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Guo, L. Z. and Billings, S. A.

Department of Automatic Control and Systems Engineering
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Sheffield S1 3JD, UK

Abstract

This paper introduces a new approach for the local reconstruction of coupled map lattice
(CML) models of stochastic spatio-temporal dynamics from measured data. The nonlinear
functionals describing the evolution of the spatio-temporal patterns are constructed using
B-spline wavelet and scaling functions. This provides a multiresolution approximation for
the underlying spatio-temporal dynamics. An orthogonal least squares algorithm is used
to determine significant terms from wavelet functions to form an accurate representation
of the nonlinear spatio-temporal dynamics. Two examples are used to demonstrate the
application of the proposed new approach.

1 Introduction

Complex spatio-temporal patterns have been widely observed and explored in many diverse
fields including physical, chemical, biological, and ecological systems (Kaneko 1993, Séle, Valls
and Bascompte 1992, Yanagita and Kaneko 1997, Tabuchi, Yakawa and Mallick et al. 2002,
Kohler, Reinhard and Huth 2002, Bertram, Beta, Rotermund, and Ertl 2003, Goldman, et al.
2003, Adamatzky 2003). Coupled map lattices (CML) have been studied in recent years as an
effective model of spatio-temporal dynamical systems. Among these studies, various methods for
the identification of local CML models from spatio-temporal observations have been proposed
(Coca and Billings 2001, Mandelj, Grabec and Govekar 2001, Marcos-Nikolaus, Martin-Gonzalez
and Séle 2002, Grabec and Mandeji 1997, Parlitz and Merkwirth 2000, Coca and billings, 2003,
Gradisek, Siegert, Friedrich, and Grabec 2000, Blanc-Talon 1999, Billings, Wei, Mei, and Guo
2003, Billings, Guo, and Wei 2003). Because in practice all physical systems are, to some extent,
subject to stochastic noise or perturbations either due to measurement errors or unknown distur-
bances, it is important to develop models and identification procedures which can accommodate
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stochastic effects. However, there are very few results for the identification or reconstruction
problem of stochastic spatio-temporal dynamical systems. The aim of this paper is to present
a systematic methodology to reconstruct CML equations from noise-corrupted measured data
using wavelets as regressors.

Theoretical studies have shown that the wavelet representation of any nonlinear function can
be shown to be asymptotically near optimal in the sense that the convergence rates are equal
to the best attainable using general nonlinear approximation schemes (DeVore, Jawerth, and
Popov 1992). In addition wavelet approximations also provide similar rates of approximation
for functions belonging to a wide variety of function spaces including functions with sparse
singularities or functions that are not uniformly smooth or regular. Finally, wavelets allow
localisation in both time and frequency, which means that the approximation can.be refined
locally over a subregion in the input domain without affecting the model elsewhere too much.
All these properties suggest that wavelet multiresolution expansions should provide an excellent
foundation for the development of identification algorithms for nonlinear CML models.

In this paper, wavelets, as regressors, are used to identify the CML models, which drive spatio-
temporal pattern formation, from noisy data for the purpose of revealing the dynamical origin
of the given patterns. The nonlinear functionals describing the evolution of the spatio-temporal
patterns are constructed using B-spline wavelet and scaling functions, originally introduced by
Chui and Wang (1991). The forward regression orthogonal least squares algorithm proposed by
Chen, Billings, and Luo (1989) is used to determine the most significant terms from the B-spline
wavelet and scaling functions. The paper is organised as follows. Section 2 introduces the CML
model of stochastic spatio-temporal dynamical systems. The wavelet models are introduced in
section 3 including an introduction to wavelets and a discussion about wavelet model structures.
In section 4, the identification method and the implementation strategy are presented. Section 5

illustrates the proposed approach using two examples. Finally conclusions are drawn in section
6.

2 A CML model for stochastic spatio-temporal systems

Stochastic spatio-temporal dynamical systems are stochastic processes whose evolution is indexed
by both time and spatial parameters. The behaviour of such  systems can be statistically
described by the evolution of the probability density functions. The stochastic spatio-temporal
systems studied in this paper are those that can be modelled by the following CML defined on
a discrete lattice 1

x(t) = F(x(t — 1),ut — 1), e(t)) (1)

where x(t) € X and u(t) € U are the state and external input at time instant ¢, respectively.
F is a nonlinear map. e(t) € E is a random vector representing the internal noise perturbation
defined on I. Specifically, the evolution of each site i in I of the CML equation (1) is given by




5i(t) = Filadlt — 1), wilt — 1), (), Vi(t)), i € I (2)

where V;(¢) indicates all coupling effects for site 7 at time instant ¢ from the spatial neighbourhood
sites in Q C I which involves z;(¢ — 1), u;(t — 1),e;(t — 1), 7 € Q. The spatial neighbourhood
of a specified site is the region around that site which influences the_ dynamics of that site.

Clearly, the dimension of the state space depends on the size of the lattice . In general, the
dimension will be infinite-dimensional if the number of elements of the lattice is infinite. For the
local reconstruction problem, it is sufficient to consider the dimension as being finite dimensional
with dimension n. In this case, the internal noise perturbation e(t) is a n-dimensional random
vector whose components are assumed to be independent, each described by a one-dimensional
probability density ¢.

Let p(x(#)[x(¢—1), u(t—1))) be the conditional probability density function of the state x(t) of (1).
This conditional density function for £ = 1,2, - - - specifies a causal stochastic system completely.
Therefore, the stochastic dynamics of the underlying system can be completely determined if the
conditional probability density function can be obtained exactly at each time instant. Generally,
the statistical behaviour of the system (1) can be exploited by studying the evolution of the
conditional probability density using transfer operators if this is known or the density function
can be estimated. For example, if the system (1) takes the form of a Langevin equation, then
the evolution of the probability density distribution p can be described using the Fokker-Planck
equation. The stochastic dynamics of the Langevin equation can be reconstructed in terms of
the drift and diffusion coefficients of the Fokker-Planck equation (Gradisek, Siegert, Friedrich,
and Grabec 2000). The performance of the reconstruction depends on the accuracy of the
estimated drift and diffusion coefficients. For more general stochastic dynamics, the Frobenius-
Perron operator can be used to describe the evolution of the probability density distributions
(Losson and Mackey 1995, Coca and Billing 2003). Using the Frobenius-Perron operator or
transfer operator, the statistical behaviour of the system can be studied qualitatively. In this
paper, instead of using the transfer operator to study and analyse the statistical behaviour, the
reconstruction problem of the local stochastic dynamics from measured spatio-temporal data will
be addressed using wavelets.

Before proceeding to the reconstruction algorithm, consider the derivation of an input-output
representation of the CML (1), which will be used as a basis for the reconstruction. Assume that
the state-space model of the CML is complemented with the following measurement equation

Yilt) = ha(x(2)) (3)

It is assumed that the lattice equations are spatially invariant over the observed spatial do-
main. This implies that the difference equations corresponding to each lattice site or location
are the same for all lattice sites. Generally it is also assumed that the following input-output
representation




vilt) = fla(t = 1), -, mit = my)iwa(®), -+ st — )i (t), - - €t — me); Vilt), -+, Vit — me))

can be derived for any site 4 from (2) and (3).

From eqn.(4), it can be seen that the input-output dynamics of the model can be affected by the
noise perturbations from adjacent lattice sites. Because the noise e;(t) is not measurable at time
instant ¢, it is assumed that the model (4) can always be represented in the prediction error form

vilt) = fly(t—1), -, milt—ng)swit), - ua(t—nu); es(E—1), - -, €i(t—ne); Vi(t), - ‘1vi(t_ﬂc))+ei((t§
5

where there are no coupling noise effects from other sites and e;(¢) enters the model linearly. In
practice, eqn.(5) can be used to represent a wide class of stochastic spatio-temporal dynamical
systems. In what follows, multivariate wavelets are chosen as basis functions to approximate the
CML model (5).

3 Multivariate wavelets for CML identification

The task of CML identification is to reproduce the spatio-temporal relation f, which is essentially
multivariate and nonlinear, in eqn. (5) from measured noisy data. This objective is complex
when f is nonlinear. ‘The most commonly used approach to finding approximations to unknown
functions is to generate a best approximation from a given class of approximation functions. The
general requirement for the class of approximation functions is that they are relatively smooth
and easy to process on a digital computer. In this paper, a class of approximation functions
generated by multivariate wavelets will be applied to approximate the nonlinear function f.

The wavelet decomposition of a multivariate function f defined on R" can be described as follows.
Let ® be a bounded function defined on R". For all j € Z and k € Z", a series of functions
defined on R™ can be derived in terms of the translates and dyadic dilates of ®: ®(2/x — k).
Then if &, (x) = ®(2x — k), j € Z,k € Z™ form a Riesz basis, function f has a decomposition
in terms of ®,x(x) = ®(2x—k),j € Z,k € Z™ '

f) =3 ; 05,685, (%) (6)

Such a Riesz basis in space L2(R") can be constructed from the univariate scaling function ¢ and
the associated wavelet function ¢ by using the tensor product method. Assuming x = {z1, 22}
for example, define




VO () = §(21)6(22); T (x) = $lm1)h(22); ¥ () = (1) p(2); ¥ (x) = bz )(za)  (7)

By translates and dyadic dilates the set of functions given in (7) generates a Riesz basis in L?(R2).
This means the each function f € L?(R?) has the following unique decomposition

=Y afhu{)(x) (8)

3kl

where U (x) = 29/200 (29x — k), j € Z,k € 27,

The univariate scaling function considered in this paper is the m-th order cardinal B- spline
function ¢(z) = ¢™(z) = B™(x) given by the recursive relation

A" (z) = “Hz-1) (9)

where £'(z) is the indicator function

1 ifze(0,1)

1 s
Bilz)={ 0 otherwise (10)
The wavelet function is defined as a linear combination of scaling functions
3m—2 )
Z @™ (2z — 1) (11)
with the coefficients given by
Q= 2,,,12( )'27"?—]6-1-1) l=0,---.3m—2 (12)

Assume that the nonlinear multivariate function f in eqn. (5) isin L?(R™). Then the B-spline
wavelet representation of the input-output CML equation (5) can be described as follows

W(t) =) +eult) = 3 60, Vh(x) +ei(t), s € ke Zhi=1,- "1 (13)
ikl

where




x = (yi(t = 1), -+, vt — ny); wi(t), - -+ walt — mu)s €s(F — 1), -+ Jei(t—me); Vilt), -+, Vit — )T
(14)

as shown in eqn. (5).

According to the multiresolution analysis, eqn. (13) can equivalently be expressed as

w(t) = fx) e = 3 Giaol@)+ Y s T +elt), ke 2% 1=1,--,2"=1 (15)

F<jok J250.k4

4 Identification algorithm

~ In theory, the wavelet multiresolution approximation is an infinite series expansion. In practice,
however, it is not realistic to use all the terms in this infinite series expansion. Generally the
objective of the identification algorithm is to obtain a truncated finite representation containing
the terms up to some orders of scaling and dilation. Therefore the identified CML model will
be an approximate representation of the underlying spatio-temporal dynamics, which can be
equivalently described as an infinite wavelet series. Although this is a finite approximation
representation, in practice, it can be made to approximate the underlying dynamics at any given
accuracy. Let s > 0 be an integer, the s-truncated space I, ;, with a starting resolution jo is the
set of all functions

FE) =3 4ol + X 0,1 8h(x), k€ Z"1=1,-, 2"~ 1 (16)

<0k Jo<i<s k,l

In this paper, X, j, is considered as the approximation space for the identification of CML models.
Note that the series in space ¥, j, are those up to dyadic level s, which may possibly be infinite
because there is no limitation on the translation operation. In practice, the range of measured
data is always finite so that there are only finite numbers of translation operations which produce
non-empty intersections with the range of data. Therefore, the identified wavelet series are
always finite. Furthermore, in many applications, a 3-truncated space is often enough to obtain
a good approximation result because the wavelets with higher dyadic level are most likely to
have compact support which contains no data points.

Unlike the deterministic case the identification of a CML model for stochastic spatio-temporal
systems involves dealing with stochastic perturbations. Since in practice the noise perturbations
cannot be measured, the unobserved noise sequence has to be estimated from the identification
data using a prediction error approach. The prediction error can be calculated by the following
formulation with the approximation space s j




gi(t) = vult) — %(t) = (@) — ( D ﬂjik,o‘lffﬁ =+ > 9',k,z‘1’f;?s(x)) (17)

J<ga.k JoSi<s.kil

where

x=(g=1), st —ny);wit), - ult —nyu);&it — 1), - -, &t — ne); Vilt), - - -, Vi(t —ne))T
(18)

If ¢; is zero mean and white then the estimates will be unbiased.

A key task of the identification algorithm is to be able to select the significant model terms
for the final representation from a given set of candidate terms {Efﬂ(x)}, j<se ZkezZn,
and [ = 0,---,2" — 1 such that &(Z) tends to () as ¢ — oo . In this paper, a forward
regression orthogonal least squares algorithm (Chen, Billing, and Luo 1989) will be employed to
implement the selection task. Based on this algorithm, the iterative identification procedure can
be summarised as follows

Step 1 Determine the spatial coupling terms, that is the neighbourhood sites (represented by V;)
of the ith site. ’

Step 2 Select the time lags ny, Ny, e, and n., then the process variables involved in the identifi-
cation are

{wt = 1), 5t — ny); wa®), - - wi(t — ma); Vilt), - -, Vilt — me)} (19)

For each process variable initialise the following parameters

- the order m of the B-spline wavelet and scaling functions used to implement the model;
- the starting resolution jg; '

- the number of resolutions s.

Step 3 Apply the forward regression orthogonal least squares algorithm to obtain the terms and
parameters of the deterministic part of the CML model from a given set of candidate terms
(wavelets as regressors). The selection procedure can be terminated when the norm of
the residuals is less than a given tolerance. Generate the initial prediction error sequence

{e(®)}-

Step 4 Augment the initial vector of regression variables with the prediction errors and initialise
a noise model. Apply the forward orthogonal estimator again to the extended model set of
candidate terms to obtain the terms and parameters, and generate a fresh residual sequence.
With each new fresh residual sequence, the model is updated in an iterative manner until
the model parameters converge.




Step 5 Apply model validity tests to evaluate the model. The CML model identified using a set

of data from a given spatial site can be validated on data recorded at different spatial
locations by computing the model predicted output

il 0) 2 D p2 c
5= 4rela®+ Y 0¥ E) + el (20)-
ijU:k jBSjSS.-“‘-J '
where
X o= (G=1), 0 —ny)iwt), - ult —na); (21)

et —1), &t — 1e); Vi(t), -+, Vilt — )T

The model predicted output is a much more rigorous test than the one step ahead predicted
output which most authors use. If no valid models are found, then the set of candidate
terms is refined in the following way

- select the resolution s to be one order higher than that currently used;
- increase the order m of the B-spline functions;

- add higher dimensional terms to the set of candidate terms.

Note that in the above identification procedure, the initial spatial neighbourhood sites of the
identified site and the time lags need to be known a priori. In other words, the neighbourhood
of the identified site, that is, the maximum possible extent of the region around that site which
influences the dynamics of that site in the spatial domain and in the time domain need to
be known before starting the identification. In practice, these two factors are important in
determining the spatio-temporal dynamics of the underlying system. Determining which site
and what time lag should be included in the model structure is therefore very important in CML
identification. This problem has been studied by Guo, Mei, and Billings (2002).

5 Simulation studies

5.1 Example 1 - One-dimensional Sine-Gordon Equation

Consider the following one-dimensional Sine-Gordon equation

OPu(z,t)  Pu(z,1)
dz? ot?

= sin(u(z,t)) (22)

Soliton solutions of the Sine-Gordon equation are very rich. Even the 1-solution soliton solution
consists of two different cases - kink and anti-kink. 2-soliton solutions can be classified into
several distinct cases - the collision of two kinks, the collision of two anti-kinks, the collision of
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Terms Estimates ERR STD
Gop(wi(t—1)) 1.4977e+000 9.4363e-001 1.0316e-001
Po-1(vi(t —1)) -4.9863e-001 4.8554e-002 4.7081e-002
do,-2(yi(t — 1)) -2.4952e+000 7.2454e-003 1.2793e-002
) yi(t—2)) 1.9973e+000 5.0839e-004 4.2919e-003
)

@U,—z(
¢0,_l(yi(t~2) 9.9852e-001  6.2654e-005 7.2112e-004

Table 1: Example 1: The terms and parameters of the final CML model

a kink and an anti-kink, and a kind of bound state called a breather solution. It is very hard
to identify a model, which can produce all soliton solutions. In this simulation, consider the
breather solution with p = 2

p-sin(v/p?+1-1)

t,x) = darct 23
he] =4 aretan] v/p* + 1 cosh(pz) ) ( 7)
The behaviour of the breather solution is actually a localized collective oscillation.
The measurement function was taken as
y(t, z) = u(t, z) - (24)

The reference solution was sampled at 41 equally spaced points over the spatial domain ) =
[—1,1],z = {z1,--,241}. From each location, 500 input/output data points sampled at At =
m/149.82 were generated. Note that all the data were normalised to the interval [0,1]. White
noise with standard deviation ¢ = 2.8176e — 004 was superimposed on the normalised output
data which are plotted in Fig.(1).

In this simulation, the initial neighbourhood was selected to be i — 1 and i + 1 in the spatial
domain and ¢t — 1, — 2 in the time domain. The identification data consisted of the first 30
data points of input/output data u,(t),:(t) at sites i = 11,21, and 31. In addition, 30 input
and output data u;(t), yi-1(f) and yi41(¢) from neighbouring locations i — 1,7+ 1 acted as inputs
during the identification. The model was identified using the forward regression orthogonal least
squares algorithm with the following parameters: the order of the B-spline was 3, initial scale
was 0, and the maximal resolution was 3 for all variables. The model is listed in Table (1), where
ERR denotes the Error Reduction Ratio (Chen, Billings, and Luo 1989) and STD denotes the
standard deviations.

The model predicted output and the model predicted error are plotted in Fig.(2) and Fig.(3),
respectively. It can be observed that the prediction error increases on average as the number
of prediction steps increases, and the prediction errors at the middle sites are larger than those
at the end sites. These properties are mainly caused by the inherent instability of this spatio-
temporal system and the effects of the noise. It is well known that the behaviour of the breather

9




Figure 1: Example 1: System output

solution is actually a localized collective oscillation, which indicates the system lies in an nltimate
status and any added noise could change this sustained oscillation behaviour to be stable or
unstable. Furthermore the prediction error also can be caused by the maximal resolution used
for the identification, which was, in this simulation, limited to be 3. The determination of the
maximal resolution is actually a compromise between approximation accuracy and a parsimonious
model. The simulation results also show that although there is prediction error, the deterministic
patterns of the underlying dynamics have been well approximated by the identified model.

5.2 Example 2 - Predator-prey populations in ecosystems

Consider the following spatio-temporal evolution of interacting populations on a two-dimensional
coupled map lattice (Séle, Valls and Bascompte 1992, Coca and Billings 2001)

) = pm(t— 1)1 — z;(¢ — 1))exp(—Buyi(t — 1)) + Dy V2z(t — 1) (25)
) = z(t— 1)1 —exp(—Byi(t — 1)) + Da V2t — 1)

where 4 = (41,13) € Z?2 and the coupling is given by a discrete diffusion operator

vz‘r’il,ii! = Ti 1y T Ziy+1dy T Tigda—1 T Tigsig+1 — 4%'1,7:2 (25)
V%2 = Yi—14s T+ Yirtiiz + Virsa—1 + Yirdet1 — Wir i

This CML model describes the evolution of the host and parasitoid population on the lattice
Z? in which z; = z;, 4, and y; = ¥, 4, are the host and parasitoid population respectively. It
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Figure 2: Example 1: Model predicted output

Figure 3: Example 1: Model predicted error
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has been shown (Séle, Valls and Bascompte 1992) that this CML model is able to exhibit many
Jinteresting spatio-temporal patterns including spiral waves, chaotic and periodic dynamics under
the different parameters and/or different initial conditions.

In this simulation, the measurement variables used for identification were set to be z;(¢) and
vi(t) for each site ¢ € Z? and the data used for the identification was generated by simulating
the CML model (26) with = 4,5 = 5, D; = 0.0001, Dy = 0.20 for 1000 steps over a 50 x 50
lattice I starting from randomly generated initial populations and periodic boundary conditions.
Following Séle, Valls and Bascompte (1992), the initial condition for which both populations
were randomly generated was as follows

03< z(0) <O04forallic] 27)
0.3 < y,,,(O) < 0.4,fori € I

Iy = {i10,%20, %30, 740, %50 } being 5 randomly selected lattice sites. As stated in Séle, Valls and
Bascompte (1992), this is a situation where an initial small number of predators, which appear
at random positions, leads to pattern formation. To simulate stochastic behaviour, white noise
with standard deviation ¢ = 10™* was added to the data.

The identification was performed using the proposed method from sites (4, §),1,5 = 11,12,--+,20
and the four nearest neighbours, namely (:—1,7), (i +1,7), (4,7 —1), (4,7 +1) for each site (3, 7).
The identification data consisted of the last 10 data points out of a total of 1000 input/output
data points. The initial parameters were: the order of the B-spline was 2, initial scale was 0 and
the maximal resolution was 1 for all variables. The identified stochastic model is listed in Table

(2)

The system and model predicted outputs are plotted in Fig.(4) and (5), which show that the
identified CML model can reproduce the spatio-temporal patterns of the original system. The
simulation results indicate that the prediction error increases as the number of prediction steps
increase. This is because the underlying dynamics at each spatial site are 2-dimensional, each
of which affects one another. This makes it more difficult to obtain a good model predicted
performance compared to 1-dimensional cases.

6 Conclusions

A novel approach to the identification of CML models of stochastic spatio-temporal dynamics
has been introduced. It has been demonstrated that the B-spline wavelet multiresolution ap-
proximation method provides a powerful approximation tool for the spatio-temporal dynamics of
pattern formation, and that it is possible to fit CML models using only a small number of spatio-
temporal locations. Simulation results were included to demonstrate that the new wavelet-based
identification procedure can produce excellent final CML models. Further studies will investigate
how the developed approach can be used to construct filters for noisy spatio-temporal data, and
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Figure 4: Example 2: System and model predicted outputs at ¢ = 2
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Figure 5: Example 2: System and model predicted outputs at £ =5
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Output Terms Estimates ERR STD
Tir iy (1) G0,-1(Tine (t — 1)1 1 (yi, 5, (t — 1)) -2.5658e-002 8.5514e-001 1.43336-001
Go,-2(Tiyin (= 1))9b1 1 (9,5, (£ — 1)) -1.9924-001 9.31756-002 9.22986-002
Y10(Zi o (F = 1)WP1-1 (Ui gy (E = 1)) -2.5422¢-002 2.6528¢-002 6.4393¢-002
0 (Tiy14, (8 ~ 1)) 2.2411e-002 7.6958¢-003 5.36446-002
$1,0(Tis 414, (= 1)) 1.5752¢-002 5.3159¢-003 4.4662e-002
1,0(Ti o1 ( — 1)) 8.6828e-003 2.4672e-004 4.4141e-002
Y1,0(Ziy 541 (8 — 1)) 1.4951e-003 1.3479e-005 4.4115e-002
do—a2{€i, i (t — 1)) -2.6553e-002 5.8352e-004 4.3162e-002
Yiria () 0,~2(¥iria(F — 1))@0,—1(Tiy 1ot — 1)) 7.2012e-001  7.94950-001 1.0321e-001
1,1 (Yir-1,50 ( — 1)) 1.9684e-002 1.6051e-001 4.8437e-002
1,1 (Ui 1,6 (2 — 1)) 1.8521e-002 1.4245¢-002 3.9594e-002
G0,—2(Virin (E— 1)) 1.1662e-001 6.9306e-003 3.5658e-002
1,1 (Ui i (¢ = 191,01 (Tiy i (E— 1)) 1.2136e-002  3.8017e-003 3.2600e-002
1,1 Wi (6 = 1))9h,0(2iy 45 (£ — 1)) -5.0963e-002 9.3897e-003 2.3538¢-002

V1,2t ip—1(t — 1))
Po,~2(€ir 4, (1 — 1))

2.3038e-002
-6.4745e-002

2.0011e-003
5.4365e-004

2.1097e-002
2.0389e-002

Table 2: Example 2: The terms and parameters of the final CML model

how the amplitude and distribution of the noise perturbation affects spatio-temporal pattern

formation and the identification results.
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