset. This is the
baseline without any domain adaptation.

2. Geodesic(CVPR12): The approach proposed by Gong et al . [5]. We use the
code made available by them and extend it to be applicable to video.

3. Proposed: Our proposed detector adaptation algorithm.

The PR curves are shown in Fig. 5 and the corresponding APs are shown
in Table 1. As can be seen, our algorithm (Proposed) outperforms the base-
line (Generic) and the state-of-art (Geodesic) in both datasets. For CUHK,
Proposed achieves almost twice the AP of baseline (0.6880 vs. 0.3554), whereas
Geodesic has less improvement over the baseline (0.5286 vs. 0.3554). Interest-
ingly, for MIT, Geodesic performs worse than the baseline whereas Proposed

clearly improves over the baseline and attains an AP which is around 1.5 times
that of the baseline. This suggests that for the MIT traffic dataset, which is a
more difficult dataset than the CUHK dataset (partly due to much lower reso-
lution), the state-of-the-art Geodesic fails to improve over the baseline whereas
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our approach, due to unsupervised learning of deep non-linear features and the
resulting implicit manifold regularization, achieves much better results.

Table 1. Average precision results

CUHK (AP) MIT (AP)

Generic 0.3554 0.2883
Geodesic(CVPR12) [5] 0.5286 0.2460

Proposed 0.6880 0.4292

4 Conclusion

In this paper, we propose an algorithm to automatically generate a scene-specific
pedestrian detector that is tuned to a particular scene by unsupervised domain
adaptation of a generic detector. Our algorithm learns the underlying manifold
where both the generic and the target dataset jointly reside and a detector is
trained in this space, implicitly regularized to perform well on the target scene.
Evaluation on two public video datasets show the effectiveness of our approach.
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