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ABSTRACT

We describe a mathematical model linking changes in cerebral blood flow, blood volume
and the blood oxygenation state in response to stimulation. The model has three
compartments to take into account the fact that the cerebral blood flow and volume as
measured concurrently using laser Doppler flowmetry and optical imaging spectroscopy
have contributions from the arterial, capillary as well as the venous compartments of the
vasculature. It is an extension to previous one-compartment hemodynamic models which
assume that the measured blood volume changes are from the venous compartment only.
An important assumption of the model is that the tissue oxygen concentration is a time
varying state variable of the system and is driven by the changes in metabolic demand
resulting from changes in neural activity. The model recognises the effects of the pre-
capillary arteriolar oxygen perfusion (that is the saturation of the arterial compartment
being less than unity). Simulations are used to explore the sensitivity of the model and to
optimise the parameters for experimental data. We conclude that the three-compartment
model was better than the one-compartment model at capturing the hemodynamics of the

response to changes in neural activation following stimulation.




INTRODUCTION

The mathematical modelling of the hemodynamic response is an important part of the
research in understanding brain function in human neuroscience. There are, in the
literature, many mathematical models of the coupling between the hemodynamic
responses such as cerebral blood flow, blood volume and blood oxygenation state to the
underlying neural activity or cerebral metabolic rate of oxygen (CMRO;). We will
classify these models into two groups: steady state models, and dynamic models. Steady
state models are concerned only with magnitude changes, whereas dynamic models take
into account the transient characteristics as well as the steady state behaviour, hence are
typically in the form of differential equations with respect to time. Once the fransient
characteristics are settled, the coupling between the input and output of a dynamic model

describes their steady state relationship.

An influential steady state model of oxygen delivery to brain was presented by Buxton
and Frank (Buxton and Frank, 1997). They used the diffusion equation to describe the
oxygen loss along the capillary bed at steady state, (i.e., the partial temporal derivatives
are zero,) and thus modelled the oxygen extraction fraction (OEF) from the capillary as a
function of the normalised cerebral blood flow (CBF) based on the assumptions that
tissue oxygen tension was zero and that blood oxygen concentration decreased
exponentially along the capillary. A simple steady state nonlinear relationship between
the normalised CBF and the normalised CMRO; was obtained and the model required

large changes in CBF to support small changes in CMRO,.




Hudetz (Hudetz, 1999) and Mintun et al. (Mintun et al., 2001) modelled the radial and
axial gradients of oxygen tension in tissue surrounding a single capillary. The oxygen
diffusion equation was then solved numerically for absolute CMRO; given absolute CBF.
Both models used the assumption of linear decrease of blood oxygen concentration down
the capillary and predicted a proportional relationship between oxygen delivery and

utilisation.

Another steady state model of oxygen diffusion along the capillary was developed by
Gjedde et al. (Gjedde et al., 1999) and Vafaee and Gjedde (Vafaee and Gjedde, 2000).
Again the model related absolute CMRO; to absolute CBF as opposed to the normalised
quantities used by Buxton and Frank. A parameter related to oxygen diffusion capacity
was included, whereas in Buxton and Frank’s model this parameter was assumed
constant and thus eliminated during normalisation. The model assumptions included
negligible tissue oxygen tension and linear decrease of oxygen along the capillary. The
model was applied to positron emission tomography (PET) data and explained the
increase in CMRO; as the combined effect of increased CBF and increased oxygen
diffusion capacity in the region of activation. Other similar steady state models were

presented by Hyder et al. (Hyder et al., 1998) and Hayashi et al. (Hayashi et al., 2003).

As the methods for measuring hemodynamic responses became more sophisticated with
good time resolution, in particular as the functional magnetic resonance imaging (fMRI)

technique was increasingly used as a means of inferring changes in neural activity,




dynamic modelling of the hemodynamic responses became increasingly important, as it
could be used to uncover the neural signal which underlies the blood oxygen level
dependent (BOLD) signal as measured by fMRI. One of the first dynamic models linking
the hemodynamic responses to neural activity was developed by Friston et al. (Friston et
al,, 2000). They used (i) the Balloon/Windkessel model ((Buxton et al, 1998),
(Mandeville et al., 1999b)) which was a dynamic model linking normalised cerebral
blood volume (CBV) to normalised CBF in the venous compartment, (ii) a second order
linear dynamic system linking normalised CBF to stimulation, (iii) a conservation
equation for the normalised deoxy-hemoglobin in the venous compartment, and (iv) the
steady state relationship between the oxygen extraction fraction (OEF) and normalised
CBF derived by Buxton and Frank (Buxton and Frank, 1997). These combined to
produce a fourth order nonlinear dynamic system linking the normalised deoxy-
hemoglobin (Hbr) in the venous compartment to stimulation. Finally a static nonlinear
function was used (Buxton et al., 1998) to link the normalised Hbr and CBV to the

BOLD signal.

The above model was extended by Zheng et al. (Zheng et al., 2002) by considering the
oxygen diffusion equation including both the spatial and temporal partial derivatives, thus
incorporating dynamics in the OEF and the capillary oxygen concentration. It also
assumed a non-zero tissue oxygen tension that was related to an additional state variable.
The result was a nonlinear dynamic model with seven state variables most of which were

normalised quantities. The model was used to fit optical imaging spectroscopy (OIS) data




from a brief stimulation paradigm and was found to produce physiologically plausible

model parameters.

Instead of using normalised quantities, Valabregue et al. (Valabregue et al., 2003)
developed a dynamic model using absolute quantities for the hemodynamic responses,
similar to the steady state model of Vafaee and Gjedde (Vafaee and Gjedde, 2000). The
model made full use of the oxygen diffusion equation, including non-zero tissue oxygen
concentration. Hill’s equation was used and the dynamic equations were solved
numerically to yield time series for CMRO; as well as venous Hbr in response to changes
in CBF. It also examined the effects of the assumption of exponential decay of oxygen
along the capillary, as used by Buxton and Frank and applied in the dynamic models by
Friston et al. and Zheng et al. Other dynamic models developed include those by Aubert

and Costalat (Aubert and Costalat, 2002)and Hathout et al. (Hathout et al., 1999).

Most, if not all, of the existing hemodynamic models assume either explicitly or tacitly
that the measured CBF, CBV and BOLD signals originate from the venous compartment.
Although the major contribution of the BOLD signal comes from the deoxy-hemoglobin
which is primarily in the veins, the CBF and CBV measurements obtained via laser
Doppler flowmetry (LDF) and OIS are likely to come from the arterial, capillary and
venous compartments. The adequate interpretation of the BOLD signal will depend on an
appropriate hemodynamic model taking into account the hemodynamic changes in all

three compartments. It is for this purpose that we developed the three-compartment




hemodynamic model presented in this paper. It is an extension to the one-compartment

model (Zheng et al., 2002).

The theoretical framework of the three-compartment model will be presented in the next
section. The sensitivity of the model output to the model parameters will be studied
through simulations, and the model will be fitted to experimental data obtained from LDF
and OIS. Both the simulation environment and the experimental procedures will be given
in the Method section. The results willrbe compared to that obtained using the one-
compartment model. We show that there are significant differences between the

predictions of the two models.

THEORY

This section introduces the mathematical equations used for the three-compartment (3C)
model and discusses the appropriate partitioning of the hemodynamic measurements. We
will denote absolute quantities by capital letters and normalised quantities by lower case
letters, e.g., f=F/F, and v=V/V, represent the normalised CBF and CBV
respectively, and the subscript “0” denotes the baseline value. Furthermore the subscripts

“a", “c” and “v” denote the arterial, capillary and venous compartments respectively.

Partition of blood flow

The time series of the normalised blood flow f,,, as measured by LDEF, is a mixture of

blood flow through the three compartments. Under steady state conditions, blood flow




into and out of all three compartments is the same. During transient periods, if the
volume of a compartment changes, then the flow out of that compartment will differ from
that entering into the compartment. Throughout this paper we will assume that there are
stimulus induced blood volume ch'ange‘s in both the arterial and the venous
compartments, but that the blood volume in the capillary compartment remains constant,
in particular there is no the capillary recruitment or dilation. This implies that CBF

outflow from the arterial compartment is equal to the CBF inflow to the venous

compartment at all times. Thus we write f,, as a weighted sum of the three components:
f;ot = wa a,in * chc + wv v,0ut? wa + wc + wv 21 (1)
where f,,, f. and f,,, are the normalised CBF entering the arterial compartment,

through the capillary compartment and out of the venous compartment respectively. The
weighting factors w,, w, and w, for the three compartments sum up to unity. The
model is insensitive to the choice of the weightings (simulation results not shown) due to

the fact that f,,, f. and f,,, are very similar time courses, each downstream flow

being a slightly delayed version of the one upstream. In our application, we assumed that

w, =w, =w, =1/3. An alternative approach would be to link the weighting factors for

flow to the proportions assigned to the baseline blood volumes in the three compartments.

Compartmental modelling

Dynamic relationships in the arterial compartment

The 3C model assumes that the arterial oxygen saturation S, can be less than unity. The

implication is that oxygen diffusion may occur from arterioles to its surrounding tissue




((Vovenko, 1999), (Berwick et al., 2004)). However the oxygen diffusion rate through
the wall of the arterial compartment is smaller than that through the capillary bed, and

hence is not modelled explicitly here.

We have also considered changes in the arterial oxygen saturation and its inclusion in the
3C model. However wﬁen fitted to our experimental data, the magnitude and subsequent
effect of arterial saturation changes was extremely small for most of our data sets. We
will therefore assume throughout this paper that the arterial oxygen saturation stays

constant.

The dynamic relationship between the normalised arterial CBF and CBV can be modelled
using the modified Windkessle/Balloon model (Kong et al., 2004) which used an
additional state variable to model the delayed compliance. This modified version has
been demonstrated to capture the mismatch between the changes in CBF and CBV during
the return-to-baseline phase of the time courses. Hence the flow-volume relationship of

the arterial compartment is given by

vaa+ﬁa
rava :fa,in —fc7 fc =—
Ka (2)
TK“ ’&n = Vf“ - Ka

where £, is the normalised blood flow into the arterial compartment and is the input of
the arterial compartment model. The state variable x, models the delayed compliance in
the arterial compartment and is in normalised units with initial condition of 1. 7, and 7,

are the arterial transit time and the arterial compliance time constant respectively. The




well-known Grubb’s exponent (Grubb et al., 1974) is given by 1/, because at steady
state, the above model becomes f, =v.°. The parameter S, models the degree of

compliance in the compartment. If f, =0, there is no compliance in the compartment

and the above model becomes the original Balloon model.

As the arterial saturation is constant, it is easy to show that the normalised deoxy-

hemoglobin (¢, =0, /Qu0 ) is given by g, =v,.

Dynamic relationships in the capillary compartment
The dynamic model describing the oxygen transport to tissue remains the same as the

one-compartment (1C) model (Zheng et al., 2002) with three state variables: the oxygen
extraction fraction (OEF) denoted by E, the mean capillary concentration C, and the
tissue to arterial end of capillary oxygen tension ratio g. The model was derived based

on the work of Buxton and Frank (Buxton and Frank, 1997) and Hyder et al. (Hyder et
al.,, 1998) with the important modification that oxygen concentration in tissue was
nonzero. In the model, the rate of oxygen diffusion from capillary bed into tissue was
assumed to be proportional to the difference in oxygen concentration between plasma and

tissue, 1.€.,

dc ;
*_%: —k(C,(x.)-C, (1)) 3)

where x was the spatial coordinate along the capillary, ¢ was the time, C,(x,t) was the
total oxygen concentration in blood as a function of space and time, C,(x,t) was the

oxygen concentration in plasma as a function of space and time, C,(¢) was the spatial
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average oxygen concentration in tissue as a function of time only, and & was a constant
depending on the permeability and surface area of capillary exchange, amongst other
factors. The 3C model has used the same capillary model, but has substituted the oxygen
concentration C by the normalised quantity: oxygen saturation §. This is because the
measurements we obtain from OIS experiments are not oxygen concentration, but blood
oxygen saturation. This modification does not affect the validity of the equations. Thus

the capillary model can be written as

. E I
P E=-E+(-g 1—(1— 0 ] (42)
fc 1_g0
;i’ifi =-5, ——S"—%:——+ 5,2 (4b)
x m[1——
-g
T
ig:(rﬁﬂg‘gﬂ——l -M (4c)
EO ScO"gOSaU

where £, is the normalised blood flow into the capillary compartment and M represents

the metabolic demand as a time series. Both are inputs to the capillary compartment

model. The parameter ¢ relates to the capillary transit time and the parameter p is the

o VyrT .
lumped constant of the original term J Z6s™" in the 1C model where V., and V,, are the

tis
cap

blood volume in capillary and tissue respectively, r is the ratio of oxygen concentration
in plasma to that in blood and is assumed constant (Buxton and Frank, 1997). Our
simulation (Zheng et al., 2002) showed that this is a reasonable assumption and avoids
the complication of using the full Hill’s equation. 7 is the mean capillary transit time,

and J is an unknown scaling constant (Zheng et al., 2002). The replacement of the above

11




term by the single parameter p is for notational clarity. In our previous work, we

adjusted the scaling factor J to fit the 1C model to our data. In the current work, we will

optimise the parameter p which reflects the time constant of the tissue oxygen

concentration.

In the 1C model, the metabolic demand A was modelled as the stimulus input scaled_by
a constant. This usually resulted in a very sharp initial decrease in the tissue oxygen
concentration variable g. In the current model, the change in metabolic demand was
modelled as a linear second order system driven by the stimulus input. In Laplace

transform notation this can be written as

K
Mg)=——2—Ufs) )
S—2+g§+1 :
@ @

where s is the Laplace operator, U(s) and M(s) are the Laplace transforms of the

stimulus and the metabolic demand time series respectively. We chose the damping ratio

& =1 and the undamped natural frequency @ =8 rad/s. This ensures that the metabolic
demand has no over- or undershoot during the stimulus onset and cessation phases of its
time course. The gain of the system (K, ) will then be optimised to indicate the

magnitude of the changes in metabolic demand.

The oxygen saturation along the capillary decreases from S, at the arterial end to S, ,, at

the venous end. From the definition of the OEF we obtain:

Sv,x’n =Sa(1_E) (6)
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Dynamic relationships in the venous compartment

In the venous compartment, the blood volume as well as oxygen saturation of the
compartment will change due to changes in neural activity. We model the dynamic
relationship between the normalised CBF and CBV in the similar way as that of the

arterial compartment. Hence the flow-volume relationship of the venous compartment is

given by
. v?v*‘ﬂv
TVVV = fC - fV,OHf El fV,Guf
K, (7
Th’ KV = vvﬂv - K‘V

Again the driving input of the venous compartment model is the normalised flow f. into
the compartment. The state variable x, models the delayed compliance, and 7, and 7,
are the venous transit time and the time constant for the delayed compliance respectively.

«, is the inverse Grubb’s exponent of the venous compartment, and S, is the exponent

v

such that at steady state x, = v/,

Due to changes in neural activity, the saturation in the venous compartment will change.

Assuming instantaneous mixing, the saturation inside the venous compartment S, is
homogenous and is different from the oxygen saturation S, of the incoming blood

during transient periods. By using the mass balance equation, it is easy to show that the

normalised deoxy-hemoglobin ¢, in the venous compartment is related to the normalised

CBF and saturation by

13




e Sv,in _ q, (8)

vout
1~ SvO vy

TVq.'V = fC
The saturation S, of the venous compartment is given by

S, =1—(1—Svo)f—" . 9)

v

where from Eqn.(6), the baseline venous oxygen saturation is given by S, = §, (1 ~E, )

Blood volume partitioning

The 3C model assumes that the time series CBV as measured by OIS is the sum of blood

volumes in the arterial, capillary and venous compartments, ie., V,,

=V +V.+V,,
although changes in blood volume due to changes in neural activity are assumed to occur

only in the arterial and the venous compartments, i.e., AV,

tot

= AV, + AV, where the

prefix A denotes changes.

Baseline blood volume

The blood volume contained in the whole venous system is about 65% of the total blood
volume, whereas the capillary system contains only 5% of the total blood volume. The
rest of the blood is contained in the heart and the arterial system. However as our
measurements were taken in cerebral brain regions while avoiding large blood vessels,
the above proportions are inappropriate. In this paper we assumed that in the baseline

condition, the volume fractions p,, p, and p, in the arterial, capillary and venous

compartments are 25%, 15% and 60% respectively. These are in accordance with the

14




existing literature (Duong and Kim, 2000). The effect of the baseline blood volume

proportions will be shown in the result section.

Changes in blood volume
The total normalised CBV time series v,, can be written in terms of the normalised
arterial and venous CBV time series v, and v, as

V,+V. +V,
v!oiz VC :pava+pc+pvvv (10)
tot0

assuming zero CBV changes in the capillary compartment (i.@. v, =1). Clearly from the
above equation, there is no unique way of partitioning v, into v, and v,. As we have
two models Eqn.s (2) and (7) linking v, and v, to the normalised CBF respectively, and
we can measure the normalised CBF ( f,,) via LDF, the partitioning of v,, can be

achieved by optimisation using the models. It seems that one could optimise the eight

parameters (7,7, ,&,,[5,,7,,7. ,2,,,) to provide the best fit to the OIS measurement

v,, given the LDF measurement f,,. However it is important to realise that there are

steady state constraints which have implications on the dependence of the parameters.

The first steady state constraint stems from the Grubb’s relationship which is a steady
state relationship. For the 3C model at steady state, CBF is the same for all

compartments, thus the Grubb’s relationship implies that

Vot = fos = Vo (11)
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where the subscript “ss” denotes steady state. This shows that o, and «, are linked by

‘the steady state changes in CBV in the arterial and venous compartments. For small

percentage changes in CBV, the above equation can be expressed in the linearised form:

AVGSS AVVSS
o, = =, — (12)
- V

v,0

The second steady state constraint was based on the study by Lee et al. (Lee et al., 2001)
who measured the total CBV and CBF changes, as well as the arterial CBV and total
CBF changes. They found that at steady state the fractional CBV change in the arteries
was 2.5 times the fractional change of the total CBV obtained assuming a CBF baseline

of 58m€.min".100g™ at which ¥,, = 0.25%,,,. We will use the following notation

AVa,ss /Vaﬂ AVv,ss /VVO
¥, =— rv e e
i AVIO:,SS /ero AV /Vt

fot,ss ot Q

(13)

to denote the steady state arterial and venous fractional CBV to total CBV changes
respectively. Based on the assumption of no capillary recruitment or dilation,

AV,

tot,ss

= AF,.. +AY,

,.ss » thus the two ratios r, and r, are related by

TaPa +1,Py =1 (14)

It is easy to see from Eqn.s (12) and (13) that the parameters «, and «, and the
fractional volume ratios r, and r, are algebraically linked by the equation

Q. r, =0z, (15)

This means that if one has prior knowledge of the ratio », and the baseline blood volume

partitions, then the ratio 7, can be calculated (using Eqn.(14)) and the Grubb’s exponents

in the arterial and the venous compartments are tightly coupled by Eqn.(15). Only one of

16




them should be optimised to maintain a sensible steady state relationship between blood

volume changes. In our current work, we chose to optimise the parameter «, .

Compliance and transit times

There are also dynamic characteristics which are well-known to be significantly different
between the arterial and the venous compartments. One of these characteristics is the
vascular compliance property which is considered to be the main physiological
mechanism for the observation that blood volume returns to baseline much slower than
blood flow. As the arterial blood vessel is more elastic than that of the venous, one would
expect that the arterial CBV returns to baseline much quicker than the venous CBV. In
terms of the model parameters, this implies that f, should be much smaller than f,.
However there is no existing literature on the precise relationship between the two
parameters. We found that if the two parameters were optimised as independent

parameters, it was possible to have S, >> f, such that the delayed compliance observed

in the measured CBV (v, ) would be attributed to be largely present in the arterial

tot
compartment. To avoid this, we set the parameter £, =0 to force the delayed
compliance in v, to be accounted for only by the venous compartment, therefore only
the parameter B, was optimised. This also implies the elimination of the time constant

Tr,,'

To further reduce confounding of the parameters, we selected the transit times 7, and 7,

using existing literature for the arterial and venous compartments so that the other only

unknown parameter to be optimised was the time constant 7_ .
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Optimisation strategy

Thus our partitioning strategy for the time series v,, is as follows.
(i) Select the weightings for the normalised flow w,, w, and w, and the baseline blood
volume fractions p,, p, and p,.
(i1) Select the parameter 7, . This will enable the parameter r, to be calculated from Eqn.
(13).
(1ii) Select the transit times 7, and 7,,and set B, =0.
(iv) Define the cost function

L(@0 8,70 )= X s =9 ) (16)
where ¥, = p, ¥, + p. +p,V,.
(v) Optimise the parameters «,, £, and 7, to minimise the above cost function.

The time series v, and ¥, can be obtained by solving the following equations

simultaneously:
A A,
thva == fa.m —va
G+ B,
A am, Y,
rvvv ~Va T
K,
DR A:Bv
TK., K,=V," —K,
1 1 {}av"'-gv
R _ _ = _ ~a, v
fa,in == (fror wcfc wva) - .f:or WY, w,
w, w, K,

18




where the parameter «, is calculated using the constraint Eqn.(15). The time series v,
and 7, thus obtained satisfy the steady state constraints. Furthermore the delayed

compliance in v,,, is captured by the dynamic model of the venous compartment.

Summary

The major differences between the 1C and the 3C models are that in the 3C model the
arterial compartment is modelled by a dynamic equation allowing the arterial CBV to
change due to changes in CBF, and that the arterial saturation can be less than unity. The
dynamic equations modelling the capillary compartment are the same in the two models.
KThe partitioning of total blood flow, volume, saturation and deoxy-hemoglobin into the

three compartments are shown in Table 1.

In this paper we do not deal with the dynamic relationship between stimulation, neural
activity and the changes in CBF as it is independent of the architecture of the 3C model.
For the purpose of the simulations we exploit the second order linear system proposed by
Friston et al. (Friston et al., 2000) to model the dynamic relationship between the

normalised CBF and the stimulation parameters:

f+-f-+(f"—l)=gu (17)
T T

s i

where 7, and 7, are two parameters related to the dynamic characteristics of the model,

and ¢ is related to the steady state gain of the model. The input u represents the

stimulus, and the normalised CBF f has an initial condition of 1. This model will be

used to generate the normalised CBF in our simulation.
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Furthermore in this paper we do not deal with the model linking deoxy-hemoglobin to the
BOLD signal obtained during an fMRI experiment. Clearly the three-compartment model
described in this paper will impact on the ﬁodeling and the interpretation of the BOLD
signal, as the BOLD signal itself originates from a mixed compartment although
previously has been largely treated as coming from only the venous compaﬁmeﬁt
((Ogawa et al., 1993), (Davis et al., 1998), (Obata et al., 2004)). By partitioning the
deoxy-hemoglobin (Hbr) into arterial, capillary and venous compartments, it is possible
to establish a BOLD model which reflects the different vascular sizes in the different
compartments, leading to a better understanding of the importance of the different
compartments to the generation of the BOLD signal. This is the work for a paper in

preparation.
MATERIALS AND METHODS

Parameter settings

The following parameters were used in both simulation and experimental data analysis.

Total baseline saturation §,,,. The total baseline saturation of the mixed compartment

was assumed 0.5. This baseline parameter was varied between 0.4 and 0.6 when fitting
the experimental data (see the discussion section), and was found to have no significant

effect on the model parameter estimates.

20




The parameter #,. The steady state ratio of the change in fractional arterial blood volume

to total blood volume (7,) was found by (Lee et al., 2001) to be 2.5. Using this in

partitioning the CBV changes yielded an arterial blood volume change of more than 15%
during the dynamic phase for a total CBV change of 5%. This arterial volume change
seemed to be high compared to the average value obtained using two-dimensional OIS
measurements (Berwick et al., 2004). In our simulations we set this parameter to different

values to investigate its effect on the dynamics of the Hbr changes. Our observation was

that 7, =1.5 seemed to provide a reasonable dynamic behaviour for the arterial blood

volume change as well as good predictions for the normalised Hbr.

Capillary compartment parameters. The baseline OEF was set at 0.5. The tissue oxygen
concentration is modelled via the state variable g which is defined as thé raﬁo of the
tissue oxygen'tension to the oxygen tension at the arterial end of the capillary. According
to the literature ((Hudetz, 1999), (Mintun et al., 2001), (Valabregue et al., 2003)), for a
capillary permeability-surface area product (PS) of 7020 mL.min" (100g)™, the tissue
oxygen tension is between 5~15mmHg. From the oxygen dissociation curve, at an arterial
saturation of around 0.8, the oxygen tension is likely to be around 50mmHg. The baseline
for g was thus chosen as g, = 0.2. The value of g, was varied between 0.1 and 0.3 for
the analysis of the experimental data sets. No significant difference in the prediction
residuals was found within this parameter range.

The parameter associated with the time constant of the mean capillary oxygen

concentration (¢ ) was setat ¢ =0.1.
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Venous compartment parameters. For both the 3C and 1C model, the transit time for the

venous compartment was set at 7, =0.3s.

Arterial saturation S,. The 3C model presented here assumes that arterial saturation is
constant. It is important to note that the following relationship exists between the total

baseline saturation S,,, and the arterial saturation S,, the baseline OEF E, and the

baseline tissue oxygen concentration g,:

S E
SmlO:paSa-’_pc ____,_“__(_’,___+Sag0 +vaa(1_-E0) (18)

0

=g
for given baseline blood volume proportions ( p,, p., p,). This implies that the arterial
saturation is not a free parameter once the parameters S,,,,, £,, g, and ( p,,p.,p,) are

selected.

A summary of the relevant parameter settings are shown in Table 2. For the 1C model

simulation, f,, is the normalised flow into the venous compartment and v,, = v, . For the

3C model, the optimisation procedure described in the previous section was performed to

partition v,, into the arterial and the venous compartments, yielding the optimal

parameters for @, , S, and 7, .
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The normalised CBF, CBV and the metabolic demand time series generated by
simulation are shown in Figure 1(a). The CBV time series is further partitioned into the
arterial and the venous components, shown in Figure 1(b). Note that with a total CBV
change just above 4%, the arterial blood volume change is about 10%, and the venous

blood volume change is around 3%.

Simulation data

As a major difference between the 1C and the 3C models 1s the assumptions made about
the arterial blood volume and saturation, simulations were used to explore the effect of
the changes in these variables on the dynamics of the deoxy-hemoglobin (Hbr)
downstream, in particular in the venous compartment. The results from the simulation
would enable us to identify those variables which may significantly affect the shape of
the deoxy-hemoglobin, and hence the BOLD signal. We will describe here the data

generation process.

The normalised CBF f,,, simulating the measured CBF was generated using a linear
second order system Eqn.(17) with stimulus input being a unit pulse of 1s duration. The
two parameters and the gain of the second order system were: 7, =1.0s, 7, =1.11s and
& = 0.4 respectively. The normalised CBV v,, was simulated by treating the mixed

compartment as one single compartment with compliance, hence the dynamic

relationship governing f,,, and v,, was the same as that for the venous compartment

(Egn.(7)). The parameters required were (i) the two time constants for the normalised

volume and compliance state variables, set at 0.3s and 3.3s respectively, (ii) the
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Grubb’s exponent 1/a, set at 1/3; and (iii) the exponent f related to the delayed
compliance state variable, set at # =1.7. The above parameters were chosen based on

our previous work on modelling the delayed compliance (Kong et al., 2004).

The nonlinear coupling between CBF and the metabolic demand requires a large increase
in CBF for a small change in metabolic demand (Buxton and Frank, 1997). As our
simulated CBF had_ a change of 20%, and our baseline OEF was 0.5, the magnitude of the
changes in the metabolic demand was chosen as 5% (from Figure 3 of (Zheng et al.,

2002)).

The parameter p is related to the tissue oxygen concentration and was set to p=081n

our simulation.

Experimental data

Two experimental data sets of hemodynamic changes were used. One data set was
obtained using a short stimulus protocol (2s), the other from experiments using long
duration stimulus protocol (20s). Both data sets were previously published ((Martindale
et al, 2003), (Jones et al, 2002)) with detailed description of the experimental

procedures. The methods are reviewed briefly below.
Animal preparation
Hooded Lister rats weighing between 250 and 400g were anaesthetised and placed in a

stereotaxic holder (Kopf Instruments). A midline incision was made to expose the surface
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of the skull. After the barrel area was marked, the skull overlying the barrels was thinned
to translucency with a dental drill under constant cooling with saline. Following surgical
preparation the animal was left for at least 30 min before the experiment began. The
animal’s rectal temperature, heart rate, breathing and blood pressure were all monitored

appropriately.

Optical imaging spectroscopy and laser Doppler flowmetry

Both experiments collected OIS and LDF data concurrently with the stimulus being
electrical stimulation of the whisker pad via tungsten electrodes. After the location of a
whisker barrel cortex, the spectrograph was mounted on the CCD camera and positioned
such that the 100 #m wide slit was sited appropriately over the centre of the barrel
region. This was then followed by the placement of an LDF probe ((Jones et al., 2002),
(Martindale et al., 2003)). The recorded signal from the LDF probe was processed, which
included a second order Butterworth lowpass filter with a bandwidth of 12kHz and a time
constant of 0.2s for noise reduction purpose. This filter produced a small time lag on the
recorded CBF measurements. This lag was corrected by a simple deconvolution

algorithm applied to all LDF data used in this paper.

The signals from the LDF were sampled at 15Hz. The OIS data were sampled at 7.5Hz
and analyzed using a pathlength scaling algorithm (Mayhew et al., 1998). To obtain
fractional changes from the OIS data, the baseline total hemoglobin concentration in

tissue was assumed to be 100 uM with a saturation of 0.5 (Mayhew et al., 2000). Note

that under the assumption of constant hematocrit (the percentage by volume of red blood
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cells in blood), the normalised changes for total CBV is equal to the normalised changes
for total hemoglobin concentration. Although there was evidence of changes in
hematocrit following direct cortical electrical stimulation at high intensities (Schulte et
al., 2003), at intensity ranges comparable to those used in this paper (see below),

(Kleinfeld et al., 1998) found no evidence for significant changes in capillaryrhemafocri-t. N

Stimulus presentation and paradigms
The electrical stimulation of the whisker pad was controlled through a constant-current
source stimulator to generate 0.3ms pulses, with stimulus onset timing locked to the CCD

camera’s clock signal.

Brief stimulation: frequency modulation protocol (n=6). This data set is adapted from

Martindale et al. (Martindale et al., 2003). A brief 2s stimuli of 1, 2, 3, 4 or 5Hz were
randomly interleaved and applied within a single experimental run with stimulus intensity
of 1.2mA and with an interstimulus interval of 25s. Thirty trials were obtained and
averaged for each stimulus condition. For each trial data collection was over the period

from 8s before to 15s after the stimulus onset.

Extended stimulation: intensity modulation protocol (n=7). The data set presented here 1s

adapted from Jones et al. (Jones et al., 2002). A stimulus frequency of 5Hz was used
throughout the experiment with four levels of intensity (0.4, 0.8, 1.2 and 1.6mA). The

stimulus duration was 20s. Fifteen trials were obtained and averaged for each stimulus
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condition, with inter-stimulus interval of 55s. For each trial, data collection started 10s

before the onset of the stimulus, and it lasted for 50s.

Parameter optimisation
In contrast to the simulations, in which flow changes were generated using Friston’s
second order system linking stimulation to flow, in these studies experimentally

measured flow was used directly as input to the 3C as well as the 1C models.

The models were fitted to the experimental data sets for brief and extended electrical
stimulation described above, and their performance compared. Clearly there are more
parameters in the 3C model which can be utilised to produce a better fit. It is therefore
important that the two models are compared under similar baseline conditions. The
assumption used in the OIS data analysis was that the baseline saturation was 0.5; this

assumption was kept for both models. Also kept the same were the values of the baseline

OEF (E,), the tissue baseline oxygen concentration (g, ), the venous transit time (7,)

and the parameter ¢ in the capillary compartment. The values of these parameters are the

same as that used in the simulation studies, as shown in Table 2.

For both models, the optimisation procedure took two stages. The first stage was to use

the measured normalised CBF ( f,,,) to predict the normalised CBV (v, ), hence yielding

tot

optimal parameters in the models relating CBF to CBV. For the 3C model, this was done

by minimising the cost function given by Eqn.(16) above to find optimal parameters «, ,

B, and 7, . For the 1C model which was equivalent to a venous compartment model
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(v,, =v,), this was done by optimising the parameters «,, £, and T, to minimise the

cost function:
Lz(av’ﬁvﬂfxv):Z(vv_ﬁv)z (19)

where

5ot h,

A v
W= ftol -
KV
8l
T K, =V, —K,

The second stage was to optimise parameters in the capillary compartment to predict the

total normalised Hbr (g,,). We chose to optimise the following two parameters for both

models: (i) The magnitude of the metabolic demand X,, . This would provide us with

useful information about the coupling between CBF and the metabolic demand. (ii) The

parameter p related to the time constant of tissue oxygen concentration. This is a lumped

parameter with a scaling factor introduced in Zheng et al. (Zheng et al., 2002). The value
of this parameter affects the speed of response to the tissue oxygen concentration. The
existing literature does not provide a value for this parameter hence we attempt to

estimate it through the model.

Thus the parameters K,, and p are optimised by minimising the following cost function

LJ(KMsp)=Z( tot _éro.f ]2 (20)
All optimisation algorithms were implemented in Matlab™ (The MathWork, Inc,
Cambridge) using the built-in function I[sgnonlin utilising the Levenberg-Marquardt

method.
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RESULTS

Simulations

Simulated CBF and CBV data were analysred using the 3C7 model whirleimani-pulating the
parameters which distinguished the 3C and 1C models. These parameters were: (1)
baseline CBV proportions; (ii) fractional CBV changes in the arterial, and hence the
venous compartments; (iii) arterial oxygen saturation (S,). The objective of the
simulation study was to investigate how these parameters may affect the dynamics of the

deoxy-hemoglobin (Hbr) in the venous compartment in order to determine how this

would affect the BOLD signal predicted by current biophysical models.

The dynamics of normalised Hbr are moderately affected by baseline CBV proportions.

While keeping S§,,,and E, unchanged, we varied the proportions p,, p, and p, of the

baseline CBV in the three compartments and compared the normalised Hbr time courses

in the venous compartment (g, ). We first kept p, =25% and varied p, within the range
5% < p, <£25% . It was observed that at smaller capillary volume fractions, the initial
increase in ¢, was small, followed by a large decrease due to increases in CBF which

washes away Hbr and replaces with HbO,, resulting in increases in oxygen supply in

response to increased metabolic demand. As p, increases, the initial increase in g, was
more obvious, and the subsequent decrease in g, was smaller (Figure 2a). We then

varied p, in the range 15% < p, <35% while keeping p, constant at 15%. The initial
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increase in g, was less obvious at smaller arterial volume fractions. The effect of

changing p, on the subsequent decrease in g, was only slight, as shown in Figure 2b.

Note that changes in the baseline CBV proportions, whilé keeping S, and E,
unchanged, implies changes in the baseline arterial saturation S, . For the range of values

used here, the arterial saturation baseline varied only slightly from 0.73 to 0.79.

The dynamics of normalised Hbr are markedly affected by fractional arterial CBV

changes. As discussed above, the choice of f; determines the amount of fractional CBV

changes in the arterial compartment, and hence the venous compartment. We selected

three different values for », (0.5, 1.5, 2.5), thus generating three time courses for the

fractional arterial CBV changes, shown in Figure 3(a). The corresponding dynamics of

g, are notably different, shown in Figure 3(b). For r, = 0.5, there is an obvious initial
increase in qv> followed by a larger decrease. As », becomes larger, the initial rise in q,
becomes less visible. At r, =2.5, ¢, decreases almost immediately after the onset of
stimulus. At this value of r,, it is impossible to find a plausible set of parameter values
that produce an initial increase in g¢,. This suggests that the initial dip in the BOLD

signal is less likely to occur for proportionally large arterial CBV increases.

The percentage decrease in normalised Hbr is affected by arterial oxygen saturation. We

varied the arterial saturation S, to three different levels (0.7, 0.8, 0.9). Note that while

keeping the baseline OEF constant at E, =0.5, this implies that the total baseline
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saturation S,,, will change accordingly (Eqn.(18)). The normalised Hbr in the venous

compartment was shown in Figure (4) from which we observe that increasing arterial
saturation from 0.7 to 0.9 has the effect of increasing venous Hbr changes from 3.5% (at
S, =0.7) to 7% (at S, =0.9). This is as expected because higher arterial oxygen
saturation implies more oxygen supply for the same fractional changes in CBF. Note that
as the arterial saturation is assumed constant, the normalised deoxy-hemoglobin m the

arterial compartment ¢, is the same as v,, hence its time course is not affected by

changes in the arterial oxygen saturation.

Experimental data

Under each experimental condition described in the previous section, we fitted the 1C
and 3C models to the CBF, CBV and Hbr data which were averaged over animals. Two
data sets are shown in this paper for display purposes, one from each protocol. The data
set for short stimulation protocol has a stimulus frequency of 5Hz and a intensity of
1.2mA. For the extended stimulation, the data selected has the same stimulus frequency

of 5Hz, but with a stimulus intensity of 1.6mA.

Optimisation to fit the normalised CBV
There is no significant difference between the two models for the first stage of the
optimisation. As can be seen in Figure 5 the predicted CBV time series for both models is

an excellent fit to the data.
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For the 1C model, the optimised parameters are: o, =2.9 (corresponding to a Grubb’s
exponent of 0.34), S, =1.6 and 7, =3.4s. For the 3C model, the optimised parameters
are: for the arterial compartment, o:a‘ = 2.0 (corresponding to a Grubb’s exponent of 0.5);
for the venous compartment: 5, =4.1 and 7, =2.0s. The parameter ¢, is calculated

from Eqn.(15) as @, = 2.9 (corresponding to a Grubb’s exponent of 0.34). The similarity

of the fit of the CBV data for both models ensures that if there is any difference between
the two models in the goodness-of-fit to the normalised Hbr data, it cannot be attributed

to any mismatch in the time series of the changes in blood volume.

Optimisation to fit the normalised Hbr

Figure 6 shows representative results from each of the experimental paradigms. The
optimisation results clearly demonstrate that the 3C model fits the experimental data
better than the 1C model. One characteristic of the predicted changes in Hbr using the 1C
model is a much bigger initial increase in the predicted normalised Hbr than that
measured. A lower value for the parameter representing the metabolic demand would
improve the initial fit to the Hbr data but at the expense of a much larger decrease later in
the response than that measured. In the case of the 3C model, there is no such problem.
An explanation of this difference between the models may be that because in the 1C
model arterial saturation is assumed to be 100%, for corresponding flow increases there is

a greater delivery of oxygenated blood than in the case of the 3C model.

Tables 3(a) and 3(b) show the optimised model parameters under all stimulus conditions

for both models. The last column in each Table shows the F-ratio calculated with the
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numerator being the variance of the prediction error using the 1C model, and the

denominator being that using the 3C model. From the two Tables, we make the following

observations.

(1)

(i)

(iii)

(iv)

(v)

The estimated metabolic demand for the 1C model is generally much larger than
that for the 3C model.

The estimated metabolic demand for the 1C model consistently increases with
increases in intensity and frequency of stimulation. However, because of the very
poor fit to the Hbr time series data (see Figure 6) we do not believe this can be
supported.

For the 3C model under extended stimulation, the metabolic demand seems to
increase with increased stimulus intensity, except at intensity of 1.2mA where the
model parameters are outside the normal range. Looking at the data closely, we
found that the normalised Hbr has a dominant undershoot after the stimulus onset
before it increases to a steady state plateau. But this feature was not present in
either CBF or CBV. We believe that the model attempted to fit this undershoot
by reducing the metabolic demand to the hard limit of zero set in the optimisation
algorithm.

For the 3C model under brief stimulation conditions, there was no trend in the
changes in metabolic demand with respect to changes in frequency.

The F-ratios under all conditions indicate that the prediction errors obtained using
the 3C model are significantly better than those obtained using the 1C model at

p <0.05 taking appropriate account of the degrees of freedom for the two

models.
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DISCUSSION

In tﬁis paper we have introduced a three-compartment hemodynamic model which relates
the normaiised time series of Hbr-td neﬁ;al activity induced cﬁangés in CBF. The main
novel characteristics of the model are: (i) arterial baseline blood volume is included in the
calculation of the changes in the normalised CBV, and significantly, arterial CBV
changes with changes in CBF; (ii) arterial saturation can be less than unity; (iii) capillary
CBYV is also involved in the calculation but remains constant, i.e., there is no capillary

recruitment or dilation.

The effects of the above on the dynamics of the changes in deoxy-hemoglobin in the

venous compartment (g, ) showed that:

(1) The baseline CBV proportions within a sensible range had moderate effect on the
dynamics (1.e., the shape of the time course) of ¢, .

(i1)  The fractional CBV changes in the arterial compartment contributed significantly

to the dynamics of ¢, . For small arterial fractional CBV changes, a prominent
initial increase in g, could be observed. This initial increase disappeared as the

arterial fractional CBV changes increased. Thus the amount of fractional arterial
CBYV changes could be one of the influencing factors to the presence or otherwise
of the initial dip in the BOLD signal.

(i) A lower arterial saturation baseline decreased the magnitude of the reduction in

Hbr in the venous compartments.
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The model was also tested on experimental OIS data and the model parameters were
optimised to give the best fit to the measured deoxy-hemoglobin data in the least squares
manner. The results were compared with that of the one-compartment model (Zheng et
al., 2002). Two parameters were optimised: the metabolic demand and the tissue time

constant. The 3C model produced significantly better ﬁt to the data than the 1C model.

Tissue oxygen tension

The time course of the state variable g represents the time variation in tissue oxygen
tension. Although this quantity was not measured, it was predicted by both models as a
state variable. Figures 7(a) and 7(b) compare the predictions of g for both models under
the brief and extended stimulation respectively. It can be seen that over the duration of
the stimulus application, the predicted tissue oxygen tension decreases. Once stimulation
ceased, tissue oxygen tension increases and overshoots its baseline before returning to it.
This holds true over all experimental conditions examined. However the difference
between the 1C and 3C models is the degree to which the tissue tension changes. For the
1C model, the predicted value of g decreased significantly more than that predicted by
the 3C model, but the overshoot when returning to baseline was much smaller in the 1C

compared to that of the 3C model.
Preliminary comparison between these time series and the measured tissue oxygenation

time series published by Thompson et al. (Thompson et al., 2003) were made for the brief

stimulation paradigm, and we found that the time courses of g predicted by the 3C

35




model resemble their measurements much more closely than those of the 1C model.

Further research and a more comprehensive study will be needed in this area.

Capillary permeability-surface area product.

Asﬁ the 3C model is an extension -of the previous 1C model (Zheng et al., 2002), ﬁiany of
the assumptions made there are also implicit here. One such assumption is that oxygen
diffuses from capillaries into the tissue at a rate proportional to the oxygen tension
difference between plasma and tissue. Another assumption is that the nonlinear Hill

equation relating the blood oxygen concentration in the capillary (Cp ) to that in plasma

(Cp) can be satisfactorily approximated by a linear relationship Cp, = rCp ((Buxton and
Frank, 1997), also see the Appendix B of (Zheng et al., 2002)) where r is a constant.
These assumptions lead to the result that the oxygen concentration along the capillary
decays exponentially, making it possible to study the transport of oxygen in simpler terms

than using the nonlinear Hill equation (Valabregue et al., 2003).

The appropriateness of the linear assumption above depends on the choice of the
capillary permeability-surface area product (PS) and that of the CBF baseline. Kassissia
et al. (Kassissia et al., 1995) studied the cerebral micro-circulation of awake animals
(n=5) and found that the CBF range was 70.8 +18.6(SD) mf.min"'(100g)", and that for
PS the range was 70201020 (SD) m€.min"'(100g)". Valabreque et al. (Valabregue et
al., 2003) pointed out that if the capillary permeability-surface area product is
significantly different from the above value (e.g., they used PS=3600 m£.min"'(100g)™)

and that CBF varies through a wide range such as from 50 to 200 mﬂ.min'[(loog)", then
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the exponential approximation may not adequately describe the oxygen transfer process

between the capillary compartment and its surrounding tissue.

Figures 8 and 9 compare the results obtained using the Hill’s equation with those using
the exponential decay model. These figures were produced assuming zero tissue oxygen
tension and tetramer haemoglobin concentration of 2.3mmol1™, the same as those used in

(Valabregue et al., 2003). In Figure 8, the parameter » = C /C, is the decay coefficient

used in the exponential decay model. It is varied between 0.0076 and 0.0094 while PS is
kept constant at 7020 m&.min"'(100g)™. It can be seen that for both of the relationships
between CBF and OEF (Figure 8(a)), and CMRO; (Figure 8(b)), the curves produced by
the Hill’s equation can be well approximated by the exponential decay model at
r=0.0082, provided the blood flow is within the range 50 to 100 mE.min;I(IOOg)'i.
Figure 9 compares the relationships between the normalised CMRO; and the normalised
CBF obtained using the Hill’s equation and the exponential decay model for different
values of PS. The baseline CBF is kept constant at 66 mf.min"'(100g)". Again the
exponential decay model at PS = 7020 mﬂ.min'l(IOOg)'] coincides well with the solution
produced via the Hill’s equation for CBF change of up to 30%. For all the data presented
in this paper, the change in CBF is around or below 30%, hence we are satisfied that the
assumption of exponential decay for oxygen concentration along the capillaries is

appropriate for our study.

Changes in the assumed baseline oxygen saturation and total hemoglobin

concentration for OIS data.
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The OIS data sets were converted to the form of fractional changes using the assumed

baseline hemoglobin values: a hemoglobin concentration (Hbt) of 100pM and saturation
of 0.5. We selected, arbitranly, a data set (brief stimulation at 4Hz) to test how sensitive

our model fits are to the above baseline assumptions.

First the total oxygen saturation baseline was changed to 0.4 and 0.6, and the
optimisation procedure was repeated. It was observed that both changes resulted in

poorer model fit compared with that for S,,,=0.5.

The assumption of Hbt baseline of 100uM has been recognised as being slightly higher
than the generally accepted value (Appendix I). Hence this value was lowered to 75uM
and 50uM. The OIS data were re-calculated and the model parameters were optimised. It
was observed that the 3C model is able to fit the modified data without any significant
changes to the prediction error variances. The main difference is in the estimation of
metabolic demand which decreases with decreasing baseline Hbt values, from 5.2% at
Hbt baseline of 100uM to 4.1% and 2.1% at Hbt baselines of 75uM and 50pM
respectively. This may be explained by the fact that lower Hbt baseline leads to an
increase in the fractional CBV changes. This will in turn increase slightly the fractional
changes in Hbr, i.e., making it more negative. Without any increase to the normalised
CBF, the larger negative fractional change in Hbr can only be accounted for by reducing

the metabolic demand.
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Choice of optimisation parameters

We have demonstrated that the 3C model was able to fit the optical imaging spectroscopy
data much better than the 1C model. The prediction errors for the 3C model were
significantly less than for the 1C model. Although it is true that the 3C model has more
parameters to manipulate than the 1C model, the number of parameters we chose to
optimise was the same for both models, and the other parameters in the two models were
matched wherever possible. We based our choice of the parameters to be optimised
largely on the uncertainty in the literature about the physiological ranges of these
parameters, and that the parameter values assigned via optimisation may provide us with

some useful information.

It was noted that some of the model parameters are highly related, i.e., the effect of
changing one parameter on the output of the model can be very similar to that of
changing another parameter. A preliminary study of the sensitivity of the 3C model to
parameter variations was conducted and a more detailed analysis will be carried out
which may provide a useful insight to the selection of the parameters that most affect the

dynamics of the model output.

CONCLUSION

We have shown in this paper that both the 1C and 3C model were able to fit the time

series of the change in volume very well, however the important finding was that when

the fitted parameters values were then used to fit the times series of the changes in Hbr,
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the 3C model far outperformed the 1C model. This really is not surprising because the
1C model makes the unrealistic simplifying physiological assumption that the volume
and saturation measurements derive from a single compartment of the microvasculature,
specifically the venous compartment. This assumption, commonplace in previous work
(e.g (Hége et al., 1999), (Bﬁxto.f-l and Frﬁnk, 1997), (Mandeville et al., 1999b), (Hyder et
al., 1998), (Friston et al., 2000)) applied to the modelling and interpretation of the BOLD
signal from low field strength human experiments is unsafe if, as seems to be the case
that, the BOLD signal derives from a mixture of intra- and extra-vascular effects arising
in both the capillary and venous compartments of the microvasculature. Furthermore the
work of Lee et al. (Lee et al., 2001), which clearly implicates the arterial compartment of
the microvasculature in the blood volume changes, underlines the importance of the
development of the three-compartment biophysical model of the hemodynamic response,
not only of the BOLD signal but also for the interpretation of the CBV-MRI (e.g.
(Mandeville et al., 1999a), (Wu et al., 2002)) and perfusion data (Detre et al., 1992) in the

studies of functional activation.

The development of an appropriate and physiologically plausible hemodynamic model is
crucial for the interpretation of the BOLD signals, in that the model can be used to
recover the underlying changes in neural activity. We think that the three-compartment

model provided an important basis for such development.
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Appendix I. Calculation of the hemoglobin concentration in brain tissue

Most text books present hemoglobin concentration in blood in the unit grams per litre (or
decilitre). This appendix outlines the procedure for converting this value to the
hemoglobin concentration in brain tissue in the unit pM. The selected physiological

parameter values only serve as examples to the conversion process.

The hemoglobin concentration in blood refers to the amount of hemoglobin (in grams)
per unit blood volume (in litres). The normal hemoglobin range is species dependent and
is also dependent on the age and gender. The range for human adult male is 135-175g/%.

For illustration purpose, we will use a value of 150g/{ as the hemoglobin concentration.

The hemoglobin concentration in blood decreases with the vessel size; the figure of
150g/¢ is for a blood sample taken from large vessels. The cerebral-to-large vessel
hematocrit ratio measures the decrease in concentration as blood flows into the brain, and
is 0.69 (Wyatt et al., 1990). Thus the hemoglobin concentration in blood in the cerebral

regions of the brain can be found as 150x0.69 = 103.5g/£.

To convert the above into the hemoglobin concentration in brain tissue, we need to know

the ratio of the cerebral blood volume to tissue volume. The average cerebral blood

volume concentration in tissue is 3.3(20.4)x107°¢/g (Hamberg et al., 1996) and the

cerebral tissue density is around 1.05 x 10° g/¢ (Sabatini et al., 1991). Thus the blood-to-
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tissue volume ratio in percentages can be calculated as: (3.3x107) x (1.05x10%) x 100 =

3.47%.

This gives us the hemoglobin concentration in cerebral tissue as 103.5x0.0347 = 3.6g/¢.
The generally preferred unit for hemoglobin concentration is mol/f (also knéwn as
Molar, denoted by M). By using the molecular weight of hemoglobin which is 64450
g/mol, the hemoglobin concentration in g/f can be converted into mol/€ as 3.6/64450 =

56x10°mol/¢ = 56 pmol/€ =56uM.

This suggests that the assumption of 100puM for the hemoglobin concentration in brain

tissue is higher than the normal expectation for this value.

We emphasise again that the above value of 56uM is dependent on the other
physiological parameters used during the conversion. These parameters vary depending
on species, age and gender among other factors. Hence the above value of hemoglobin

concentration in brain tissue only serves as a guideline.
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Figure legends

Figure 1. The time series generated for the simulations. (a) The simulated flow (solid),

volume (dotted) and metabolic demand (dashed) were used in the first stage of

‘optimisation. (b) The partitioning of the volume (solid) into the arterial (dofted) and

venous (dashed) parts is one of the results of the first stage of optimisation and is

principally determined by r,. Stimulus duration 1s 1s.

Figure 2. Changes in the normalised Hbr in the venous compartment for different CBV

baseline proportions. (a) With p, fixed at 25%, p, was set to 5%, 15% and 25%, and
p, was varied accordingly. (b) With p,. fixed at 15%, p, was set to 15%, 25% and

35%, and p, was varied accordingly.

Figure 3. (a) The fractional arterial to total volume ratio r, directly affects the arterial

volume change. (b) This leads to indirect effects downstream such as increasing the

initial ‘bump’ in the venous Hbr as #, is decreased.

Figure 4. Effect of changing the arterial saturation §, on the normalised Hbr in the

venous compartment.

Figure 5. Predictions of the normalised CBV using the 1C model and the 3C model,
superimposed with the normalised CBV data for (a) brief stimulation (5Hz, 1.2mA) and

(b) extended stimulation (5Hz, 1.6mA). They are both excellent.
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Figure 6. Predictions of the normalised Hbr using the 1C model and the 3C model,
compared to the normalised Hbr data for (a) brief stimulation (5Hz, 1.2mA) and (b)
extended stimulation (5Hz, 1.6mA). There are obvious shortcomings in the 1C model

whilst the 3C model captures virtuallif- éll the dynamics of the s_ystern.

Figure 7. Predictions of the state variable g using the 1C model] and the 3C model for (a)

brief stimulation (5Hz, 1.2mA) and (b) extended stimulation (5Hz, 1.6mA).

Figure 8. Comparison of the solutions using the Hill equation (solid curves with plus
signs) with those using the exponential decay model at a range of values of the decay
coefficient » for PS=7020m&.min".(100g)”". Note that the Hill equation can be well

approximated by exponential model over CBF=50~100m~.min".(100g)™ for » = 0.0082.

Figure 9. Comparison of the CMRO; calculations using the Hill equation (solid lines) and
the exponential decay model (dotted lines) at different capillary permeability-surface area
product PS for the baseline CBF of 66m&.min".(100g)". At PS=7020m&.min™.(100g)",
the curve obtained using the exponential decay model fits well to that obtained via the

Hill equation.
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Table 1. Three-compartment partitioning.

Flow partitions

ftot = wa a,in 'chfc + wva,our

w,+w, +w, =1

Baseline volume

partitions

VlotO = VaO + Vc(} i VvO

VaO — VcD =p VVU =p
a? — Fe» = Fw

VtotO VrorO VtotO

Pyt pctp, =1
Volume change | AV,, = AV, + AV,
partitions

AVH AV}OI AVV AV!O(

=r, 3 =r, s PalyFp =l
' VaO VratO VvO th()

Normalised Vipt = PaVa ¥ PV + PV, V=1

volume partitions

Saturation v V. — v
Sra!mpaaSa+pCCSc+pVVSv
pattitions tot Viot Viot
Deoxy- sy 1-5,,
‘ q{o! tot 1_ Smo
hemoglobin

partitions

=pa(l—Sa)qa+pC(luSc0)£7C+pv(1—Sv0) ,
1-8 1-8 1-§

tot0 tot0 tot0




Table 2. Parameters used in the simulation of the three-compartment model.

Global model parameters Symbol Value
Total baseline oxygen saturation - 0.5

' We1g_ht1ng CQEfﬁCi?IEt,S_ f_qr CBF w, 1w, :w, [033:033:033
Baseline volume proportions PaiDPe:p, |025:0.15:06
Ratio of normalised changes in arterial CBV to total CBV | #, 1.5
Magnitude of the metabolic demand K, 5%
Parameters for the arterial compartment
Arterial compartment transit time (s) Ty 0.2
Parameters for the capillary compartment
Parameter related to capillary transit time o 0.1
Parameter related to time constant of g P 0.8
Baseline oxygen extraction fraction E, 1.5
Baseline tissue to arterial oxygen concentration ratio £ 0.2
Parameters for the venous compartment
Venous compartment transit time (s) T 0.3




Table 3a. Brief stimulation.

Stimulus 1-compartment 3-compartment | F-ratio
frequency P Metab (%) P Metab (%)
1Hz 3.36 8.7 17.8 3.8 2.1
2Hz 2.9 9.6 1.33 2.8 44
3Hz 3.03 11.7 1.60 11 16.6
4Hz 3.19 19.6 0.95 52 7.6
5Hz 3.70 19.5 1.28 0.92 134
Table 3b. Extended stimulation.
I Stimulus 1-compartment 3-compartment F-ratio
E intensity P | Metab (%) | £ Metab (%)
| 0.4mA 7.8 3.0 56.1 4.0 3.3
0.8mA | 95 12.0 385 9.4 15.4
1.2mA 1.2 23.5 157 0 324
1.6mA 13.2 38.2 17.2 21.8 26.0




