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Abstract

The characteristics of generalised frequency response functions (GFRFs)
of nonlinear systems in higher dimensional space are investigated using
a combination of graphical and symbolic decomposition techniques. It is
shown how a systematic analysis can be achieved for a wide class of
nonlinear systems in the frequency domain using the proposed methods.
The paper is divided into two parts. In Part 1, the concepts of input and
output frequency subdomains are introduced to give insight into the
relationship between one dimensional and multi-dimensional frequency
spaces. The visualisation of both magnitude and phase responses of third
order generalised frequency response functions is presented for the first
time. In Part 2 symbolic expansion techniques are introduced and new
methods are developed to analyse the properties of generalised
frequency response functions of nonlinear systems described by the
NARMAX class of models. Case studies are included in Part 2 to
illustrate the application of the new methods.

Keywords: Nonlinear Systems, Generalized Frequency Response
Functions, Frequency Domain Analysis

1. Introduction

The study of nonlinear systems has received increasing attention since the early twentieth
century, largely because traditional linear systems theory is unable to explain many important
nonlinear phenomena such as harmonic distortion, limit cycle behaviour, and chaos.

Linear frequency response functions are recognised as one of the most powerful and
successful tools to describe system behaviours by both analytical and graphical means. The
introduction of the generalised frequency response functions in the late 1950s (George 1959)
was the beginning of studies to extend frequency domain methods to nonlinear systems. The
Generalised Frequency Response Functions (GFRFs) are defined as the multiple Fourier
transforms of the kernels in the Volterra series and represent a natural generalisation of linear
frequency response functions to the nonlinear case. The analysis of nonlinear systems in the
frequency domain employing generalised frequency response functions dates back to the
1960s, when the Volterra functional series was originally applied to solve nonlinear problems
encountered in communication systems and nonlinear circuits (Narayanan 1967, 1970,
Bedrosian and Rice 1971). Much effort has subsequently been made to extend these methods
to more general cases (Bussgang et al, 1974, Chuo and Ng 1979a,b). The significant results
which have been achieved form the framework for the analysis of the steady-state output
response for a class of weakly nonlinear circuits. Many studies have also been made.to,
develop techniques for estimating the GFRFs of an unknown nonlinear system from
input/output data (Brillinger 1970, Vinh et /1987, Kim and Powers 1988, Chuo and Liao
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1989, Bendat 1990, and Nam and Powers 1994). Most of the methods are based on
multidimensional FFT/windowing type algorithms and involve the computation of higher
order spectra. These approaches can provide estimates of the GFRFs up to third order but
work only on the assumption that the system under study can be described by a truncated
Volterra series of low order and/or that special input excitation signals can be used. In
addition to these restrictive assumptions, the considerable computational cost associated with
these nonparametric methods makes it very difficult to extend the methods to more realistic
higher order cases. An alternative technique is the parametric approach proposed by Billings
and Tsang (1989a), which consists of estimating the parameters in a NARMAX model
description of the system and then deriving the GFRFs from the estimated model directly
using a probing method. This approach can produce the analytical expressions for GFRFs in
terms of the coefficients of the system time domain model and avoids most of the complexity
associated with previous methods. This approach provides a unified method of determining
the GFRFs of any order for a wide class of nonlinear system.

Despite the significant results that have been obtained, it has not been shown how the
GFRFs themselves can be effectively interpreted. The nature of the GFRFs and the
connection of these to nonlinear behaviours are still not well understood. This is one possible
reason why few applications can be found based on the GFRFs. There are two main
difficulties. First, the GFRFs are actually a sequence of multivariable functions defined in
high dimensional frequency space. Second, only expressions in the recursive form are
available for the GFRFs and expansions of these expressions, which could reveal much more
insight, have not been studied. Some authors have recently attempted to overcome some of
these difficulties. Peyton Jones and Billings (1990) interpreted the n-dimensional frequency
domain by defining subdomains, which relate directly to the system input/output behaviour.
Zhang and Billings (1993) decomposed the second-order GFRFs into a set of typical
components and explained the contribution by each of the components to the overall features
of the GFRFs by graphical means. Although these studies lead to some constructive results,
the structure of the GFRFs remained largely concealed and there has been no systematic way
of investigating GFRF’s of arbitrary order. Furthermore, since many nonlinear systems
exhibit properties that require a Volterra series up to third order, which involves the lowest
odd order nonlinear term in the Volterra series model, methods which allow the examination
of the characteristics of third order GFRF’s, are required.

The objectives of this paper are to explore the techniques which can reveal the inherent
formation of the GFRFs, to investigate the visualisation of third order GFRF’s, and to present
a cohesive method for studying the family of GFRFs The paper is divided into two parts. Part
1 introduces the concepts of input/output subdomains. These concepts help gain an
understanding of the multidimensional frequency domain and the connection to
one-dimensional input/output spectra. Techniques for visually inspecting third order GFRF’s
in a 3D frequency space are presented for the first time in Part 1. The problems concerned
with the frequency domain representation of a discrete-time nonlinear system are also
discussed in the first part. Part 2 outlines a symbolic expansion technique to reveal the
structures and properties of the GFRFs, where similarity can be found regardless of the order
of the GFRF. The basic constituent elements of the GFRFs are then identified and categorised.
Based on this consistency, a systematic method is described to analyse the characteristics of
the GFRFs. The individual effect of terms from the nonlinear time domain model on the
GFREFs is investigated. Case studies are used to illustrate the new methods.




2. Input/Output Representations of Nonlinear Systems in the Frequency Domain

2.1 Continuous-time Nonlinear Systems and the Associated Frequency Domain
Representations

For nonlinear systems that can be represented by the Volterra series in the continuous-time
domain, the output is given by (Schetzen 1930, Rugh 1981):

y(r):i £-~Ji1n(fl)---,Tn)ﬁu(r—ﬁ)dq 2.1

where A (7,,7,,---,7,)1s called the nth order Volterra kernel. Equation (2.1) can be

expressed in the form of a sum of outputs from an infinite number of parallel subsystems,
namely

0 =3 3,0 2.2)

where the nth-order output y, (#) is a homogeneous functional of degree n, given by

3,0 = [ i@ )] Jute-7)ds 23)

A system represented by (2.3) is called a degree-n homogeneous system. These ‘nth-order
outputs’ take a similar form to the familiar convolution integral of a linear system. Therefore,
the Volterra kernel h (7,,7,,--+,7,)is also called the nth order impulse response.

Just as in the linear case, the frequency domain representation of a degree-n homogeneous
system can be obtained by means of the Fourier Transform; only this time the operation takes
place in a multidimensional space. For the necessity of further derivation, an associated
multidimensional time function is introduced to replace the left hand side of the equation (2.3)

Volteet)= [ - Ehn(r,---,rn)ﬁu(ti—q)dfi 2.4)

from which the real output y (¢) can be recovered from

YAGES MO | S @.5)

Applying the multidimensional Fourier Transform to both sides of equation (2.4) yields
Y,(j@,, -, j@,) = H,(ja,,, jo,)] [U(@) (2.6)
i=1

where H (jw,,--, j@,)is called the nth order Generalised Frequency Response Function
(GFRF) and is defined as the multidimensional Fourier Transform of the nth order Volterra
kemelh (7,,7,,:+,7,)

H (jm,, -, j&,) = EJ:h (7,0, T, e ORI g o d 2.7

Conversely 1y (r) can be obtained by means of an n-dimensional inverse Fourier
Transform from equation (2.6)
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(2.8)

The time- and frequency-domain representations (2.4) and (2.6) provide two equivalent
system descriptions, but the relationship between these by means of the Fourier transform is
complicated in the sense of dimensionality. The frequency relationship (2.6) operates between

two n-dimensional frequency variables U(jw).,Y (jo,, -, jo,), while in the time
N JW; 2 W ]9,
i=l

domain the input and output u(z),y(z) are one-dimensional. To convert between these

requires not only a time/frequency transformation, but also a dimensional
expansion/contraction. Making the change of variables

w= Zﬂ;w} (2.9

=1

with an inverse
w, =w- .o, (2.10)

gives, from equation (2.8)

1 - - . - jere
Y. ()= 2y J:---EYH(]?:JI,'--,an_l,j[za'—Zwi})xej dw,,--dw,_.do (2.11)
i=l
Equation (2.11) can be re-written in the form of an inverse Fourier transform:
1 j
= ) 133 5
W)= [ ¥, (jm)e™ dw (2.12)

where

' 1 . . : o 4
Kx(]w)z il f E Kz(jmp"':_]wn_]s J[w_zwi])dwp'"odmn—I (213)
2r)"~" = =,
n—1

i=1

The right-hand side of (2.13) represents the integration of the function

n=1
Y, (@ j@, ., o -y @) over a (n—1) -dimensional frequency space, which can be
i=l
regarded as the projection of the hyperplane @ = @, +---+@, onto the hyperplane @, =0in
this space. It can be further shown that this integration is equal to the integration of
Y (jw,, -, jw,) over the n-dimensional hyperplane @ = @, +---+w, multiplied by a
constant (Lang and Billings 1996), that is

_ Y
- (277):14

Y, (jo) [ _tlm, jo,)do, (2.14)

where do_ denotes the area of a minute element on the n-dimensional hyperplane

w=w,+--+w,. Equation (2.14) provides a clear physical meaning in the way that




Y (jw) is generated by summing the Y, (j@, -, j@,) over the hyperplane

T=w, ++T,.

The standard Fourier Transform pair with a one dimensional system output can finally be
given as

Y(jo) =3 Y, (jo) (2.15)
() :7—17; [ ¥(joe™dw (2.16)

It should be noted that although thew'son both sides of equation (2.15) have the same
value domain, the @ in the right hand side varies with the order of Y, (jw) under the

restriction (2.9).
2.2 Discrete-time Nonlinear Systems and the Associated Frequency Domain
Representations

Despite the fact that most physical systems evolve in continuous time, usually studies are
carried out in the discrete-time domain so that the advantages of digital technologies can be
used. As in the continuous-time case, it is possible to describe a discrete-time nonlinear
system with memory by means of the discrete-time Volterra series expansion.

)’(k):ii"'ftn(il,---,in)f[u(k—ip) (2.17)
p=l

n=1 =0 i,=0

where the output signal y(k)and input signal u(k)are real sequences, and A, (i, ,1,) 1s

the nth-order Volterra kernel of the system. For simplicity, only casual systems and signals
will be considered by setting the lower limits on the two inner summations in (2.17) to be zero
instead of —eo. Re-write equation (2.17) in the form,

y(k)=>"y,0k) (2.18)
n=1
where the nth-order output y, (k) is given by
AGOEDREDWRCRERS) § LZ(ISW) (2.19)
§=0 =0 p=1

Notice that the convolution integral in (2.3) is now replaced by the convolution summation.
The associated function in the form of a multi-dimensional discrete sequence is again used
to expand the two sides of (2.19) to the multi-dimensional discrete-time domain.

Valki k)= o > b Gyeni )] [, =4,) (2.20)
§=0 i,=0 p=1
Apply the multidimensional DTFT to both sides of (2.20) to give
Y,(j@,, -, jw,) = H,(jo, -, jo,) [ [U(j@) (2.21)

i=l

where the generalised frequency response function H, (j@,,---,j@,), this time, is
defined in the multidimensional digital frequency domain as the Discrete Time Fourier
Transform of the discrete-time nth-order Volterra kernel s, (k,,--+,k,):




H, (j@,, @)= > I el g T W (2.22)
k=0 k=0
Then, according to (2.5), the output y, (k) can be recovered as
y,(k) = IDTFTTY, (j@, s JT ) be i i
[ (2.23)

1 T T
— Yn 'w}..., 'ZD-H) dﬁjdw—n
(27?(_),1 —[ﬂ .[,1 (.)1 1 J e 1
It follows that by changing the variables, a link is built up between one-dimensional and
multi-dimensional digital frequency spaces.
1

nE=5s [ ¥ dm (2.24)

1

Y.(j@) =0 | vG@. . je)o, (2.25)

-1
&+, =T

|zj<z

Compared with (2.14), a restriction, @] <7 , is added to the range of the hyperplanes over
which the integration in (2.25) is performed, suggesting equation (2.25) is defined in the

digital frequency space. More discussion will be given in detail on the features of higher
dimensional digital frequency space later in §4.3.

Equation (2.21) and (2.23) clearly show how the input is related to the output by the
nth-order GFRF. The GFRFs therefore serve as a powerful tool to describe nonlinear system
input/output behaviours in the frequency domain.

The GFRFs H, (jw,, -, jw,)may differ by the permutations of their arguments, but they
are equivalent in representing the system because in each case the output Yy, (¢)in equation
(2.8) or y, (k) in (2.23) would be identical. It is however convenient to work with
symmetric transforms where the order of the arguments in H, (j@,,"-,j@,) can be

arbitrarily interchanged. It has become a common practice therefore to symmetrise the
functions by adding all the asymmetric GFRFs over all permutations of the arguments and
dividing by the number (Schetzen 1980) to give

. . 1 . ;
Ho"(j@,, o) =— .  H,(j@, . jd,) (2.26)
- all permutarions s

of @@,

It is also apparent from equation (2.7) and (2.22) that the properties of conjugate symmetry
hold for GFRFs

H (-j@,, -~ jw,)=H (j&, -, j@,) (2.27)

where the asterisk denotes complex conjugation. This property allows us to consider only
the non-negative frequency region when investigating the GFRF's.

3. Properties of the Nonlinear Frequency Response and Analysis of this using GFRFs

For the case of linear systems any input frequencies pass independently through the system
thus no new frequencies are produced and there is no influence or interaction between the




mput frequency components. However in the response of nonlinear systems some new
frequencies such as harmonics and intermodulation frequencies may appear together with
effects such as gain compression/expansion and desensitisation. These phenomena
characterise the nonlinear frequency response and will be investigated using the GFRF’s in
this section.

3.1 Nonlinear Frequency Response Analysis

Consider an input composed of K different sinusoids
K
u(®) =Y |Alcos(@i+ £4)

i=1

g1, L
:Z;(A.eﬁ" +Ae™ ) (G.1)

{3

where ]Aj| is the amplitude, ZA is the phase, A is the complex conjugate of A,
{~ wx,---,—wl,wl,---,mﬁ} are the input frequencies, A, =A and @_, =-@,. The concept

of the frequency mix vector will be used in this analysis. The mix vector has been used by
several authors (Bussgang et al 1974, Chua and Ng 1979, Wiener and Spina 1980) for the
steady state analysis of a Volterra system with multi-tone inputs. It will also be assumed that

the subset {ml,zzfz,---,zer} of input frequencies forms a frequency base. This means there is
1o set of rational numbers {r,,---,7, }(not all zero) such that

Ko, + L, + oot i, =0 (3.2)

The nth order module or frequency mix vector of the input frequencies is

M=(m_, - ,m_,m,-,m,), m, arenon-negativeintegers m, =0, imi =1,
s;—OK
K K
@y, = Y, mw, =Y (m—m_ ), (3:3)
i=—K i=1

=0

and the sum of all terms with frequency @,, for the nth output component y,(z) is given
by

i

! S A @t -
yn(r;wM):; § —m'1 H (m Az}, m o }m{w}, - m{z He™ (G4
i=—K 114 -

i#0

where m, {mj} denotes m; consecutive arguments with the same frequency @, .

The nth order components of the output response Yy, (¢)consists of all possible frequency
mixes and is given by
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Y, (8= i zn: Z iyn(r;w—_-w) (33}

m_z=0 m_y=0 my=0 my =0

where only terms for which the indices sum to n are included in the summation. The total
output response at frequency @, =w, isfrom equation (2.2),

yuw)=> >, y@wy,) (3.6)

n=1 All possible M
Such thara v, =@ ;

Equation (3.6) illustrates that when a sum of K sinusoids is applied to a nonlinear system
additional output frequencies are generated by the nth order GFRF H, (jw@,, -, jw,) of the
system consisting of all possible combinations of the input frequencies
{~@,. @, @, @, } takenn at a time. The new frequency @, will arise in the output

spectra provided the frequency response function H  has a value at the corresponding point

{m_ic {zzf_k } el g {w_l } n, {zarl } R {wk }} in the n-dimension domain.
Consider the input with only two-tone to simplify the analysis,

u(t) = |A|cos(@t + LA) +| A, |cos(@,t + LA,) (3.7)

The input frequencies to the system will then be —@,,~@,,@,,@, as suggested by equation
(3.1). As a result, the nth-order module vector of the input frequencies will take the form
M = (m_,,m_,m,,m,)and the components of M satisfy,

my,+m, +m+m,=n (3.8)

The output y, (#;@,, ) becomes

) i £|— Af’z-z A:”-l Aimi Az’”'z
v, G@,,) = e !m_Ll e !Hn(m_z {w.}.m {w. }, m{w} mi{w,} &

ng[(”h-m-l e +(my_m_y )&, It

Based on the above equation, the aforementioned nonlinear phenomena will be interpreted
below.

3.2 Harmonics

Harmonics are frequency components that are equal to multiples of the fundamental input

frequency. If the mix vector is chosen as M =(O,%£,H+Tp,0) , the pth harmonic of

@, ( pw,) will be generated in the nth-order output response,

. _n! A—2A12 n-p nt+p jpar A
wlrml=oy——— B Nauh—H@hxe” (3.10)
L DIy,




Likewise, the pth harmonic of @,(pw,) will appear in the output if M takes the form

(n— p 0.0, n+p
2 2

than or equal to p and since m; and m_, are integers, n must be odd when p is odd and even

when p is even. Odd harmonics must therefore be created by all odd order GFRFs and even
harmonics must be created by all even order GFRFs.

). Since m,is constrained to be a non-negative integer, n must be greater

3.3 Desensitisation

In linear systems the sinusoidal response at a particular frequency is unaffected by the
application of sinusoidal signals at other frequencies. When a system is nonlinear however,

the sinusoidal response at frequency w,can be modified by the application of a second
sinusoidal signal at frequency @,. This interference type phenomenon is referred to as
desensitisation.

The nth-order output of a Volterra system with the two-tone input (3.7) is given by equation
(3.9). It follows from equation (3.9) that the total respomse at frequency @, includes
contributions from all odd-order terms such as H (@) . H,(-@,,w,@,) .
H,(-@,,@,,w@, ), -~ . The first and third order contributions to the output response result from
frequency mixes M=(0,0,1,0), (0,1,2,0) and (1,0,1,1).

Notice that the output of a real system is real for real inputs. Hence y,(z), the nth-order

output of a Volterra nonlinear system, should be real and the complex terms in equation (3.9)
must appear in conjugate pairs. The sinusoidal response at frequency @, can thus be
obtained by combining equation (3.9) with its complex conjugate to give

5 (6@,) =y, (6@, +,(6-T,) =y, L@, + v, Gw,) =2Re{y, (@,)}  (3.11)
where ¥, (#;@,,)denotes the nth order sinusoidal response at frequency @, .

The total response at frequency @,, including only terms up to third order, can therefore be
expressed as

y(O:@,) = 2Re{ 3, (1@, + 3, (t;(~w, + 20,)) + ¥, (t: (-7, + @, + T,)) ++ -+

3 2 3 2 o | G:12)
=Re AlHl(wl)"—ZAlMll H3(_w1=wi’w1)+§AllAzl H,(—w,, @, w,)+- |e™

The last term in equation (3.12) is the third order desensitisation term. If |4,|<<|4,| such
that the second term in equation (3.12) becomes negligible with respect to the desensitisation
term, the sinusoidal response at frequency @,assuming effects above third order can be
neglected, then reduces to

3 jart ol Ee)
y(t;m,) = Re{[AlHI(m'l)+§Ai1AQ|2 HB(—wz,wl,wz):le’ . } (3.13)
The gain of the system at frequency @, is given as
1w, 3 2 H T b » s -
gain = Iy( ])| . |H1(Wl)| 1+3.IA?-I 3( wz ml mﬂ) (-314‘)
|4 2 H @) |




The above equation shows that the system gain at frequency @, depends nonlinearly on
the magnitude of the interfering signal at frequency @, due to the GFRF H,(—w,,w,,7,).

3.4 Gain Compression/Expansion

Gain compression and expansion are terms used to describe the variation in the gain of a
system as the input amplitude is increased. The system gain at the fundamental frequency
varies as a function of the input amplitude in a nonlinear system, instead of increasing in a
linear way as would be the case in a linear system.  The effect where the system gain falls
below that of the linear system is referred to as gain compression and an increase in gain due
to the nonlinear behaviour of the system is called gain expansion. To illustrate these
phenomena, apply the single sinusoidal input given by

u(t) = |A|cos(@t + £A) (3.13)

The response of interest is the fundamental response which, from (3.4) and (3.11), 1s
expressed as

3 2 5 ot fo)
y(@w) = Re{A[Hl(w)+i|A| HB(—CJ,EU,ED')+§|A|4 H.(-w,~w,0,0,7)+ } e’ } (3.16)
The gain of the system at the fundamental frequency @ is

8T =

gain

=lHl(wH%\AFH3(—w,m,m)+§[A|“ Hs(—w,—w,w,w,w)nt---\ (3.17)

y(t,@)
A

For a linear system all generalized frequency response functions above order one will be
equal to zero and the gain § ;ﬁn at the fundamental frequency @ will be a constant that is

equal to the magnitude of the linear frequency response function evaluated at frequency @

The output amplitude will then be linearly proportional to the input amplitude ]Al However,
the GFRFs will be non-zero for a nonlinear system and so the gain at the fundamental
frequency @ will depend nonlinearly on the magnitude of the input signal.

3.5 Intermodulation

The process by which two or more signals combine in a nonlinear manner to produce new
frequency components is termed as intermodulation.

It is obvious that the system nth-order output (3.9) under the excitation of two-tone input
(3.7) includes new frequency components at the intermodulation frequency

@, =(m —m_)@, +(m, —m_,)@, (3.18)

Having already introduced the phenomena of harmonics, gain compression /expansion and
desensitisation, a more restrictive interpretation for intermodulation will be given here.
Specifically intermodulation is used to refer to only those nonlinear frequency components,
resulting from frequency mixes, that are not included in the above categories. For example
components produced by the frequency mixes
(@, +@, +@,). (@, +@, —o,),(@, + @, -v,)and (@, +@, —@,) are classified as belonging
to the categories of harmonic, gain compression/expansion, desensitisation and
intermodulation respectively.
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4. Multi-dimensional Frequency Domain Space and Visual Representation

Both the input and output spectra of any nonlinear system are one-dimensional and have
clear physical meaning. However, the multi-dimensional nature of the GFRF's and the system
input/output frequency domain description shown in equations (2.7) and (2.8) raise questions
relating to the mechanism by which the one-dimensional output spectra is produced from
interactions of the system GFRF with input spectra in a high-dimensional frequency space. In
this section, a theoretical foundation built upon previous work will be presented to provide
insights into the mechanisms associated with the multi-dimensional frequency domain. Two
important conceptions—input/output frequency subdomains are described initially and then,
as supplements to the theory, special consideration for discrete-time nonlinear systems are
discussed. Finally, graphical techniques to display the third order GFRF are introduced.

4.1 Input Frequency Subdomains
Input frequency subdomains in an n-dimensional frequency space over which the
relationship (2.6) is established, are defined as domains where the input spectra
U(jw,),i=12,...,nin equation (2.6) exists and can be described by
@, <w, <,
and i=12,..0% 4.1

-, S, X —T,

if the input of a nonlinear system has the continuous spectrum in [ ” ,wb], or

@ e {tw,, 5w ... 7@, }, i=12,..n (4.2)

if the input is a multi-tone sinusoidal signal with a discrete spectrum at
{iwﬂ ,iwﬁ,...,iwjm}. Obviously the total number of input frequency subdomains in an
n-dimensional frequency space is n, as each of the input spectra U(j@,),i =12,...,n hasits
own input frequency subdomain along the @, -axis. If the input signal is a white noise, the

input frequency subdomains will be the whole n-dimensional frequency space. In this sense,
an n-dimensional frequency space over which equation (2.6) is defined can be called an input
frequency domain. Fig. 1(a) illustrates this concept for the case of a two-dimensional
frequency space with a general band-limited input whose spectrum lies in the frequency
interval [@'d,wb]and [— w, ,—wa]. A much simpler example is shown in Fig. 1(b), where the

system is excited by a two-tone input with discrete spectra att @, and+ @, .
It is observed that the system is only excited at the common areas or the intersection points

of the input frequency subdomains corresponding to the Cartesian product HU( j@;)in
i=1

(2.6). It is also in these areas that the nonlinear phenomena described in the previous section
OCCUr.
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Fig. 1 Input frequency subdomains in a two-dimensional frequency space
(a) a general band-limited input. (b) a two-tone input

4.2 Output Frequency Subdomains

Recall that from equation (2.14) the system nth order output spectrum Y, (j@)at the
frequency componente,, can be determined by the integration of the multivariable function
Y (j@,,---, jo,) over the hyperplane in an n-dimensional frequency space. This is given by

out

i n
@, =+ T, = 0, (4.3)
i=1

and any set of points of Y, (j@,, -, j@,) whose coordinates conform to (4.3) contribute
to the same output frequency @,,. The hyperplane (4.3) will therefore be called an output
frequency subdomain.
% JLE}E

M N e N Wy, -2X18
N % N
N N NN
N i AN
h N
N N
N e
Ry = m%ﬁ h a
\
N N
% N
N G, SOt =T,
N
N
N
m;‘, =m; +a, =0
d.c. output

Output frequency subdomains
lines in a two-dimensional space

Fig. 2 Output frequency subdomains in a two-dimensional space
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Fig. 2 illustrates the concept of output frequency subdomain for the case of a second order
system, where the output frequency subdomains are given by linesw,,, =@, + @,

The distance from the origin to an output frequency subdomain, the dashed lines in Fig. 2,
can be decided by geometrical means to be @, / V2. Asa consequence, the line @, =@,,
which is orthogonal to all output frequency subdomains, can be perceived as the @, -axis,
on which the coordinate proportionally indicates the real output frequency @,, by a
constant 1/ V2.

A more complicated example for a three-dimensional frequency space is shown in Fig. 3,
where the output frequency subdomains become planes described byw , =@, +@, +T;

while the @, -axis this time runs along the line @, =@, =w;. It is also worth mentioning

that the distance from the output frequency subdomain to the origin now becomes @, / NER

In general, although the dimensions of the output frequency subdomains increase with the
order of the output (from a line to a plane or even a hyperplane), the @, -axis will always be
the line orthogonal to all output frequency subdomains, described by
@ ==, (4.4)

1

and the distance from the origin to an output frequency subdomain (4.3) is given by

TV

w3

wout-axis

@, =0, +@, +@; =0 T, =0, +0,+T, =T,

out

Qutput frequency subdomains
planes in athree dimensional space

Fig. 3 Output frequency subdomains in a three-dimensional frequency space




Now that the concepts of input and output frequency domains have been introduced, some
useful results can be instantly achieved based on this framework. Notice that the integrand
Y (jo,, -, jo,)in (2.14), which is given by (2.6), is defined only at the intersection points
of the input frequency subdomains in an n-dimensional frequency space (the cross squares in
Fig. 1(a)). Therefore the integration in (2.14) will be restricted on the output frequency
subdomains, which pass through the intersection of input frequency subdomains. That means
the output frequency components, which a nonlinear system could generate, are decided
uniquely by the system input spectrum, To illustrate this result, suppose that a second order
system is excited by a two-tone input described by (3.7). The input and output frequency
subdomains in this case are plotted in Fig. 4. Clearly, only those components, whose
corresponding output frequency subdomains (dashed lines) pass through the intersection of
the input subdomains (big dots), will appear in the system output. More significantly, some
nonlinear phenomena, for example, harmonics (e.g., 2w,, 2w, ) and intermodulations

(e.g..w,+w,, w,—w,) are revealed in Fig. 4 to show that a considerable insight into the

properties of the frequency response of a nonlinear system can be obtained using this new
analysis method.

1 W, -axis
H \ \ H N out
N ¢ N <
NS '
N N N :
h N i \\\ b ke N, = 2@'5
N N N ~ barmonic
0 N < \
N @,
L .S N | % @
h X, =Yy et ° Qwi’ @, =0,+d,
O @ N N intermodulation
% N\ N
N N N N
\\ ’ \ \ za-om e Zm‘-a
k' \ Q\ M N harmonic
N —w, \\\i \‘ @, = w, —w,
% N M N I N intermodulation
" % L N
3 N @y =0
d.c.

Input frequency subdomains : dotted lines
Qutput frequency subdomains: dashed lines

Fig. 4 Output frequency components of a second order system with a two-tone input

4.3 Associated Problems for The Discrete-time Nonlinear Models

The input/output frequency subdomains have been illustrated within the analogue
frequency space corresponding to continuous-time systems. These ideas can be readily
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extended to the digital frequency space. The multidimensional digital frequency space
however has its own characteristics and care needs to be exercised when focusing on a
discrete-time nonlinear system.

Consider again a second order Volterra system with an input signal, which has been
lowpass-filtered to attenuate all frequency components above®,, ., . The input and output

frequency subdomains in a two-dimensional analogue frequency space are plotted in Fig. 5.

(ZE7N w - -axis

out

out in _ max

Fig. 5 The input and output subdomains of a second erder Volterra system with input frequency

components confined in [0,@,, ..}

From the analysis in §4.2, since the input signal has no frequency components above

w the maximum frequency @,,, .., of the output for this second order Volterra system

in_ max ?

case satisfies the following relation,
@ =2w, (4.5)

oW _max in_max

as illustrated in Fig. 5. Therefore, if the input/output signals are uniformly sampled at the
same sampling frequencyw,, @, must meet the following requirement to avoid aliasing of

the output signal

w, 22w =4 (4.6)

out _max in_max

Consider a discrete-time quadratic model derived by sampling the corresponding
continuous-time second order Volterra system under the sampling condition (4.6), then the
input/output frequency subdomains in a two-dimension digital frequency space will be as
shown in Fig. 6(a)

According to digital signal processing theory, the sampling frequency is mapped to the
digital frequency 27 and the DTFT of a discrete-time sequence or a sampled time signal is a
periodic function of the digital frequency @, with period 27 . For a discrete-time quadratic
Volterra system under the sampling condition (4.6), the input spectrum repeats itself with
period 27 along each input frequency axis @, in a two-dimensional digital frequency

space whereas the output spectrum is a periodic function of @, with period 27 .
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Normalised frequency coordinates will be wused in graphical representations of
multidimensional frequency functions in this paper where the main interest is the relationship
between the input and output frequency. This paper employs the convention that for discrete
systems the unit frequency is the Nyquist frequency, namely the sampling frequency. All
frequency quantities are normalized by the Nyquist frequency. For a system with a 1000 Hz
sampling frequency, for example, 300 Hz would be represented as 300/1000 = 0.3.
Normalized frequency is converted to digital angular frequency around the unit circle by
multiplying by 7z . To convert normalized frequency back to Hertz, multiply by the sampling
frequency, in this case 1000 Hz. Fig. 6(b) is simply a copy of Fig. 6(a) but with the units
changed to be normalised frequency.

w_  -axis f;; y

out

%
g B
\
BN
Z’-_:Taw = fnu: =-0.5
(2) unit in digital frequency (rad/s) (b) normalised frequency

Fig. 6 The input/output subdomains of a guadratic discrete-time Volterra system
in a two-dimensional digital frequency space.

More generally, for an nth-order Volterra system where only the input spectra are known
beforehand, the following sampling condition must be satisfied in order to avoid aliasing at
the output

w, 2 2nXw, 4.7)

in_max

where @, is the maximum frequency of the input signal. Moreover, the regions of

interest in an n-dimensional digital frequency domain for a discrete-time Volterra model or
other equivalent discrete-time models (e.g. a NARX model) is the input frequency
subdomains defined by

w, <Z o I Szi (normalised frequency) (4.8)
n n

4.4 Visualisation Of GFRFs Defined In Higher Dimensions

Visualization is the use of graphical representations to make certain characteristics or
values more apparent. Visualization conveys information by employing geometric forms,
surfaces, solids and colours that are mapped to data values in particular ways.
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In terms of the problems in this paper, the advantage of graphical methods to understand
the concepts of input and output frequency subdomains has been shown in §4.1 and §4.2.
Graphical techniques for the visualisation of a function with two variables are well
established and applications to the analysis of the second order generalized frequency
response functions are documented in numerous papers. However, although many nonlinear
systems can be adequately described by a trumcated Volterra series, which reduces the
complexity of the problem, for a more accurate approximation, a Volterra model of at least
third order is required in many cases. Therefore methods for exploring the properties of the
third order GFRF need to be developed. This section introduces visualization techniques for
both the magnitude and phase frequency response functions of a third order nonlinear system.
Further analysis will be introduced in Part 2 of the paper using these graphical techniques

To illustrate the development, consider a cubic nonlinear system described by a polynomial
NARX model with a simple input nonlinearity

y(k) = y(k —1)—0.9y(k —2) +0.5u(k —1) + 0.8u> (k — 1) + 0.21° (k —1) (4.9)

The second order GFRF is computed using the recursive probing algorithm (Peyton Jones
and Billings 1989), to give
0.8 g mr™)

H?_(]ZUI, JWZ) = P e—j(rzrﬁm':) =2 O.9ef»j(ml+m) (410)

200
100

@

& ol

=

o
-100
-200 0.5
-0.5

5 0
f1 (normalised) f2 (normalised) f (normalised) f2 (normalised)
0.5 -0.5 0.5 0.5
(a) The magnitude frequency response (b) The phase frequency response

Fig. 7 The magnitude and phase plots of H, (jm,, j@,)in equation (4.10)

The magnitude and phase response of this system can be easily visualized using the plots in
Fig. 7.
For the third order GFRF, which is given by

0_2‘2‘-;'(1:::'1 +@, +w3)

Hs(jzzrl,jzzrz, ij’) = 1_e*j(w1+wg+w3) + 0.98—3}(W1+W2+W3) (4.11)

a graphical representation similar to Fig. 7 , but with one of three frequencies fixed, only
reveals a partial image, from which only a limited amount of information about the third order
GFRF can be gained. In this section, a set of “Volume Visualization” techniques will be
introduced to give an overall view of the third order response function. Volume visualization

is the creation of graphical representations of functions that are defined on three-dimensional
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orids. To implement these techniques, His deliberately sampled at equal frequency
intervals, typically at 0.05 normalized frequency. Fig. 8 shows a graph of the magnitude
response function of H, given by one of these techniques, where each ball at a lattice point
represents the magnitude of H., at that point and the magnitude value is indicated by the size
of the ball. Such graphs are very helpful in observing the spatial distribution of K. Further
information about the overall structure of H,can be gained by using another technique called

“Isosurface”. Isosurfaces are constructed by creating a surface within a three-dimensional
frequency space that has the same value at each vertex. Isosurface plots are similar to contour
plots in that they both indicate where values are equal. The application of isosurface
techniques for this example is shown in Fig. 9, where the value of each isosurface is suggested
by its colour.

_ Magnitude
B3 047
0.4 — 0 I
0.3~
0.2

=
I

1

=

-
|

w3(normalised)
Q
|

B EEE
._oLh-s-wM
(5 - TS R Y

05 -0.5 w2(normalised)

wl(normalised)

Fig. 8 The magnitude frequency response of H, given by equation (4.11)

Visualisation of the phase frequency response of H,is treated in a different way. The
calculation of the phase response using the inverse tangent function constrains the results in
the principal value range [— n’,yz]. This feature allows the phase response to be viewed as a
vector with only two possible directions. Fig. 10 displays the phase response of Husing a

“coneplot” technique which plots the phase response as cones pointing in either an upward or
a downward direction, depending on whether the phase response at the corresponding point is
positive or negative.
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Fig. 9 The Isosurfaces of the magnitude frequency response of H 4 given by (4.11)
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Fig. 10 The phase frequency response of H 5 given by equation (4.11)
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5. Conclusions

The concept of input/output frequency subdomains has been presented to expose the
relationship between one dimensional (where the input/output spectrum exists) and
multidimensional (where generalised frequency response functions are defined) frequency
spaces. The new graphical techniques have been introduced to allow the visualisation of the
magnitude and phase of a third order GFRF for the first time.

Part 2 of this paper will present symbolic expansion techniques to reveal the structure of
GFRFs. Based on these results, new methods are developed to analyse the characteristics of
GFRFs graphically and symbolically.
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