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Abstract

In this paper the identification and analysis of spatio-temporal dynamical systems is
presented. An approximated B-spline wavelet representation of spatio-temporal dynamical
systems is identified using an orthogonal least squares algorithm from measured data. Con-
trol variables are incorporated to represent controlled external inputs and/or some system
parameters for the purpose of analysis. The identified system models can be used to evalu-
ate how the external inputs or system parameters affect the evolution of the spatio-temporal
dynamics and pattern formations. Two examples are used to illustrate the proposed ap-
proach.

1 Introduction

In recent years, increasing attention has been given to the analysis and control of the formation of
spatio-temporal patterns. This involves a variety of fields such as physical, chemical, biological,
ecological and engineering systems (Kaneko 1993, Séle, Valls and Bascompte 1992, Yanagita
and Kaneko 1997, Tabuchi, Yakawa and Mallick et al. 2002, K6hler, Reinhard and Huth 2002,
Bertram, Beta, Rotermund, and Ertl 2003, Goldman, et al. 2003, Adamatzky 2003, Chen 1999).
There are two important aspects in the study of spatio-temporal pattern formation and dynamics:
one is to exploit the evolution of the underlying spatio-temporal dynamics under different external
controlled inputs (this study may lead to the control problem for the spatio-temporal pattern
formation), the other is to observe and analyse the influencé of some of the parameters upon
the behaviour of the systems (this study may lead to the analysis of nonlinear phenomena such
as bifurcation, chaos etc.). However, both these problems can only be studied if a model of
the system is known. But in practice this condition is often not met. In some instances, the
dynamical origin of a spatio-temporal pattern formation can be obtained as a partial differential
equation (PDE) either from a priori information or from a known analytical model. But even
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when the PDE’s are available from these sources they are often very simplified representations
of the real dynamics. In many other cases, such as for example in ecological systems, only a
series of snapshots of the spatial pattern are available. Therefore, it would be advantageous if a
spatio-temporal model could be identified from the observed patterns. The model could then be
used for the analysis of pattern foriation or for control.

Various methods for the identification of local CML models from spatio-temporal observations
have already been proposed (Coca and Billings 2001, Mandelj, Grabec and Govekar 2001, Marcos-
Nikolaus, Martin-Gonzalez and Séle 2002, Grabec and Mandeji 1997, Parlitz and Merkwirth
2000). In practice however, some of these approaches may fail to produce models that accurataly
describe the underlying spatio-temporal patterns either due to an inability to adapt the model
structure to that of the unknown system, or because the functions used to implement the model
structure are not suitable for modelling the underlying dynamics. This is especially critical when
an equivalent description of a real-world system is sought. In such cases the estimated model
should provide very accurate information regarding the dynamical properties of the observed
system. Theoretical studies have shown that L?*(R™) can be decomposed into a direct-sum of a
family of wavelet subspaces {W;}®._ in the sense that every f € L*(R") has a unique wavelet de-
composition (Chui 1992). Furthermore, the wavelet representation of any nonlinear function can
be shown to be asymptotically near optimal in the sense that the convergence rates are equal to
the best attainable using general nonlinear approximation schemes (DeVore, Jawerth, and Popov
1992). Wavelet approximations also provide similar rates of approximation for functions belong-
ing to a wide variety of function spaces including functions with sparse singularities or functions
that are not uniformly smooth or regular. All these properties suggest that wavelet multireso-
lution expansions should provide an excellent foundation for the development of identification
algorithms for nonlinear spatio-temporal models.

In this paper an approximated B-spline wavelet representation of spatio-temporal dynamical
systems is identified using an orthogonal least squares algorithm (Chen, Billings, and Luo 1989)
from measured data. Control variables are incorporated to include controlled external inputs
and/or some system parameters for the purpose of analysis. Section 2 introduces the wavelet
representation of spatio-temporal dynamical systems. The identification algorithm is given in
section 3. Section 4 illustrates the proposed approach using two examples. Finally conclusions
are drawn in section 3. :

2 Wavelet representations of spatio-temporal dynamical
systems

Consider a discrete-time spatio-temporal system defined over a lattice [

zi(t) = flz(t — 1), w(t — 1), Vi(?) (1)

where z;(t) € R and u;(t) € R,1 € I are the state and input of the system located at site 1




at discrete time instant t. V,(t) denotes spatio-temporal coupling effects for the site 4 at time
instant ¢ from the spatial neighbourhood sites in 2 C I which involve z;(t — 1) and wu;(t — 1),
7 € . The evolution of the system on the lattice I is governed by the map f, which is generally
a nonlinear function. As will be seen in the examples, the input v might be an external controlled
signal (Example 1) or a known system parameter (Example 2). The latter case can be interpreted
as a technique for obtaining a model with an explicit parameter dependence, based on which the
behaviour of the system can be analysed qualitatively.

Let y; is the observation variable of the system at site 7. Assume that the size of the lattice I
is finite (this is always the case when a local reconstruction is considered). Then according to
the embedding theory (Takens 1981, Sauer, Yorke, and Casdagli 1991, and Casdagli 1992), the
system (1) can always be equivalently described as the following input-output form

vilt) = g(ua(t = 1), walt = my)iua(t = 1), -, wilt — ma); Vi(E = 1), -, Vit = o)) (2)

providing n,, ny, and n, are sufficiently large, in which the term V; denotes the spatio-temporal
coupling effects from the spatial neighbourhood sites in {2 C [ which involves some delayed values
of y;(t) and w,;(t), 7 € Q.

Given observations of y(t) and the input w(t), the objective of the identification is to approx-
imate the input-output relationship function g in (2) from this data. A practical solution is
to approximate the unknown nonlinear function from the available data using a known set of
basis functions or regressors belonging to a given function class. Typical regressor classes include
polynomials, spline functions, rational functions, radial basis functions, neural networks, and
wavelets. In this paper, the algorithm and results for identification using B-spline wavelets are

presented.

2.1 B-spline wavelet approximation

The wavelet decomposition of a multivariate function g defined on R™ can be described as follows.
Let ® be a bounded function defined on R™. For all p € Z and k € Z", a series of functions
defined on R™ can be derived in terms of the translates and dyadic dilates of ®: ®(2?x—k). Then
if @ 4(z) = ®(2zx—k), p € Z,k € Z" form a Riesz basis, function g has a unique decomposition
in terms of @,

g(z) = Zap,kq)p,k(x) (3)

Such a Riesz basis in space L2(R™) can be constructed from the univariate scaling function ¢ and
the associated wavelet function 1 by using the tensor product method. The univariate scaling
function considered in this paper is the m-th order cardinal B-spline function ¢(z) = ¢™(z) =
™ (z) given by the recursive relation




m—x

™m < m—1 m—1
i -]
pr(a) = —E= " (@) + 2w ~ 1) (@
where $*(z) is the indicator function
wen ¢ L fxe(0,1) _
Bz) =1 0 otherwise (5)

The wavelet function is defined as a linear combination of scaling functions

3m-—2
P = Z g™ (2z — 1) (6)
=0
and the coefficients are given by
m o__ (_1)1 — m 2m B

If the nonlinear function g in eqn.(2) lies in L?(R™), then the B-spline wavelet representation of
the input-output equation (2) can be described as follows

6= Y 000 (2(1)) (8)

P kU=

where all # represent parameters and z(t) = (z1(%), z2(t), - - -, 7, (¢))” whose components represent
the lagged terms shown in (2), and ‘Ifg)k(m) are the 2" — 1 n-dimensional wavelet functions
produced by the tensor product of the univatiate B-spline scaling and wavelet functions ¢ and
1. According to the multiresolution analysis (Chui 1992), eqn.(8) can equivalently be expressed
as

2n-1

Ui() = 3 ok 0Pk (3) + X X Y b Tz (1)) )

p2po k I=1

where p is the starting resolution level and @ is the n-dimensional scaling function.

The wavelet multiresolution approximation (9) is generally an infinite series expansion. In prac-
tice, however, it is not realistic to use all the terms in this infinite series expansion. Generally
the objective of the identification is to obtain a truncated finite representation containing the
terms up to some orders of scaling and dilation. Therefore the identified model will be an ap-
proximate representation of the underlying system, which can be equivalently described as an




infinite wavelet series. Alternatively it can be said that the identified model will be a compressed
version of the original series expansion. Let s be a positive integer, then the s-truncated space
s po With a starting resolution py is the set of all functions

n—1

h(z) = ngo,k,ﬁcbpo,k(m) + Z Z Z Hp,k,l‘yg,)k(z) (10)
k

Po<p<s k I=1

Note that the series in space X,,, are those up to dyadic level s, which may possibly be in-
finite because there is no limitation on the translation operation. In practice, the range of
measured data is always finite so that there are only finite numbers of translation operations
which produce non-empty intersections within the range of the data because B-spline scaling
and wavelet functions have compact supports. Therefore, the identified wavelet series are always
finite. Furthermore, in many applications, a 3-truncated space is often enough to obtain a good
approximation result for smooth functions. Using the approximation space X, ,, as a regressor
class, a truncated approximation representation of (9) takes the form

) = D boroBros®) + T TS bt (s (t)) (11)

Po<p<s k I=1

2.2 An alternative representation of the input-output relationship

For simplicity and without loss of generality, let the nonlinear function to be identified be defined
on the cube [0, 1], and consider the number of wavelet terms in the basis in the space X, ,,. Let
¢(z) and 9(z) be the univaritate B-spline scaling and wavelet functions of order m. Then the
support of ¢(z) and its dilates and translates ¢, () = 2P/2¢(2Pz—k) are [0, m] and [27Pk, 27P(m+
k)], and the support of ¥ x(z) = 2P/%h(2Px — k) are [0,2m — 1] and [27Pk,27P(2m — 1 + k)].
Assume that the domain of nonlinear functions to be identified in one component is [0, 1], it is
then sufficient that the translate parameter k for univariate scaling and wavelet functions falls
into the intervals

b —m+1<k<?_1 (12)
Y:-2m-1)<k<2?-1

It follows that the total number of terms in the basis of the space X, ,, for n-dimensional functions
defined on the cube [0, 1] is 357_ (n,)", np = 2P*!14-3(m—1). For instance, if n = 6,m = 4,py =
0,s = 1 which means the dimension of the approximated function is 6 with B-spline scaling and
wavelet functions of order 4, starting resolution 0 and the truncation 3, then the total number of
the terms in the basis of the space X, is 6, 598, 370, which is clearly a time-consuming number
for any identification algorithm. To overcome this difficulty, in this paper the identified nonlinear
function g is first decomposed into a number of functional components as follows

5




g(&?l,-"‘,iﬂn) :gn+Zg@($i)+ Z gij($i,$j)+ Z gi-jk(mha‘:j,sc;c)+----i—gl...n(z?;,---,a:n)

i=1 1<i<j<n 1<i<j<k<n
(13)

where go is a constant. A truncated representation of (13) containing the functional components
up to tri-variate terms is often sufficient to express a nonlinear function itself. Applying the above
wavelet decomposition to each of the functional components significantly reduces the number
of the terms used for identification. Assume that a multivariate function is defined on [0, 1]"
again. Consider the l-variate functional components, the total number of significant terms (the
intersection of its support and [0, 1]” is non-empty) can be calculated according to the following
formula

8

( ; ) 3 (n)smp = 2+ 3(m — 1) (14)

P=ro

Now consider the same example above but with maximal functional components up to the tri-
variate case. If po = 0, and s = 2,1, and 0 for uni, bi, and tri-variate components, this yields a
total of 31,145 terms. This is a significant reduction compared to 6, 598, 370.

3 Identification algorithm

Given a set (candidate terms) of basis functions from the wavelet regressor class, the objective
of the identification algorithm is to select the significant terms from this set while estimating the
corresponding wavelet coefficients. In this paper, an Orthogonal Forward Regression algorithm
(OFR) (Chen, Billings, and Luo 1989) is applied to a set of wavelet basis functions. The OFR
algorithm involves a stepwise orthogonalisation of the regressors and a forward selection of the
relevant terms based on the Error Reduction Ratio criterion (Billings, Chen, and Kronenberg
1988). The algorithm provides the optimal least-squares estimate of the wavelet coefficients 6.

For a given candidate regressor set G = {¢;}}£,, the OFR algorithm can be outlined as follows

Step 1

L=Iy={1,-,M}

. uly
i(t) = @i(t), b = — 15
wilt) = ¢ilt) b = o (15)
f (Bzw?y)— ( 16
1 = argmax(b; Ty = arg max err;) (16)




0T
0 _ o_ Wiy
Wy =Wy, 6 = w(l}T'w(lj
11 = 1
Step 7,7 > 1
! Ij :Ij,]_\lj*]_
J=1 .0 T
WY g3 w; Y
wilt) = ilt) = 3 ol b =
)= et = 2 g e b =
wi

s 2oWi Uy _ ,
ly=ury Igé%}{(bl yTy) arg rtne%x(ern)

’LUD_’w,g CO_ TL’_.,QTy
§ =Wty = — a0
Myt
0T
Wy O i
Lk J o T i -
a’k,j == 'UJDTTUOJk = 1: ) 1.

k k

The procedure is terminated at the M;-th step when the termination criterion

M,
1= err;<p (24)
i=1
is met, where p is a designated error tolerance, or when a given number of terms in the final
model is reached.

The estimated wavelet coefficients are calculated from the following equation

o, 1 aip -+ aim, c‘l’
6, 0 1 c)
. e ; (25)
O, G 0 <+« 1 ch,
and the selected terms are ¢y, -+, @iy, -




4 Numerical simulation and analysis

4.1 Example 1 - Non-homogeneous wave equation

Consider the following non-homogeneous wave equation (Trim 1990)

azy(x: t) _ gagy(x, t)

= 26
a_tg c awg +g("‘r!t)?$ 6 [G?L] ( )
with initial conditions
y(z,0) = f(z) (27)
dy(z,1)
@ 0
and boundary conditions
y(0,t) = 0 (28)
y(L:ﬂ =0
where
g(z,t) = ae” " sin(wt) (29)

Applying the finite Fourier transform method, the exact solution y(z,t) of the initial boundary
value problem (26), (27) and (28) is

2 = . T, awsin(cAqt)
wE L = \f—Zsm(—)[f(/\n)cos(c)xnt) —23jon, il = [ Tgin( da: (30)
asin(wt) T,
- 2—02/\2“/ f S%an:E]

where A2 = n?72/L? and f(\,) = [ f(z)sin(nnz/L)dz.

A general wave equation describes the propagation of waves. When ¢ and a are fixed, the
waveforms of such a non-homogeneous wave equation depend on the frequency w of the external
input g(z,t). The higher the frequency w is, the faster the wave propagates.

8




Terms Estimates ERR STD
Goo(ys(t—1))  5.9835e-01 9.9723e-01 3.1299e-02
Goo(yi(t—2)) -3.7838e-01 2.2570e-03 1.3435e-02
doo(us(t —1))  1.4666e-01 5.1896e-05 1.2762e-02

Po0(yi—1(t —1)) 7.0630e-01 9.4316e-05 1.1409e-02
Goo0(Yit1(t —1)) 5.2912e-01 1.2171e-04 9.3406e-03
doo(yir1(t —2)) -2.1116e-01 2.0641e-05 8.9455e-03
Po0(yi—1(t —2)) -2.9445e-01 1.6902e-05 8.6038e-03

doo(ui(t —2)) -1.0197e-01 6.6488e-06 8.4664e-03
Py 1(ui(t —1)) 1.4838e-02 4.7350e-06 8.3647e-03
Yoo(yic1(t — 1)) 2.4488e-02 4.4949e-06 8.2729e-03
Yao(yio1(t — 1)) 1.9482e-01 3.3862e-06 8.2002e-03
o1 (ui(t — 1)) -2.4181e-03 2.9021e-06 8.1375e-03
o _o(ui(t — 1)) 2.6610e-03 2.8176e-06 8.075%-03

boo(ys(t—2)) -2.1334e-02 1.9588e-06 8.0324e-03

¢a1(yi(t—1)) -3.3351e-03 1.9571e-06 7.9889e-03

Table 1: Example 1: The terms and parameters of the final CML model

The reason why this simple linear system was chosen for the identification and analysis is be-
cause the exact solution can be obtained. Therefore the analysis can be carried out with high
confidence. The overall simulation procedure can be divided into two phases: identification and
analysis. The identification is conducted by using the proposed wavelet method with a single
input frequency w. Then the obtained model is used to analyse the spatio-temporal patterns
under different input frequencies. Note that a discrete version of the form of eqn.(1) for eqn.(26)
can be obtained by spatial and time discretisation.

For the purpose of identification using the proposed approach, for a single input frequency w =1
the solution (30) with parameters L = 1, f(z) = 0,z € [0,1], ¢ = 1, and ¢ = 5 was sampled at 21
equally spaced points over the spatial domain [0, 1]. From each location, 300 input/output data
points sampled at At = 0.1 were generated. Note that all data were normalised to the interval
[0,1]. The data are plotted in Fig.(1).

In this simulation, the neighbourhood was selected to be 1 — 1 and ¢ + 1 in the spatial domain
and t—1,t— 2 in the time domain. A set of 350 spatio-temporal observations randomly selected
among the data set was used for the identification, which is shown in Fig.(2). The identified
model using the orthogonal least squares algorithm with the following parameters: order of B-
spline 2, initial scale 0, the maximal resolution 2 for all variables and the tolerance 107°, are
listed in Table (1), where ERR denotes the Error Reduction Ratio and STD denotes the standard
deviations.

From Table (1), the identified spatio-temporal dynamical model is




yi(t) = 0.59835¢0,0(ys(t — 1)) — 0.0033351851 (vt — 1)) — 0.37838¢0,0(i(t — 2)) (31)
—0.021334v0 o (3 (£ — 2)) + 0.146666,0(us(t — 1)) — 0.00241814%5, 1 (st — 1))
+0.0148381 1 (ui(t — 1)) + 00026610t _5(us(t — 1)) — 0.10197¢o,0(u;( — 2))
+0.706300,0 (i1 (¢ — 1)) + 0.024488th0,0 (i1 (£ — 1)) + 019482 5 (i1 (£ — 1))
—0.20445¢0,0 (i1 (t — 2)) + 0.5201280 0(yira (£ — 1)) — 0.2111660,0(yiur1 (¢ — 2))

The model predicted output of the identified model and some snapshots are plotted in Fig.(3)
and Fig.(4) respectively. Fig.(5) shows the model predicted error between the exact solution and
the identified model predicted output.

The results clearly indicate that the error falls within the amplitude range -0.041902 and 0.050004
and does not grow in time. The root-mean-square (RMS) error is 0.013681. In this example,
the obtained CML model can be considered as an estimated and compressed version of the real
wavelet representation of the original dynamics. Although there are errors between the real
output and the model predicted output it is clearly observed that the identified CML model is
able to reproduce the original patterns with high fidelity. Note that model predicted outputs
and errors are used here rather than the one-step-ahead predicted outputs. Model predicted
outputs represent a much more severe test of model performance compared to one-step-ahead
predictions.

The obtained model (31) was used to analyse the spatio-temporal patterns under different input
frequencies w. Figs.(6), (7), (8), and (12) are the actual system output, model predicted output,
model predicted error, and some snapshots for the frequency w = 1.5. Figs.(9), (10), (11), and
(13) are the actual system output, model predicted output, model predicted error, and some
snapshots for the frequency w = 0.5. The dependence of the propagation speed on the input
frequency can clearly been seen from Figs. (7) and (10). This is consistent with the results from
theoretical analysis.

4.2 Example 2 - A CML in a 2-dimensional lattice

Consider the following diffusively coupled map model in a 2-dimensional lattice (Kaneko 1989)

zi4(t) = (1—¢e) f(zi(t— 1))+§(f(xi,j—l(t_ D)+ f (@i 41 (E—1) + F(mim1,5 (t=1)) + f (Tigr,3(E=1)))
(32)

which z;;(¢)i,7 = 1,---, N is the state of the CML located at site (i,7) at discrete time ¢, ¢
is the coupling strength and N is the size of lattice. The evolution of the CML on the lattice
sites is governed by the local map f. In this simulation, the mapping function f is chosen as the
logistic map

10




Figure 1: Example 1: System output with frequency w = 1.0
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Figure 2: Example 1: The data for identification (w
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Figure 6: Example 1: System output with frequency w = 1.5
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Figure 8: Example 1: Model predicted error (w = 1.5)
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Example 1: System output with frequency w = 0.5
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f(z) =1 — az® (33)

Note that the observation variable y; ; was set to be z; ;.

This model has been extensively studied. It has been observed that for small ¢ < 0.3 the
system evolves from a frozen random state to pattern selection and to fully developed spatio-
temporal chaos via spatio-temporal intermittency. For strong coupling (¢ > 0.3) neither a frozen
random pattern nor a pattern selection regime is formed. When ¢ > 0.3 the change of Lyapunov
exponents with the parameter a is smooth and the Lyapunov spectra have a smooth shape for all
o (Kaneko 1989). Actually in this case a rich set of bifurcations takes place for the logistic map
f and e > 0.3. Fig.(14) shows a bifurcation diagram with & = 0.4 for a € [0.5,2] at the site (4,4)
for a 8 % 8 lattice. It can be observed that the system is in a stable state for 0.5 < a < a, = 0.741,
period doubling is presented at a = a. = 0.741 and the is followed by quasiperiodic attractors

and chaos.

To identify a wavelet model, the data used for identification were generated by simulating the
CML model (32) with ¢ = 0.4 and a = 1.5 for 100 steps over a 50 x 50 lattice I starting
from randomly generated initial populations and periodic boundary conditions. The data are
shown in Fig.(15). The identification was performed using the proposed method from a set of
100 observation pairs among the data and the four nearest neighbours, namely (i —1,7), (2 +
1,7), (3,5 — 1), (4,5 + 1). Technically, the parameter a was used as a constant external input for
this identification. The time lag was set to be 1. The starting resolution was set to be 0 for
all variables and the maximal resolutions were set to 2, 1, and 0 for uni, bi, and tri-variates,
respectively. The univariate B-spline function of order 3 was used to generate all the higher-
dimensional terms by tensor products. It follows that the total number of terms in the set of
candidate model set for all two subsystems is 41,809. The identified model is listed in Table (2)
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Figure 14: Example 2: Bifurcation diagram for CML model (32)-(33) at spatial site (4,4) in a
8 x 8 lattice with random initial conditions

Terms Estimates ERR STD
do,—1(a) 7.7332e+00 5.955Te-01 4.0143e-01
{j‘fﬂg’g(s’;i’j (t e 1))¢D,O (Q) -2.3945e+00 3.9439e-01 6.3269e-02
(350,[} (.’L'.;_l’j (If < 1))@250!0 {w.g_;_]_,j (t = 1 ) -1.0176e-02 4.2545e-03 4.8039e-02
{DU 1 (.’.[:,,,J (t == 1))(}50 0(%1’13 1 {t e 1))(]50 0($1,3+1( 1)) -3.7296e-03 2.2013e-03  3.7824e-02
bo.1(2i;(t — 1) Boo(mim1j(t — 1))pos (@ip1 ;(—1))  -1.3098e-02 7.0021e-04 3.3936e-02
{Do i (ZE.,, 1,j (t — 1))¢0 0(.’51+1’3 (t =5 1))(})0,0(6) 2.0435e-03 7.4365e-04 2.9247e-02
do.1(zi_1 (£ — 1))doo(a)o 1 (i j_1 (t — 1)) -1.3418¢-02  3.6967e-04 2.6610e-02
()‘50,1 (1'173._1 (f = 1))(,’150 1 (.‘I!.L 1,7 ( ))G-")O,I (:L'i-i-l,j (t = 1)) 3.1734e-02 4.2823e-04 2.3183e-02
do,0(xij+1(t — 1)) -2.9840e-01  4.2683e-04 1.9167e-02
¢0 olzi it = 1)) -2.8647¢-01  2.7855¢-04 1.6013e-02
1,3(2i-1,5(t — 1)) 4.1324e-02  1.7249e-04 1.3699e-02
qso,o(;c, 1,; (= 1))doo(a) -3.8232e-01 1.1728e-04 1.1872e-02
1.3(i5 (¢ — 1))1,3(@ig1,5(E — 1)) -2.7193e-01  1.2565e-04 9.5333e-03
do.0(Tig1,;(t — 1)) -2.8067e-01  1.0820e-04 6.9117¢-03
¥ a(miss j(t — 1)) 5.7012e-02  4.3412e-05 5.5204e-03
Y1,3(i,5 (¢ — 1)) 8.5030e-02  2.2541e-05 4.6361e-03
s (i1, (t— 1)) -2.7741e+00 1.9594e-05 3.6995¢-03
‘I,L')j_,g (.’L',;,_:,‘+1 (t = 1))1,[)1,3 (x'i—l,j {t on 1)) -9.2572e-02 1.2033e-05 2.9820e-03
0,1 (zij(t — 1))do0(a) 3.3401e-02  7.1018e-06 2.4622e-03
P11 (@i i1 (t — 1)) (i joa (£~ 1)) -8.4093¢-02  4.5755e-06  2.0590e-03

Table 2: Example 2: The terms and parameters of the final CML model
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Figure 15: Example 2: Some snapshots of the data

Figs. (16) and (17) show snapshots of the model predicted outputs and errors at time instants
1,10, 50 and 100, which show that the identified CML model can reproduce the spatio-temporal
patterns of the original system very well.

To analyse the behaviour of the system under different parameters, an estimated bifurcation
diagram of the system (32) for the parameter a € [0.5, 2] at a site (4,4) for a 8 x 8 lattice was
calculated using the identified model. This bifurcation diagram (Fig.(18)) was drawn using the
final 200 data points out of a total 1000 points generated by the identified model. It seems that
Fig.(14) and Fig.(18) are quite different. Indeed, on the whole they are different numerically.
However the local zoomed diagrams Figs.(19) and (20), and Figs.(21) and (22) show that they
are quite similar, in particular in the region around a = 1.5 because the model was identified
using this value of the parameter. It can also be observed from the estimated bifurcation diagram
that the model system is in a stable state for 0.5 < a < a, = 0.741, period doubling appears at
a = a, = 0.741 and is followed by quasiperiodic attractors and chaos. These transition points
are almost exactly the same as in the original CML system for a < 1.85.

The Lyapunov exponents with e = 0.4, @ = 1.55 were calculated through the product of Jacobians
for time steps 1 to 100 for a sub-lattice of the size 3 x 3 with the site (25, 25) as the centre
point, where the boundary effect has been neglected. The values are A\; = 0.0648, Ay = 0.0622,
A3 = 0.0158, Ay = —0.0014, A\; = —0.0106, X\¢ = —0.0275, A; = —0.0478, A\g = —0.0811, and
g = —0.1360. It follows that the KS entropy is 0.1428, which is just the sum of all the positive
Lyapunov exponents. In order to be able to calculate the largest positive Lyapunov exponent
from the data, a numerical algorithm proposed by Rosenstein, Collins, and De Luca (1993) was
employed. For the model predicted data from site (25, 25), the slope of the curve obtained by the
algorithm was found to converge towards a common value for the choice of embedding dimensions
m and provided a value of \; 2 0.0644 for the largest Lyapunov exponent which is very close to
the value of 0.0648 obtained by the product of Jacobians. The correlation dimension was also
estimated by Rosenstein’s method to be around 0.495.
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y{i.i1)

Figure 16: Example 2: Some snapshots of the model predicted output

e(1,100)

(1,50}

Figure 17: Example 2: Some snapshots of the model predicted error
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Figure 18: Example 2: Bifurcation diagram of identified model

y(d.4))

Figure 19: Example 2: Bifurcation diagram of CML model (local)
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Figure 20: Example 2: Bifurcation diagram of the identified model (local)

y{d.40

L L L L L \ i i L
1.4 1.42 1.44 1.48 1.48 1.5 1.52 1.54 1.56 1.58

1.6

Figure 21: Example 2: Bifurcation diagram of CML model (local)
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Figure 22: Example 2: Bifurcation diagram of the identified model (local)
5 Conclusions

A new approach for the identification and analysis of spatio-temporal dynamical systems has
been introduced. It has been shown that by incorporating a control variable, a spatio-temporal
model with explicit external inputs or parameters can be obtained using the proposed method,
and that this model can then be used to study pattern formation and system behaviour.
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