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Abstract

Extracting the rules from spatio-temporal patterns generated by the evolution of
Cellular Automata (CA) usually requires a priori information about the observed
system, but in many applications little information will be known about the pat-
tern. This paper introduces a new neighbourhood detection algorithm which can
determine the range of the neighbourhood without any knowledge of the system
by introducing a criterion based on Mutual Information (MI) and an indication of
over-estimation. A coarse-to-fine identification routine is then proposed to deter-
mine the CA rule from the observed pattern. Examples, including data from a real
experiment, are employed to evaluate the new algorithm.
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1 Introduction

Cellular Automata (CA) are a class of spatially and temporally discrete math-
ematical systems characterized by local interactions. Because of the simple
mathematical constructs and distinguishing features, CA have been widely
used to model aspects of advanced computation, evolutionary computation,
and for simulating a wide variety of complex systems in the real world [1],
[17], [18] and [21].

In many applications the resulting CA pattern can be observed but the under-
lying CA rule is unknown. This could be true for example when dealing with
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some natural systems. The key problem the observer faces is to understand
how the system works, this involves identifying the rule and then using the
identified model of the system to predict the output. The theory of how CA
rules can be extracted from observed patterns of spatio-temporal behavior is
therefore fundamental to the study of CA. Essentially, this is an inverse prob-
lem, which means that the order of cause and effect is reversed: the observer
knows the effects instead of the causes and tries to deduce the CA rule. Of-
ten solving inverse problems is difficult because the problem itself can be ill
posed. Because of these difficulties determining how the transition rules can
be extracted from observed patterns of spatio-temporal behavior has attracted
few investigations, but if this problem can be solved, many applications may
benefit from it.

Adamatzky presented a sequential and parallel algorithm to determine the
local CA transition table [2], and introduced a genetic programming solution
with automatically defined functions, to evolve a rule for the majority classifi-
cation task for one-dimensional CA’s [3]. However, because most CA use either
the von Neumann, the Moore or larger neighbourhoods in order to model sys-
tems with long-range interactions, the number of potential rules can be very
large and the application of the above algorithms can become very compli-
cated and time consuming. For example, a three-site one dimensional CA will
have 22 = 256 possible rules while the number of possible rules will explode
to 22° = 1.3e + 154 for a nine-site one dimensional CA. It is therefore often
very difficult to scan all the possible rules even using modern computers. To
simplify the problem, Yang and Billings showed that CA binary rules can be
represented by a simple polynomial model [5]. Using this important observa-
tion, the number of parameters to be identified can be substantially reduced,
for example, from 1.3e + 154 to 512. Based on the polynomial model form,
the identification of CA can be divided into two parts: neighbourhood de-
tection and parameter estimation. It is often straightforward to estimate the
unknown parameters once the correct neighbourhood has been determined,
and therefore in this paper we will concentrate on the neighbourhood detec-
tion problem.

In this paper a new neighbourhood detection algorithm is introduced based on
mutual information to provide an initial indication of the temporal and spatial
range in the identification of CA. This initial neighbourhood is then used to
prime a CA-OLS (Cellular Automata - Orthogonal Least Squares) algorithm
to find the correct model terms and unknown parameters in a CA model. This
provides a coarse-to-fine identification approach for CA where the mutual in-
formation is used to significantly reduce the potential neighbourhood choices
which are then optimised using the CA-OLS identification algorithm.

The paper is organized as follows. The structure of CA and an overview of
previous investigations are introduced in section 2. The new neighbourhood
detection algorithm based on Mutual Information is proposed in section 3
together with a coarse-to-fine identification routine for CA. Three examples,
including two simulation studies and a real system, are demonstrated in sec-




tion 4, and conclusions are given in section 5.

2 Cellular Automata

A Cellular Automata is composed of three parts: a neighbourhood, a local
transition rule and a discrete lattice structure. The local transition rule up-
dates all cells synchronously by assigning to each cell, at a given step, a value
that depends only on the neighbourhood. Relatively simple binary CA rules
can produce highly complex patterns of behavour, although only two values
can be taken in each cell. Because of the advantages, binary CA have at-
tracted many authors to investigate the properties of this class of systems. In
the present paper, only binary CA will be considered.

Based on the properties of the transition rule, Cellular Automata can be classi-
fied into two types: deterministic Cellular Automata (DCA) and probabilistic
Cellular Automata (PCA). The transition rules for DCA are deterministic
while those for PCA are statistical because some state flipping of cell values
occurs during the evolution of the PCA. Due to the presence of noise, which
causes state switching of cell entries during the CA evolution, it is more diffi-
cult to identify the rule of PCA than that of DCA. Therefore, the identification
of PCA is often investigated independently from the identification of DCA.

2.1 CA Neighbourhoods

The neighbourhood of a cell is the set of cells in both spatial and temporal
dimensions that are directly involved in the evolution of the cell. Sometimes
this includes the cell itself. The neighbourhood structure varies depending on
the construction of the CA. Consider a one-dimensional 3-site CA for exam-
ple where the cell at position j and at time step ¢ is denoted as ¢(j;t). The
neighbourhood of cell ¢(j;1) could then be a von Neumann neighbourhood or
other exotic neighbourhoods, some of which are shown in Fig. 1 where the
black cells denote the cells ¢(j;t) and the gray cells denote the neighbour-
hoods. The Ezotic 1 neighbourhood shown in Fig. 1 encompasses cells from
the same temporal scale but different spatial scale than the cells in the von
Neumann neighbourhood, while the neighbourhood of Ezotic 2 involves cells
from two temporal scales. There are many possible neighbourhood structures
for two-dimensional CA. The most common structures are the von Neumann
neighbourhood, the Moore neighbourhood and the Hexagonal neighbourhood
shown in Fig. 2 respectively.
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Fig. 1. Three examples of a 3-site neighbourhood for a one-dimensional
CA: (a) von Neumann: {c¢(j — 1;t — 1),c(j;t — 1),e(j + 1;t — 1)} (b)
Exotic 1: {c(j — 2t — 1),e(j — 1L;t — 1),e(j;t — 1)}; (c) Exotic 2:
{e(d = 13t = 2),e(dit — 1),e(j + 1t = 1)}

Fig. 2. Three examples of the neighbourhood type for a two-dimensional CA: (a)
von Neumann; (b) Moore ; (¢) Hexagonal

2.2  Polynomial From of CA Rules

In the present study, the problem of searching for the neighbourhood and
the parameter values associated with a nonlinear logical model will initially
be mapped into an equivalent polynomial representation, which was proposed
by Yang and Billings [5]. By using the polynomial CA model and using a
Cellular Automata Orthogonal Least Square (CA-OLS) routine both the CA
neighbourhood and the unknown polynomial model parameters can be deter-
mined from observed patterns.

The local rule for a deterministic binary CA can be considered as a Boolean
function of the cells within the neighbourhood. Consider a one-dimensional
n-site CA for example. Denoting the cell at position j and at time step ¢ as
¢(s:1). then the neighbourhood of ¢(j;t) can be expressed as {c(j — a1;t —
). onc(f = an;t = by)}, where a;(i = 1,...,n and b;(i = 1,...,n) denote the
spatial and temporal scales of the ith neighbourhood respectively. The Boolean
function of ¢(4; ) can then be expressed in the form

c(jit) = 9o @ V1c(j ~ ar;t — b)) @ ... ® In(c(j — ar;t — by)
KXo X (3('] = Bt = bﬂ))




where 9;(i = 0,..., N,N = 2" — 1) are binary numbers and ¥; = 1 indicates
that the corresponding term is included in the Boolean function while 9; = 0
indicates that the corresponding term is not included. The symbol @ denotes
the XOR operator.

Equation (1) can be transformed into a polynomial expression [5] by expanding
the logical operators and applying the Principle of Duality and Absorption to
all the terms [5], [7]. Equation (1) then can be expressed as

c(jit) = 0o + 61c(j — ar;t — by) + ... + On(c(f — ar;t — by) @)
X X €(J — Qn;t — b))

where 6;(i = 0, ..., N, N = 2™ — 1) represent the unknown integer parameters.
Now the problem has been mapped into a linear-in-the-parameters model, and
the identification of the CA rule is translated into determining the structure
of this model and estimating the unknown parameters.

2.3 Previous Studies on Neighbourhood Detection

In most former studies, the neighbourhood was manually predefined as the
cells that were immediately close to the cell to be updated. Richards directly
selected the Moore structure as the neighbourhood of the pattern generated
by dendritic solidification [8]. Adamazky set a minimal neighbourhood before
the identification of a one-dimensional CA [2]. But for most systems, especially
higher order CA, it will often be very difficult to manually choose a candi-
date neighbourhood that just covers the exact neighbourhood and rejects the
many possible redundant cells. The potential combinatorial possibilities for
the neighbourhood are large and neighbourhood detection is a key step in CA
identification.

Based on the polynomial equation (2), Yang and Billings proposed a modified
orthogonal least squares algorithm, abbreviated as CA-OLS, to detect the
neighbourhood and estimate the parameters in CA models [4]-[5]. The pre-
liminary step in this algorithm involves choosing a candidate neighbourhood,
which can be coarse but must include all correct neighbourhoods. Consider
a one-dimensional CA for example and assume the neighbourhood of the cell
¢(j;t) is chosen as {c(j — 1;t — 1),c(j;t — 1),¢(j + 1;¢t — 1)}, a polynomial
model, expressed as equation (3), can be generated according to equation (2).

c(j;t) = 0o + O1c(j — 15t — 1) + Oac(jit — 1) + Osc(j + 1; — 1)
+04c(5 — 13t — De(g;t = 1) + Ose(j — ;6 — 1)e(F + 156 — 1)

+0gc(j;t — Ve(f + 15t = 1) + Gre(f — 13t = De(f;t — L)e(F + 151 = 1)

(3)




Determining which terms are significant and which terms are redundant can
be derived directly from the Error Reduction Radio (ERR), which measures
the contribution of each candidate term to the updated cell and which is part
of the CA-OLS routine. Using ERR the candidate terms can be ranked in
order of importance and the insignificant terms can then be discarded.

Mei and Billings [9] recently proposed a new neighbourhood detection rou-
tine, which can refine the candidate neighbourhood according to a statistic
associated with each combination of candidate neighbourhood cells and the
updated cell, from which an exact neighbourhood can be obtained.

3 Neighbourhood Detection Based on Mutual Information

Most previous algorithms for the identification of CA, involve the prelimi-
nary step of either guessing the candidate neighbourhood or performing an
initial determination of the candidate neighbourhood. The candidate set must
be large enough to cover all potential neighbourhoods, but too large a range
will often involve massive computational time in the subsequent identifica-
tion. There is a clear tradeoff between computational time and productivity
of the model. Hence, the determination of the candidate neighbourhood be-
comes crucial and a failure to select an appropriate neighbourhood will often
produce an incorrect CA model.

In this paper a new neighbourhood detection approach based on Mutual In-
formation is introduced to detect a coarse range for the CA neighbourhood
without any a priori neighbourhood information regarding the observed sys-
tem.

8.1 Mutual Information

Mutual Information (MI), which was initially proposed by Shannon in 1948
[10], is a measurement of the dependence between two variables. If the two
variables are independent, the MI between them is zero. If the two variables
are strongly dependent, then the MI between them will be close to 1. Mutual
Information can measure the state predictability or the memory of a system,
represented by a sequence of certain symbols.

Let = be the random variable uniformly chosen from {ay, ..., an,} and let y be
the random variable chosen from {by,...,b,}. Then, the Mutual Information
of z and y, written I(z;y) can be defined by

I(z;y) = Pasb; 1092
) izl j=l o Pa;P;
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where p,, is the probability when = = a;, py, is the probability when vy = b;
and pq, p, is the joint probability when z = a; and y = b;.

3.2 A New Neighbourhood Detection Approach using Mutual Information

Consider the one-dimensional CA case to illustrate the approach and assume
the neighbourhood of the cell c(j;t) is {c(j — a1;t — b1), ..., c(j — an;t — bn)}.
The aim is to determine the maximal spatial lag a,, and the maximal temporal
lag b,,-

Definition 1 A case is defined as a pair of { f(R{j;t}), c(j; 1)}, where R{j; 1}
is the neighbourhood of a cell c(j) at time step t and the c(j;t) is the state
value of the cell at time step t, and f(R{j;t}) = 1 +2cy +.. + 2™ ¢, assum-
ing R{j;t} = {c1, ca, ..., cm}. For example, if the state value of the updated cell
c(g;t) is 1 and the state of its neighbourhood R{j;t} is {0,1,1}, the case can
be described as {5,1}.

Essentially, R{j;t} represents the input and the c(j;t) represents the out-
put of a nonlinear system. If the candidate neighbourhood R{j;t} is large
enough to cover all the correct neighbourhoods, the Mutual Information be-
tween f(R{j;t}) with c(j;t) should be close to 1. If R{j;t} can not contain
all the correct neighbourhoods, the Mutual Information between f(R{j;t})
with ¢(j;t) will be close to 0. According to this rule, this paper presents a new
criteria, which introduces MI as a fitness function to establish a measurement
for ranking each candidate neighbourhood.

Assume the number of component cells of the candidate neighbourhood R{7;t}
is m and the number of the sampled cases is N, the new criteria can be ex-
pressed as

Pry; 2™
- (4)

113'

F=I1-0E=) pglog
iJ

where k; € {0,...,2™ — 1} and [; € {0,1}. In expression (4) p, denotes the
possibility when f(R{7;t}) = ki, m, denotes the possibility when ¢{j;t} = I;
and f(R{j;t}) is given in from Definition 1.

The MI is over-estimated when the number of measurements N is small com-
pared to the number of possible discrete states 2™. The overestimation OF of
the MI can be represented by Z= [11].

Consider two candidate neighbourhoods R, {j;¢} and Ry{j;t} of the cell ¢(j; 1)
for a deterministic CA system. If both of these cover all potential neighbour-




hoods and R;{j;t} € Ry{j;t}, the following relationship is obtained.

I(f(Ru{d; }); ¢ 1) = I(f(Re{sst}); c(d52))
F(f(Ri{j; t}); ;1)) > F(f(Re{sst}); c(d; 1))

()

m

We use :irv as an upper bound for the overestimation of the mutual information
between any two finite sets of data. According to expression (5), the final
candidate neighbourhood can be selected from the peak value of F. For the
example above, Ry{j;t} should be discarded because of the smaller value of
F compared to that of Ry{j;t}. The method should therefore avoid selecting
a neighbourhood with too large a range which can result in a massive waste
of computational time at the later stages of CA identification.

The neighbourhood detection procedure can now be summarized as:
Initialization Assume that the maximal temporal search depth is ¢4, and set
the initial temporary neighbourhood as Ro{c(j;t)} = {c(j;t — 1)}

(1) Collect the case {f(Ro{j;t}),c(s;t)}, see Definition 1, and calculate the
value of F' using expression (4).

(2) Increase the temporal range and set the temporary neighbourhood as
Ri{c(;t)} = {c(j;t=1), c(j;t—2)}, and then collect case { f(Ri1{j;t}), c(j; t)}
and calculate the value of F'.

(3) Repeat step 2 until the temporal range reaches tmag-

(4) Increase the spatial range and reset the temporal range to ¢ — 1, which -
means setting the temporary neighbourhood as {c(j;t — 1),c(j — 1;t -
1),¢(j +1;t—1)}, and then collect the case and calculate the value of F.

(5) Repeat step I to step 3 until a peak value of F' appears in the spatial
direction. The temporary neighbourhood with maximal value of F' can
be selected as the final result.

This neighbourhood detection approach produces a range for the correct neigh-
bourhood, which considerably reduces the model search in later steps. How-
ever, the algorithm can not guarantee to provide an exactly correct neigh-
hourhood. There are cases when the exact neighbourhood will be obtained
but this may not always be the case. For example, if the neighbourhood
of a deterministic pattern is symmetrical in the spatial direction, such as
{¢()—1;1=1),¢(j;t~1),c(j+1;1=1)}, the proposed approach will be expected
to produce the exact correct neighbourhood. However, if the neighbourhood
is asvinmetrical in the spatial direction, such as {c(j; —1),¢(j + 1;1 — 1)} a
larper range will be detected. This is perfectly acceptable because essentially
all we are trying to do is to use the new MI approach to provide an initial
estimate of the temporal and the spatial range. This initial neighbourhood will
then be used to prime the CA-OLS algorithm and to find the correct model
terms and unknown parameters. The aim therefore is a coarse-to-fine approach
where MI is used to significantly reduce the potential neighbourhood choices,




which can then be optimized using the CA-OLS identification algorithm.

3.3 Coarse-To-Fine Method of CA Identification

An important step in the identification of CA, is to use the MI neighbourhood
detection approach to restrict the neighbourhood search range by providing
an initial candidate neighbourhood. The remaining steps are the selection of
significant model terms and estimation of the unknown parameters. In this
paper the CA-OLS routine [4] will be used for this final step.

Orthogonal Least Squares (OLS), which was first proposed by Billings in 1988
[6], is widely used in the identification of nonlinear systems. Billings and Yang
adapted OLS to the identification of cellular automata and showed that this al-
gorithm can not only estimate the parameters of an equivalent polynomial CA
model but can also select the significant model terms. This algorithm is called
the forward regression CA-OLS routine. To reduce the computation time for
large observed data sets or large neighbourhoods Mei proposed a Fast CA-OLS
[12], which discarded some redundant operations and improved the efficiency
considerably. The final estimates however are the same as ordinary CA-OLS.
Other authors have also introduced modifications to the original OLS routine
applied to nonlinear system identification to provide improved performance.
One algorithm is the Locally Regularized Orthogonal Least Squares (LROLS),
proposed by Chen [13]. The local regularization enforces model sparsity and
avoids over-fitting in the model parameters, so the choice of cutoff value is
less critical than for ordinary OLS. Another algorithm, named the Combined
LROLS and the D-Optimality algorithm (LROLS + D-Optimality), was also
proposed by Chen [14]. In this algorithm it was no longer necessary to specify
the cutoff value and the algorithm can automatically terminate by the intro-
duction of a parameter 3. However, several iterations have to be performed to
search for the optimal value in both the above modifications, so the compu-
tational time of LROLS and LROLS + D-Optimality is considerably greater
than that of Fast CA-OLS, and much larger than ordinary OLS.

To illustrate the difference between these algorithms when applied to CA iden-
tification massive simulation examples were tested using the four algorithms
and the results showed that Fast CA-OLS is typically 10 times faster then the
other algorithms and obtains almost the same model with few spurious terms.
Comparing the advantages and disadvantages of each method, Fast CA-OLS
was selected as the core method to estimate the parameters in the new iden-
tification routine for binary CA.

The coarse-to-fine identification procedure for CA can be outlined as:

(1) Detect the coarse spatial and temporal range of the neighbourhood using
the mutual information algorithm.




(2) Using the result from step 1 to prime Fast CA-OLS, determine the sig-
nificant terms using the Error Reduction Ratio (ERR) of each term. The
correct neighbourhood should be produced in this step.

(3) Using the neighbourhood from step 2, collect new cases then re-prime
the Fast CA-OLS to estimate the unknown parameters in equation (2).

For a deterministic CA, when the neighbourhood of the observed pattern is
symmetric in the spatial direction, such as c(j—1;t—1),c(j;t—1),c(j+1;1—1),
the new MI neighbourhood detection approach can often obtain the exact
correct neighbourhood in step 1. If the neighbourhood is asymmetric, the
detected candidate neighbourhood using MI will often be larger than the exact
correct neighbourhood. In such a case, step 8 can be omitted because both
ERR and the correct coefficients can be obtained synchronously in step 2.
While processing a probabilistic CA, for both the asymmetric and symmetric
neighbourhoods, a larger candidate neighbourhood will often be detected using
MI and all three steps of the coarse-to-fine procedure must be applied to
determine the CA model.

4 Example Studies

Three simulation examples are employed in this section to demonstrate the
application of the new coarse-to-fine algorithm. To show all the steps of this
algorithm, initially a probabilistic 1-D example with the symmetric neighbour-
hood and a deterministic 1-D example an the asymmetric neighbourhood are
discussed. A 2-D real experimental example will then be discussed to show
the application of this algorithm to Belousov-Zhabotinsky reaction data.

4.1 Identification of a probabilistic 1-D 3 site CA pattern

Consider the Rule R18 [1] on a 200 x 200 lattice with three neighbourhoods
{e(j = 1;t = 1),e(4;t = 1),e(j + 1;¢ = 1)}. The rule is shown in Table 1. Noise
was introduced to all three components by flipping the states with 40% proba-
bility during the evolution of the CA. This adds severe degrees of noise which
is much more disruptive than simply using additive noise on the final pattern.
The generated noisy pattern with random initial conditions and a periodic
boundary using the above rule is shown in Fig. 3.(a). Fig. 3.(b) shows the
pattern generated by the same rule using the same initial conditions but with
no noise. A comparison of Fig. 3.(a) and Fig. 3.(b) clearly shows the severity
of the noise on this example.
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Table 1
Rule R18 used in Example 1

t—1 000 001 010 011 100 101 110 111
t 0 0 0 1 0 0 1 0

Fig. 3. Patterns from Rule R18 for Example 1. (a) generated pattern with noise;
(b) generated pattern with no noise; (c) reconstructed pattern produced by the
identified polynomial model

?i:lztzness function values of candidate neighbourhood of Example 1
Spatial Temporal F
{4} {t-1} 0.00549
{i} {t—1;t—2} 0.01920
{i-L55+1} {t-1} 0.52886
{1—-1;757+1} {t—1;t—2} 0.53115
{(J-2i-L55+15+2} {t-1} 0.52869

{i=27-L5i+1L75+2 {t-1t—-2} 0.50158

The identification procedure is summarized as follows:

Step 1: As the preliminary step of the coarse-to-fine routine, the initial maxi-
mal temporal search depth t,,., was set to 2, the new neighbourhood detection
approach was applied and the values of F for each candidate neighbourhood
are shown in Table 2.

Far convenience define

sp=e(f-Lt=1) so=c(j—0;t~1)
b;-_('(j+1;t-‘1) 34=C(J—1,t'—2)
sp=e(f =0t —2) sg=c(j+1;t-2)

11




Fig. 4. The F values of each candidate neighbourhood when tn.q, was set to 3 for
Example 1

so that from Table 2, F reaches a peak when the candidate neighbourhood is

{51182133154735136} (6)

The results using the new algorithm for a larger temporal search depth are
illustrated by Fig. 4. Inspection of Fig. 4 shows that the final selected candi-
date neighbourhood is same as in equation (6). The set from equation (6) is
therefore selected as the candidate neighbourhood. A comparison with Rule
R18 shows that this includes all the original neighbourhood cells and provides
a minimal symmetric spatial range to use to prime the next stage.
Step 2: To determine the exact neighbourhood and the CA model, cases were
collected from the observed pattern and the Fast CA-OLS was applied to eval-
uate the contribution of each candidate cell to the updated cell. To save space,
only the first 20 terms from the results shown in Table 3 ranked in order of
significance are shown.

Inspection of Table 3 shows that the first 8 ERR terms are significantly
larger than the remainder. Extracting the most significant result gives the
final neighbourhood as

{s1, 82,83} (7)

Step 8: By collecting cases using the neighbourhood in expression (7) and
applying Fast CA-OLS again, the coefficients in equation (2) were estimated
and these are shown in Table 4, giving the final polynomial model

c(f;t) = 81+ 83 — $182 — 25183 — 52853 + 2515283 (8)

12




Table 3
The first 20 terms produced by Fast CA-OLS for Example 1
Order Term ERR
1 constant 0.23805
2 53 0.05097
3 51 Xs3 0.10743
4 s 0.10089
5 83X 83 0.08934
6 81 X 82 X 83 0.05286
7 s 0.04807
8 51 X 8 0.03553
9 89X 84X 835 0.00176
10 82 x 83 X 84 X s5 0.00053
11 81X 84 0.00027
12 81 %85 0.00025
13 51 X 89 X 8g 0.00048
14 59 X sg 0.00021
15 81 X 83 X 84 0.00017
16 51 X 83 X 83 X s 0.00009
17 81 X 83 %X 85 0.00026
18 59 X 83 X 55 0.00010
19 351 % 85 % 83 0.00010
20 81X 83 X 54 0.00015

The reconstructed pattern, shown in Fig. 3.(c), was generated using the poly-
nomial model (8) with the same initial conditions as the observed pattern.
A comparison of Fig. 3.(b) with Fig. 3.(c) clearly shows that the polynomial
model (8) is an excellent representation. The CA rule in Fig. 3.(b) has there-
fore been successfully identified from the noisy data in Fig. 3.(a).

13




Table 4
The final terms and coefficients of Example 1
Order Term Coefficient
1 s 1.00000
2 s3 1.00000
3 s1% 82 —1.00000
4 s1 %83 —2.00000
5 89 X 83 —1.00000
6 81X sy X 83 2.00000

(a) (b)

Fig. 5. Patterns of Rule R50 for Example 2. (a) generated pattern; (b) reconstructed
pattern produced by polynomial model

4.2 Identification of a deterministic 1-D CA pattern with the asymmetric
neighbourhood

Consider the Totalistic Rule R50 ([1]) on a 200 x 200 lattice with three neigh-
bourhood terms {¢(j;t—1),e(j+1;t—2),c(j —2;t—1)}. The generated pattern
with random initial conditions and a periodic boundary condition using Rule
R50 is shown in Fig. 5.(a). The identification procedure is summarized as fol-
lows:

Step 1: The initial maximal temporal search depth t,,,. was set to 2, the new
neighbourhood detection approach was applied and the values of F for each
candidate neighbourhood are shown in Table 5 and illustrated in Fig. 6.

For convenience define

si=c(f-2t-1) sp=c(j—1t-1)
s3=c(j—0;t—1) sa=c(j+1;t—1)
ss=c(j+2;t—1) sg=c(j—2;t~2)
sr=c(j—1t—-2) sg=c(j—0;t—2)
sg=c(j+1Lit—2) swp=c(j+2t-2)

14




Table 5
The F values of each candidate neighbourhood for Example 2

Spatial Temporal F

{4} {t—1) 0.00765
(5} [t—1;t—2) 0.00991
(j—1:7:7+1} {t—1} 0.00808
(j—1;7;5+1} {t—1;t—2} 0.15758
{i—2i-1L47+Li+2} {t-—-1} 0.16394
{(G-2%i-157+17+2} {t-1t-2} 0.91771
{1—-37—-27—-15:7+15+25+3} {t-1} 0.17101

{1—-33—-27—-1;57+1L7i+25+3} {t—-1¢t—-2} 0.14195

Fig. 6. The search results for Example 2

so that from Table 5, F reaches a peak when the candidate neighbourhood is

{5152, 83, 84, S5, 86, 57, S8 59, Sm} (9)

The set from equation (9) is therefore selected as the final candidate neighbour-
hood. A comparison with Rule R50 shows that this includes all the original
neehbourhood cells and provides a minimal symmetric spatial range to use
to prime the next stage.

Step 2: By collecting cases using the neighbourhood in expression (9) and
applving the Fast CA-OLS algorithm, the ERR values and the unknown pa-
rameters of each term were estimated and are shown in Table 6. The results
show that the ERR values of each term are all similar and the component cells
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Table 6

The selected terms and coefficients for Example 2
Order Term Coefficient ERR
1 81 1.00000 0.0357
2 s3 1.00000 0.0698
3 S9 1.00000 0.1690
4 §3 X 89 —2.00000 0.0692
5 51 X 83 —2.00000 0.1144
6 81 X 89 —2.00000 0.0618
7 81 X 83 X 89 2.00000 0.0744

are exactly the correct neighbourhood. Therefore, Step § can be ignored and
the final model can be represented by the expression

C(J,t) = 81+ S3+ Sg — 28359 o 23153 — 25159 -+ 3815359 (10)

The reconstructed pattern, shown in Fig. 5.(b), was generated using the iden-
tified polynomial model (10) with the same initial conditions as the observed
pattern. A comparison of Fig. 5.(a) with Fig. 5.(b) clearly shows that the
polynomial model (10) is an excellent model for this example.

4.8 Identification of the rule of a Belousov-Zhabotinsky reaction

The Belousov-Zhabotinsky (BZ) reaction, which was first discovered by Boris.P.Belousov
and Anatol.M.Zhabotinsky in 1951, is a spatio-temporal chemical oscillator.
Many researchers have noticed that the patterns generated by the BZ reaction
are highly similar to the patterns created by some CA models. In this exam-
ple, we repeated the famous experiment and an attempt was made to extract
the potential rule of the reaction from the recorded data set.

The recipe for the experiment was given by A.T.Winfree [15]. Once the reac-
tion starts blue rings propagate from localized regions on a red background. If
the dish is given a gentle shake to break up the rings, spectacular geometries
appear.

To capture the image of the experiment, a digital video camera using a USB
connection to a PC was employed. Operating at full speed, this camera can
record roughly 30 frames per second and the maximal resolution can reach
1024 by 768 pixels. In this experiment, the resolution was selected as 640 by
480 pixels. A schematic diagram of the experimental apparatus is shown in
Fig. 7. To enhance the brightness and to prevent an inverted image of the
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Fig. 7. A schematic diagram of the experimental apparatus for the BZ reaction

(a) (b) (c)

Fig. 8. Patterns from Example 3 (a) the first frame of the sample data; (b) the
tenth frame of the system; (c) the predicted pattern of the tenth frame using the
identified CA model

camera in the dish, back lighting was added to the bottom of the reaction
dish.

Several preliminary steps were carried out to capture the data set. Because
only two values can be taken in binary CA, each pixel in the images must
be converted to black or white. The image from the BZ reaction is mainly
composed of two colors: blue and red. We converted the blue or close to blue
pixels to black, and the red or close to red pixels to white. Another important
aspect when collecting real images is to set up the lattice of cells over the
image. For example, one point in a real image can be described by a rectangle
with 4 pixels in a digitized image, or could also be described by a rectangle
with 9 pixels if a larger magnification is used. In this experiment, we adjusted
the lattice size such that the tip velocity of the fastest change in the covered
image was roughly one cell per time unit. We averaged over 4 x 4 pixel neigh-
bourhoods as a representation of the center cell, to produce a 160 x 120 pixels
image. A snapshot of one frame processed by the above procedure is shown in
Fig. 8.(a)

The sampled data was composed of 7 sequential frames each of which com-
prised 160 x 120 pixels. Following the coarse-to-fine procedure, the new neigh-
bourhood detection algorithm was applied and the results are shown in Table
7. The results indicate that the candidate neighbourhood should be selected
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Table 7
The fitness function values of the candidate neighbourhood for Example 3 (von
Neumann and Moor structures is described by Fig. 2)

Spatial Temporal F

{c(z;v)} {t-1} 0.29896
{e(z:y)} {t—1;t—2} 0.29698
von Neumann structure {¢t — 1} 0.42895

von Neumann structure {t—1;t—2} 0.38663
Moore structure {t—-1} 0.42410
Moore structure {t—1;¢t—2} 0.00000

as the von Neumann structure (see Fig. 2) with temporal lag ¢ — 1. Because
the von Neumann structure is a minimal neighbourhood for 2-D CA, Step 2,
to select the significant terms, was omitted and Step & was applied directly.
For this example define

sy =c(z;y—1;t—1)
sg=c(z —1;y;t—1)
ss = cz;y;t — 1)

sg=clz+ Liy;t—1)
ss=c(z;y+ 1t —1)

The results from the Fast CA-OLS algorithm including the ERR values and
the coefficients of each terms are shown in Table 8.

The reconstructed pattern, generated by the identified polynomial model, is
illustrated in Fig. 8.(c). A comparison of the regenerated pattern with the
original pattern of the tenth frame from the sampled data set, shown in Fig.
8.(b), shows that the results from the identification of the BZ reaction are
encouraging. Identification of a real dynamical system is often very difficult
because information which can be extracted from sampled data is often lim-
ited. Moreover, real data are always corrupted by some unpredictable noise
and in this case the image has been thresholded to produce a binary image.
The aim here was to use a simple rule to represent the main properties of
the evolution of this complex pattern. The identified polynomial model, given
in Table 8, describes the features of the thresholded pattern acquired from
the BZ reaction. These however are only preliminary results and many more
experiments need to be conduced and all aspects of the data collection and
modelling of this complex system require further study.
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Table 8
The final terms and coefficients of Example 3

Order Term Coefficient ERR
1 & 1.00000 0.01250

2 s 1.00000 0.09375

3 82X 854 —1.00000 0.03044

4 89 %85 —1.00000 0.04367

5 82 %83 —1.00000 0.03668

6 s1x85 —1.00000 0.01103

T 81 %84 —1.00000 0.01241

8 51 X83 —1.00000 0.00833

9 381 X%X82 —1.00000 0.01042

10 81 X 82 X 83 2.00000 0.50000

11 81 X 84 X 85 1.00000 0.01658

12 89 X 83 X 54 1.00000 0.01518

13 89 X 83 X 55 1.00000 0.03265

14 89 X 84 X 84 1.00000 0.03784

15 8 X 83 % 85 1.00000 0.00972

16 81 X 83 X 84 1.00000 0.01122

17 81 X 89 X 83 1.00000 0.00625

18 s1 X s2 X 54 1.00000 0.00937

19 s; xs83x84xs5 —1.00000 0.00962

20 s; X syxs3xsqg —1.00000 0.00174
21 81X sy xs84x85 —1.00000 0.00374
22 81 X 89 X 82 X 85 —1.00000 0.01042

5 Conclusions

A new neighbourhood detection approach has been introduced which is based
on finding a coarse range of the neighbourhood initially using mutual infor-
mation. This method can detect an exact or larger range of neighbourhood
than the original even in the presence of noise as shown in the examples. The
advantage of the new approach is that it can yield significant improvements
in efficiency by not only restricting the search range prior to identification to
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save computational time, but also involving all potential neighbourhoods to
guarantee the validity of the generated model.

This paper also proposes a coarse-to-fine algorithm for the identification of
CA, which decompresses the procedure into three steps. The simulated exam-
ples and the real experimental data clearly demonstrate the performance of
the new algorithm.
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