Hindawi Publishing Corporation
BioMed Research International
Article ID 854953

Research Article

Hindawi

A 2D Electromechanical Model of Human Atrial Tissue
Using the Discrete Element Method

Paul Brocklehurst,' Ismail Adeniran,” Dongmin Yang,’ Yong Sheng,’

Henggui Zhang,” and Jiangiao Ye'

lEngineering Department, Lancaster University, Lancaster LA1 4YR, UK
*Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK

3School of Civil Engineering, University of Leeds, Leeds LS2 9]T, UK

Correspondence should be addressed to Henggui Zhang; henggui.zhang@manchester.ac.uk and Jiangiao Ye; j.ye2@lancaster.ac.uk
Received 8 December 2014; Accepted 16 March 2015

Academic Editor: Rodrigo W. dos Santos

Copyright © 2015 Paul Brocklehurst et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Cardiac tissue is a syncytium of coupled cells with pronounced intrinsic discrete nature. Previous models of cardiac electromechan-
ics often ignore such discrete properties and treat cardiac tissue as a continuous medium, which has fundamental limitations. In the
present study, we introduce a 2D electromechanical model for human atrial tissue based on the discrete element method (DEM).
In the model, single-cell dynamics are governed by strongly coupling the electrophysiological model of Courtemanche et al. to the
myofilament model of Rice et al. with two-way feedbacks. Each cell is treated as a viscoelastic body, which is physically represented
by a clump of nine particles. Cell aggregations are arranged so that the anisotropic nature of cardiac tissue due to fibre orientations
can be modelled. Each cell is electrically coupled to neighbouring cells, allowing excitation waves to propagate through the tissue.
Cell-to-cell mechanical interactions are modelled using a linear contact bond model in DEM. By coupling cardiac electrophysiology
with mechanics via the intracellular Ca** concentration, the DEM model successfully simulates the conduction of cardiac electrical
waves and the tissue’s corresponding mechanical contractions. The developed DEM model is numerically stable and provides a

powerful method for studying the electromechanical coupling problem in the heart.

1. Introduction

Atrial fibrillation (AF) is characterised by rapid and irregular
conduction of cardiac electrical excitation waves, impairing
the ability of the heart to pump blood via mechanical
contraction. AF is the most common cardiac arrhythmia [1],
affecting ~1.5% of the UK population, a figure which increases
with age (rising to 5% beyond the age of 65 and 10% beyond
the age of 75 [2]). It can cause cerebral stroke, incapacitation,
and loss of life [3, 4]. Despite this, the underlying processes
governing the generation and maintenance of AF are not yet
fully understood [5] and current clinical treatments are sig-
nificantly unsatisfactory [6]. Computational models provide
a powerful tool for studying these phenomena and would
provide a means of quantitatively predicting the underlying
molecular and ionic mechanisms that facilitate the genesis

and perpetuation of AF. They also provide a level of control
that would not be possible in an experimental setting.
Therefore, there is an urgent need to develop biophysically
detailed computational models that are capable of capturing
various complex mechanisms in the atria, which may then be
used to study AF and test potential treatments.
Understanding AF requires thorough analysis of the
electrical behaviour of the atria. Highly detailed models of
individual cardiac cells have been developed, building on
the earlier pioneering work of Hodgkin and Huxley [7] and
Noble [8]. These models include the Courtemanche et al. [9]
and Nygren et al. [10] models, both of which reproduce the
action potential of human atrial myocytes as recorded exper-
imentally. Each model features stiffly nonlinear differential
equations simulating the flux of ionic currents to provide
the membrane potential of a single cell. Many larger-scale



electrophysiological studies exist, which investigate excita-
tion conduction from cell to cell. This presents a challenge
to researchers owing to the large computational cost, high
speed of the electrical wave, and complex anatomy of the
atria [11, 12]. Typically researchers use experimental datasets
such as [13] constructing the various atrial regions (pectinate
muscle, crista terminalis, Bachmann’s bundle, etc.), each of
which has different electrical properties. In order to handle
such difficulties numerically, a very fine spatial resolution is
required in computational models [5, 14, 15]. Full reviews of
electrophysiological progress may be found in [16, 17].

The inclusion of mechanical dynamics is vital for a
model to address how cardiac arrhythmias or a proposed
treatment can affect the mechanical contraction of the heart,
especially, since there is strong coupling between electrical
and mechanical activities in the atria [18, 19]. Sophisticated
models exist at the myocyte/myofilament level [20, 21], cap-
turing the complex force-calcium relationship and sarcomere
dynamics. On a larger scale, cardiac tissue may be mechan-
ically idealized as transversely isotropic, hyperelastic, and
incompressible [22]. Tissue-/organ-scale models typically use
a traditional continuum mechanics approach through mate-
rials homogenization, modelling the tension development
and deformation by using stress-strain relationships [23-
25]. However, a simply idealized continuum approximation
of cardiac tissue ignores the pronounced discrete nature
of cardiac tissue and cell arrangement and therefore has
fundamental limitations.

In this study, we used the discrete element method
(DEM) rather than a continuum approach to physically and
mechanically represent atrial tissue. DEM belongs to a family
of discrete methods originally proposed by Cundall in 1971 in
application to the behaviour of discontinuous materials [26].
The method was refined in [27, 28] and describes the motion
of circular “particles” Recently, researchers have shown that
particles may be bonded together to accurately model fibre-
reinforced materials [29-31].

DEM is therefore well suited in application to atrial
tissue, due to the discrete cellular arrangement, the dis-
continuous tissue’s electrophysiological properties, and the
complex geometry of the atria. The aforementioned contin-
uum mechanics approaches assume a smooth and homoge-
neous tissue, neglecting consideration of the discontinuous
microstructure and irregular arrangement of cells. In this
study, we develop a multiscale DEM model that accurately
captures electrical and mechanical processes at both the cell
and tissue scales in the atria. We build the groundwork
for future model development at the organ scale and show
that DEM has the potential to be a powerful approach for
representing the anisotropic and inhomogeneous nature of
the human heart.

The paper is arranged as follows. Section 2 provides
an overview of DEM theory used by the model, and the
atrial single-cell model is presented. The method for elec-
trical propagation is described as well as the coupling with
mechanical contraction. Some simulation results are shown
in Section 3. A discussion of the method and conclusions are
given in Section 4 and some future work is proposed.
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2. Method

2.1. Model for Excitation and Contraction of a Single Cell. 'The
developed biophysically detailed model for the atria considers
two physics scales: cellular and tissue. At the cellular level,
we simulated the electrical and mechanical behaviour of a
single atrial myocyte by coupling two well-known models.
For the electrical behaviour, we used the Courtemanche et al.
model [9]. Each cell was considered equipotential, with the
time derivative of the cell's membrane potential V' (in mV)
given by

d_V - _ (Iion + Ist) , (1)
dt C,

where I, is the total ionic current (pA), I is an external
stimulus (pA), and C,, is the membrane capacitance (pF).
Various ionic and pump currents are represented in the

model:

Iion = INa + IKI + Ito + IKur + IKr + IKs + ICa,L (2)

+ Ip,Ca + INaK + INaCa + Ib,Na + Ib,Ca’

where I, and Iy, are the fast and background Na* currents,
respectively; Iy, Lo, Ixur> Ixp @and Iy, are the inward rectifier,
transient outward, ultrarapid rectifier, and rapid and slow

delayed rectifier K™ currents, respectively; I, ;, I, cqor and

I, ¢, are the L-type, pump, and background Ca*" currents,
respectively; Iy, is the Na* — K* pump current; and Iy, is
the Na*—Ca®" exchanger current. Each ion channel current is
modelled by the Huxley-Hodgkin formulation which is fitted
to experimental data. For example, the fast sodium current is
implemented as

INa = gNamshj (V - ENa) > (3)

where gy, is maximal Na* conductance and Ey, is the
equilibrium potential for sodium. The voltage dependency of
ion channels is modelled by gating variables m (activation), h
(inactivation), and j (slow activation), each governed by

Y _Yo=J

dt T,

(4)

For any gate variable y, y., is its steady state value and
T, its time constant, both of which are functions of V' that
are algebraically defined based on data from atrial cells.
Differential equations also exist to keep track of intracellular
concentrations of Ca**, Na*, and K.

For the mechanical behaviour of the cell, we used the
Rice et al. myofilament model [20]. This model defines
a system of nonlinear ordinary differential equations to
simulate the interaction between force, the intracellular Ca**
handling, and sarcomere length. This is achieved through
mathematically modelling the complex process of Ca** bind-
ing to regulatory proteins at cross-bridges. Other realistic
elements such as viscoelasticity are included in the model,
which is verified against experimental data for cardiac muscle
response. The author’s implementation defines Integral;, .. as
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a sum of normalized forces within the cell integrated over
time:

Integral

force

)
= j (_Factive - Fpassive + Fpreload + Faﬁerload) dt,

with terms representing the contribution of various forces
from the model formulation. The sarcomere length SL is then
computed by

dSL _ Integraly . + (SL, — SL)  viscosity
dt mass

force

, ()

where SL is initial sarcomere length. Here viscosity and
mass are constants which help describe the muscle response
[20]. The model is formulated with close attention to experi-
mental data for rat and rabbit myofilaments. Due to lack of
experimental data for human contracting cells, we use the
rat species modifying parameters of the original paper and
a physiological temperature of 37°C. The initial sarcomere
length is chosen as SL,, = 2.2 ym to reflect possible stretching
at end-diastole.

We coupled the Courtemanche et al. and Rice et al.
models by a two-way feedback method. The definition for

calcium concentration [Ca2+]i from the Courtemanche et al.
model [9] is modified slightly to give

d|ca®*
e _n )
dt B,
where B, and B, are defined by
_ 2INaCa - Ip,Ca - ICaL - Ib,Ca
1 2F,,
+ V“P (Iup,leak - Iup) + IrelVrel
Vi
(8)
5 dTrop ,Ca
ar
[Cmdn]max Km,Cmdn

* 2+ 2’
([Ca ]i + Km,Cmdn)

and other variables are defined as in [9]. Here, we have
inserted dTrop ,Ca/dt as calculated in the Rice et al. model
[20]. Values of [Ca2+]i are fed into the Rice et al. model,
completing the feedback cycle. In this manner, we obtain
a system of nonlinear equations which accurately predicts
the membrane potential, calcium concentration, and length
of a single cell throughout its excitation-contraction cycle.
The system consists of nonlinear differential equations for
the 32 time-dependent variables. In total, we monitor 182
variables for each cell at each time step, providing diagnostic
information on all aspects of single-cell dynamics.

2.2. DEM 'Theory. The mechanical interaction of cells in
this study is analysed using DEM theory. The theory in full

may be found in the two-part paper [27, 28]. The particular
implementation and computational engine utilized in this
paper is the Particle Flow Code (PFC) by Itasca Consulting
Group Inc. [32].

DEM tracks the dynamic interaction of “particles,” where
in this two-dimensional context a particle is defined as a
rigid disc of unit thickness occupying a finite space. Each
particle’s position and velocity are tracked throughout the
simulation, which is solved by an explicit time-stepping
algorithm. Newton’s second law is used to determine the
motion of each particle arising from contact/body forces
upon it. A force-displacement law is used to update the
contact forces arising from the relative motion at each contact
[26, 29, 32].

For this two-dimensional study, the degrees of freedom of
the particles are the x- and y-directions and rotation about
the z-axis. The equation for a single particle’s translational
motion may be written [31, 32] as follows:

F=m(%-g), 9)

wherei = 1, 2, 3 denotes the coordinate directions (x, y, z), F;
is the resultant force (the sum of all externally applied forces
acting on the particle), &; is the particle acceleration, m is the
mass of the particle, and g; is a body force acceleration vector
(e.g., gravity). The equation for rotational motion is given by
(31, 32]

M; = lws, (10)

where Mj is the resultant moment referred to the z-axis, w is
the rotational velocity about the z-axis, and I is the rotational
inertia of the particle.

A solid material may be modelled using DEM by bond-
ing particles together using contact models, and a force-
displacement law is solved at the contacts. Two particles may
be bonded by a pair of elastic springs with constant normal
and shear stiffness (see Figurel). The bond is retained if
the two particles overlap slightly, causing a resistive force,
or become slightly separated, causing an attractive force. The
springs have specified tensile and shear strength under force,
and the contact breaks if these strengths are exceeded. In this
study, they are taken high enough for the contacts to persist
indefinitely. We use a contact model similar to that described
in [33], providing the behaviour of an infinitesimal, linear
elastic bonded interface which carries a force. In addition,
dashpots are present in the normal and shear direction to
provide damping [32].

In order to obtain the spring and dashpot forces acting at
a contact, we first define a contact plane between particles A
and B as shown in Figure 1, with location x, [32]. The contact
plane is centred within the interaction area (gap or overlap) of
the two particles, with location x., normal i directed from B
to A, and tangential direction t.. The contact model consists
of a dashpot and spring in the normal and shear directions.
Here 8, and f3; are the dashpot normal and shear critical
damping ratios, k, and k, are the normal and shear spring
stiffness, and T and Sy are the tensile and shear strengths



Particle A

Particle B

FIGURE 1: An illustration of the linear contact bond model used in
the DEM model, connecting two particles A and B. Here x_ is the
location of the contact plane centred between the two particles, n,
is the normal directed towards particle B, and t, is the tangential
direction. k, and k, are the normal and shear spring stiffness, 8, and
B, are the dashpot normal and shear critical damping ratios, and Ty
and Sj are the tensile and shear strengths of the contact under force.

of the contact under force. We may thendescribe the relative
translational motion of particle surfaces at a contact by

§_ A (B
d=x""—x

>

(11)

where XEN ) is the translational velocity of particle N at the

contact location:

XEN) =x™ 4+ Wi (xc - x(N)) . (12)

Here, ™ and w'"Y) are the respective translational and
rotational velocities of particle N, and x™¥) is the location
of particle N [32]. The relative translation motion & may be
decomposed further into its normal and shear parts:

& =34,0, + 0.t (13)

Now, we denote the total contact force as F¢, with linear and
dashpot components:

F =F +F, (14)
and each may be resolved into normal and shear parts:

1 I I
F =-Fn +Ft,
d d d 1)
F' =-Fn_+F't.
Finally, the normal contact force is updated at each time step:

F, = k,gq (16)

where g, is the surface gap between the two contacting
particles. The shear contact force is updated incrementally,
starting from zero and subtracting at each time step:

AF! = —k8.At. 17)

The update of the dashpot normal force is given by

F4 = 2B,\m.k,d (18)

c'n-n’
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where m, relates the mass of each particle [32]:

m*m®

e = R )

The update of the dashpot shear force is
F¢ = 2B\|m k9. (20)

The contacts transmit only a force and no moment, and
slippage does not occur in this model because contacts are
always present for any given particle.

Particles in DEM can be grouped to form a “clump”
that behaves as one body. The contacts between particles
within a clump are skipped to reduce the computational cost,
whereas contacts between a clump and any particle external
to that clump are treated normally. The particles within a
clump may overlap to any extent and will never break apart.
Hence, a clump may be used to approximate the shape of any
nonspherical body (e.g., cylindrical cells in atrial tissue), by
using an arbitrary number of particles.

2.3. Applying DEM to Human Atrial Tissue. When choosing
how to apply DEM to model human atrial tissue, several
considerations must be made. For example, we must first
decide how many particles to use in representing one cell
(and how to arrange the particles), seeking a balance between
realism and computational expense. We must also choose
how to introduce force into the system to allow muscle
contraction.

DEM gives the option to apply a body force to each
particle. For a distribution of particles representing a cell,
force could be applied to particles at either end, causing
contraction. However, using this approach, it is very difficult
to correctly balance the forces within a cell and avoid
affecting the neighbouring cells. This leads to unrealistic force
accumulation throughout the tissue and an uneven contrac-
tile response from each cell. Further, balancing the spring
stiffness and particle overlap to satisfy the incompressibility
condition of atrial tissue is troublesome. In reality, the protein
binding process which results in sarcomere contraction (see,
e.g., [34]) causes symmetric cell shortening, which is an
independent process for each cell and cells interact mechan-
ically in mostly a supportive context. Therefore, it seems
appropriate to instead use one DEM clump to represent one
cell. Clumps are rigid with respect to one another and are
only able to influence each other’s positions, not their size or
shape. In order to accurately model contraction of the cell,
we manually change the position and size of each clump’s
particles to match the amount of contraction predicted by
the single-cell model in Section 2.1. In this manner, we
ensure that each individual cell responds in a mechanically
correct way to the electrical stimulus. Also, this approach
helps alleviate the computational expense caused by the large
number of cells required.

Atrial cells have a roughly cylindrical shape, and our two-
dimensional representation of a cell is a rectangle with initial
length 100 um and width 16 yum as used in the model of
Courtemanche et al. [9]. The density of each particle is chosen
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FIGURE 2: Geometry of one clump/cell in the DEM model. Here,
Pi>- .. p, are the n particles, r is their radius, d is the distance

between particle centres, L is the total length of the clump, and S
is the area of the overlap region between particles.

as p = 1.053 g/mlL, taken from values calculated in [35] for
rat myocardial tissue regional densities. In our DEM model,
nparticles are arranged end to end as shown in Figure 2, using
aradius of r = 8 ym. The number and amount of overlapping
of the particles are chosen such that the length of the clump
L = 100 ym. The amount of overlap is the same for each
particle; hence, the equation for the length of the clump is

L=mn-1)d+2r, (21)

where d is the distance from the centre of one particle to the
next. In this case we use n = 9, giving d = 10.5 ym when the
cell is at rest. Using simple geometry, the total area A of the
clump is given by

A=nart = (n-1)8, (22)

where the area S is
2 d d
S = 2r” arccos %) E\/4r2 —d2. (23)
r

Atevery time step, the single-cell model of Section 2.1 outputs
a sarcomere length for each cell. Since each cell consists of
sarcomeres arranged end to end, we assume the total cell
length is equal to a linear scaling of the sarcomere length. The
area A is always held constant to satisfy the incompressibility
condition of atrial tissue. Solving (21) and (22) simultaneously
gives the two unknowns » and d, and the clump particle radii
and positions are then modified to satisfy these new values.
In this manner, the cell/clump may contract/expand in length
while conserving 2D area.

2.4. Cell-Cell Coupling. Cells need to be coupled both elec-
trically (to allow the electrical excitation waves to propa-
gate through the tissue) and mechanically (to capture the
tissue’s elastic response to cell contraction). Using DEM, it
is simple to construct the mechanical tissue model: clumps
are placed in the model where required and aligned with
the desired fibre orientation. Mechanical contacts are then
formed between clumps/cells and their nearest neighbours.
A generous contact detection threshold is set, to ensure a
dense arrangement of particles. The DEM distribution is
computationally cycled until it reaches a stable equilibrium.

FIGURE 3: A region of tissue made up of several DEM clumps. Each
clump is colored individually, and black circles denote a contact
between particles.

Mechanical boundary conditions may be applied to any
clump, fixing them in either the x- or y-directions or
both. Figure 3 displays a DEM model of a region of tissue
comprising several cells.

Physically, the DEM contacts in our model represent
connective material between individual cells. This includes
the cell-binding protein structures desmosomes and other
connective tissue. In this study, we seek to capture the
qualitative behaviour of these materials, which is primarily to
prevent the separation and overlap of cells and facilitate force
transmission between cells. Therefore, the DEM parameters
are chosen to satisfy the following criteria.

(i) The spring stiffness values k, and k; and their ratio
are selected such that the mechanical response to cell
contraction is prompt and that cells are not separated
throughout the contraction process.

(ii) The spring stiffness values are selected high enough
that particles resist overlapping, and thus the incom-
pressibility of the tissue is satisfied as closely as
possible.

(iii) The spring stiffness and dashpot damping parameters
B, and B, are selected to minimize elastic oscillation
and ensure smooth contraction and expansion of the
tissue.

Obtaining the desired behaviour is undertaken through a
trial and error process, as the system behaviour is somewhat
sensitive to the spring parameters k, and k, (and the ratio
between them). In general, higher normal contact stiffness k,,
causes the above criteria to be satisfied but requires a smaller
time step to maintain the stability of the system’s solution.
However, a critical maximum mechanical time step can be
estimated based on parameters [32]. Table 1 shows the full
set of DEM parameter values used in this paper. Note that
gravity is neglected in this study as the atria are assumed to
be supported by the surrounding anatomy.

Recall that clumps are rigid bodies during each DEM step.
That is, clumps are able to influence each other’s position
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TABLE 1: DEM parameter value used in the model.
Parameter Description Value
P Density of particles 1.053 g/mL
g Acceleration due to gravity 0m/s”
k, Normal contact stiffness 10 N/m
k, Shear contact stiffness 0.1N/m
B, Normal critical dashpot damping ratio 0.1
Bs Shear critical dashpot damping ratio 0.1
T Contact tensile strength 1x10*®
Sk Contact shear strength 1 x 10>
r Initial radius of particles 8 um
L Length of cell 100 ym
n Number of particles per cell 9
D Electrical conductivity 1000 nS

and velocity but not each other’s size and shape. Instead, the
length and width of each clump are manipulated manually
prior to each time step, based on the single-cell model output.
Then, the DEM calculations give the positional response
of the total clump distribution by solving the equations of
motion and contact forces. The only force introduced into the
system is contact forces between cells, which arises as a result
of the contraction/expansion of each cell.

The electrical coupling of cells is performed once the
DEM particle distribution is constructed. Two cells are con-
sidered electrically coupled whenever a DEM contact exists
between them, and we define two such cells as “neighbours.”
Equation (1), which governs the membrane potential of each
cell, contains a term I, which represents an external stimulus.
Cells are assumed to stimulate their neighbours, representing
electricity flowing from cell to cell. If a cell labelled H
with membrane potential Vy; has N neighbours, the external
stimulus for cell H is given by

N
Iy =D) (V= Vy), (24)
i=1

where D is an electrical conductance parameter and V; is
the membrane potential of the neighbour numbered i. The
conductivity D governs the velocity of the electrical wave and
has a value of 1000 nS as listed in Table 1. This procedure is
repeated for each cell in the tissue, creating one large network
of coupled ODE:s for the electrical behaviour of all cells in the
model.

Physically, electrical propagation from cell to cell is
largely due to the presence of gap junctions, a specialized
intercellular connection allowing ions and electrical impulses
to pass through a regulated gate between cells [36, 37]. Gap
junctions are predominantly localized at the cell ends in the
fibre direction [38]. However, in our model, the physical con-
nections between cells are the DEM contacts, which naturally
are more numerous in the transverse direction than the fibre
direction (e.g., see Figure 3). Our approach reflects an attempt
to balance this discrepancy by assuming that even if multiple
DEM contacts exist between two cells, the electrical flow
between them is divided equally amongst these contacts. That
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is, the number of DEM contacts between two cells does not
affect the strength of electrical conduction between them, as
long as one contact is present. In Section 3.2, we show that this
approach is able to accurately mimic electrical propagation
through cells and replicate the anisotropic behaviour of atrial
tissue.

Figure 4 shows a schematic of the full electromechanical
computational cycle for each time step of the model. The
DEM equations are solved explicitly by a centred finite-
difference scheme, and a time step of At = 0.004ms is
required owing to the relatively stift contact springs. For the
coupled single-cell equations, the same fixed time step of
At = 0.004 ms is used, to guarantee the stable solution of
the coupled system of nonlinear single-cell equations using
the explicit Euler method and to handle the high wave speed
of the electrical propagation. Each box in Figure 4 must be
completed before proceeding to the next; however, they may
be computed efficiently in parallel to speed up calculation
times. All calculations are performed using an Intel Xeon
3.6 GHz CPU and multithreaded using all 8 threads and
double precision. DEM calculations are performed using PFC
version 5.0 [32], and all other calculations are performed
using a custom C++ library interfacing with PFC. Further
computational savings are made by disabling the contact
detection phase of DEM during cycling, which is usually
present. The particles in this model are densely packed and
tightly bonded to their immediate neighbours, meaning no
new contacts will be formed throughout the contraction
phase.

3. Results

3.1. Single-Cell Model. In this section, we present results from
the single-cell model described in Section 2.1. These reflect
the electrical and mechanical behaviour of an isolated single
cell. Att = 50ms, a 2nA external stimulus was applied to
the cell for a duration of 2 ms. Initial conditions in the cell are
obtained by pacing at 1 Hz for 200 beats. Figure 5 shows the
evolution of several variables over time within the cell.

Figure 5(a) shows the action potential, beginning at a
resting membrane potential close to —82mV and reaching
20 mV in response to the external stimulus. The classic spike-
and-dome morphology of the Courtemanche et al. model
was altered slightly by the mechanical coupling; the dome
was less prominent dome and the action potential duration
was slightly shorter in the coupled single-cell model (blue)
compared to an uncoupled purely electrical model (red) [9].
The abrupt response to the electrical stimulus is evidence
of the stiffness inherent in the equations, which must be
carefully accounted for numerically.

The Ca®** concentration time course for the coupled
model plotted in Figure 5(b) (blue) was affected by the
mechanical feedback described in (7)-(8), which caused a
sharper and higher peak in Ca** than in the default electrical
model (red) [9]. The influx of Ca®* led to active force
development within the cell (Figure 5(c)). This in turn caused
a reduction in sarcomere length, which we scaled up to give
the expected cell length L as shown in Figure 5(d). The cell



BioMed Research International

For each particle, apply the law
of motion, updating the particle
position and velocity based on
the resultant force and motion

due to contact forces

For each cell, loop over cell

fm 4 A neighbours and calculate the

total external voltage

contribution I

For each contact between
particles, solve the force-
displacement law, updating the
contact forces based on relative

motion and contact constitutive

For each cell, solve the single-
cell equations and update time-
dependent variables using an

explicit timestep

model For each cell, scale the sarcomere
length output from single-cell
equations to give predicted cell
length; calculate new values of
particle radius and overlap; update
particle radius and position
FIGURE 4: The computational cycle for the full electromechanical model.
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FIGURE 5: Results from the single-cell model of Section 2.1 (blue curves). The time evolution of several variables is plotted in response to an

external stimulus. (a) Membrane potential V, (b) intracellular calcium concentration [Ca?*],, (c) active force F,
graphs (a) and (b), the red curves reflect the default Courtemanche model [9].

ctive> and (d) cell length L. For
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FIGURE 6: Electrical propagation through a region of connected DEM cells. (a) t = 3.92ms, (b) t = 9.12ms, (¢) t = 13.52ms, and (d)
t = 21.52 ms. Cells are colored according to their membrane potential V.

contracted by around 10% of its original length and was fully
contracted 50 ms after receiving a stimulus.

3.2. Electrical Conduction. In this section, we demonstrate
the method for the electrical coupling of cells, allowing
the excitation wave to propagate through the DEM model
domain. We construct a rectangular region of tissue, with
all cells oriented vertically, such that the fibre direction is in
the y plane. The tissue consists of 90k particles (10 k cells),
representing a region of tissue which is 5mm in length and
3.2 mm in width. The top-left corner of cells receives external
stimulus of 2nA at ¢ = 1ms with a duration of 2ms. The
progress of the electrical wave is shown in Figure 6.

Several cavities are opened in the tissue to demonstrate
that the method can handle discontinuous tissue geometry.
In addition, the anisotropy of atrial tissue conduction is
naturally accounted for by the formulation; that is, electrical
propagation along fibres is faster than that in the transverse
direction. This is due to the larger spatial step in the fibre
direction, owing to the clump shape. Here, we have chosen
a value for the conduction parameter (D = 1000 nS), leading
to a conduction velocity of approximately 55 cm/s in the fibre
direction, in agreement with experimental measurements
[16]. The model exhibits a conduction anisotropy ratio of
roughly 6:1 between the fibre and transverse directions. The
literature estimates for the anisotropy ratio of atrial tissue
vary between 4.76 : 1and 8 : 1 [16] with little experimental data
available.

3.3. Mechanical Contraction. In this section, we present re-
sults from the full electromechanical tissue model described
in Section 2.1. A region of tissue 5 mm in length and 3.2 mm
in width was constructed with the fibre direction aligned with
the y-axis, comprised of 10k cells and 90 k particles. The full
simulation took approximately 4 hours to complete 600 ms
of simulated time. The computational time is approximately

consumed as 50% on DEM calculations, 20% on electrical
wave propagation, 20% applying contraction to each cell, and
10% solving the single-cell equations. A boundary condition
was applied to the lowermost cells along the x-axis, fixing
their movement in the y-direction. The top portion of tissue
received a stimulus of 2nA at t = 1 ms lasting for 2 ms. Sev-
eral snapshots are presented in Figure 7 as the electrical wave
propagates throughout the tissue and contraction occurs.

In Figure 7(a), the rapid electrical wave spreads through-
out the cells; by t = 37.12ms (Figure 7(b)), contraction is
underway in the cells near the top of the tissue. At t =
55.92 ms (Figure 7(c)), the tissue is fully contracted, and the
tissue width has expanded to account for its loss in height due
to the tissue incompressibility. Gradually, the tissue relaxes to
its resting shape (Figure 7(d)).

To calculate the area of the tissue, we need to account for
the area of the physical particles as well as the voids between
particles and any particle overlap. We form a polygon with
vertices at the centre points of clumps which are on the
boundary of the tissue and then calculate the area of the
polygon. Figure 8(a) shows the normalised tissue area (tissue
area divided by initial resting area) and Figure 8(b) shows
normalised length (distance from the top to bottom through
the central fibre divided by the resting length) throughout the
contraction.

Figure 8(a) shows that tissue incompressibility is achieved
to within acceptable accuracy, with only negligible variation
in tissue area throughout the simulation. Recall that the
individual cells themselves are exactly incompressible by
formulation (see (21)-(22)), but minor changes in tissue area
are unavoidable and caused by the clumps and surrounding
voids rearranging throughout the contraction. In Figure 8(b),
the tissue length curve follows that of each individual cell’s
length (see Figure 5(d)), showing that cells along a fibre
remain unseparated and the stiff springs connecting clumps
ensure a prompt response and smooth tissue contraction.
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4. Discussion

4.1. Summary. In this study, we have developed a novel
multiscale electromechanical model for the human atria from
single cell to tissue level using DEM. Our major contributions
are (i) a new cellular model for atrial electromechanical activ-
ity that couples the Courtemanche et al. electrophysiology
model [9] to the Rice et al. myofilament model [20]. The
developed cell model is implemented in DEM by using a
clump of nine particles, representing atrial cellular geometry;
(ii) a 2D DEM tissue model of atrial tissue was developed
with consideration of atrial anisotropic and discrete natures.
Using the tissue model, the conduction of cardiac electrical
waves and the corresponding mechanical contraction were

simulated; and (iii) a numerically stable algorithm was
developed to solve the DEM model of atrial tissue.

The developed DEM model presents several advantages
over continuum mechanics methods for cardiac tissue mod-
elling, such as the finite element method (FEM). It is well
known that cardiac tissue is fundamentally discrete [17],
anisotropic, and inhomogeneous in its electrophysiology
[39]. Such properties play important roles in ensuring normal
electrical wave propagation in the heart and genesis of
cardiac arrhythmias [40]. Spatial electrical heterogeneities
are also found to be crucial for successful defibrillation [41].
These intrinsic natures of cardiac tissue are more appropri-
ately modelled by DEM than the conventional continuum
approaches. Further, the atria are anatomically complex,
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comprising many regions of different geometrical structures
[16], which form a challenge for an accurate reconstruction of
these regions and numerical treatment of the nodes by FEM.
However, the use of DEM allows any possible arrangement
and configuration of individual cells.

The numerical method we presented here was stable and
efficient, capable of handling over half a million cells on a
single desktop computer. Both the single-cell equations and
DEM equations may be solved by explicit numerical methods.
Continuum models for electrical propagation frequently use
reaction-diffusion type equations [16]: such an approach
often requires the iterative solution of a large system of
equations [17], slowing down computation times. In addition,
the centred finite difference approach to solving the DEM
equations used here allows calculation of a critical time step
[32], ensuring that the mechanical solution remains stable.
Further, in our model there is ample opportunity for par-
allelism throughout the distinct steps of the computational
cycle.

4.2. Limitations and Future Work. The present model has
several limitations and aspects which may be improved in
later model development. First, the single-cell model is not
verified against human experimental data, and the Rice
et al. [20] model is formulated for nonhuman species. Some
authors have attempted to update the Courtemanche and
Rice models for use in human models, such as [42, 43].
However, the development of complete electromechanical
single-cell models for various regions of the human atria
warrants further study as more experimental data becomes
available.

The method for electrical conduction between cells needs
further improving, though it performs reasonably well. A
more sophisticated method could be used, such as track-
ing the diffusion of electricity through individual particles
or direct incorporation of gap junctions. However, these
approaches may inhibit the choice of using an equipotential
single-cell model. The present method provides a good
balance between realism and numerical efficacy.

The focus of the present paper was to introduce the
DEM methodology for simulating atrial electromechanics,
and there is therefore room for improvement in the future.
The DEM bond stiffness and damping parameters can be
adapted in different directions to more accurately capture the
behaviour of the connective material between cells. A more
sophisticated contact model than the linear bond model used
here can be developed, possibly including nonlinear effects
and viscoelasticity. In addition, to complete the electrome-
chanical coupling, feedback from mechanical contraction can
be incorporated into the electrical formulation by introduc-
ing a term representing stretch-activated currents [44].

In future, DEM could be used for organ-scale simulations
where millions of cells are required. The explicit nature of the
numerical methods means the method should scale well to
massively parallel systems, using CPU or GPU processors.
Construction of an anatomically accurate 3D configuration
of cells should be possible. Clumps could be packed into a
desired geometry while dynamically modifying their align-
ment based on experimental data sets defining the atria’s

BioMed Research International

fibre orientations. To ensure a dense packing of particles,
additional smaller particles could be added, representing
connective tissue. In this manner, one could “build” a DEM
system of cells to accurately model an atrial region. Though
the present paper deals with cells which are aligned in
a parallel manner, preliminary tests of our DEM method
indicate it is suitable to model abrupt or gradual changes in
fibre direction, such as those found in the atria.

4.3. Conclusion. We conclude that DEM is a powerful
method for modelling electromechanical behaviour in the
human atria. The ability to consider discrete cell arrangement
means that DEM is well suited to simulate the dynamic
behaviour of atrial tissue, which is anisotropic and discon-
tinuous by nature. The multiscale model established here can
be used in the future to study the effect of heterogeneity
in atrial tissue, which is necessary to fully understand the
mechanisms behind AF and other phenomena. The method
shows potential to be used for construction of a full 3D model
of the human atria, which would provide a valuable computer
modelling platform for testing antiarrhythmic drugs and
other AF treatments.
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