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Abstract

For moving animals, the successful avoidance of hazardous obsta-
cles is an important capability. Despite this, few models of collective
motion have addressed the relationship between behavioural and so-
cial features and obstacle avoidance. We develop an asynchronous
individual-based model for social movement which allows social struc-
ture within groups to be included. We assess the dynamics of group
navigation and resulting collision risk in the context of information
transfer through the system. In agreement with previous work, we find
that group size has a non-linear effect on collision risk. We implement
examples of possible network structures to explore the impact social
preferences have on collision risk. We show that any social hetero-
geneity induces greater obstacle avoidance with further improvements
corresponding to groups containing fewer influential individuals. The
model provides a platform for both further theoretical investigation
and practical application. In particular, we argue that the role of so-
cial structures within bird flocks may have an important role to play in
assessing the risk of collisions with wind turbines but that new methods
of data analysis are needed to identify these social structures.

Introduction1

Collective motion can be observed in a wide variety of biological systems,2

inspiring scientists to investigate the mechanics behind such apparently com-3

plex behaviour [1–4]. Many of these studies have developed individual-based4

models to assess the effect of behavioural and environmental factors [5–9].5

These models simulate motion through local interactions by applying rules6

based on proximity with individuals exhibiting three core behaviours: repul-7

sion (avoiding collision with other individuals); orientation (aligning with8

nearby individuals); and attraction (movement towards distant individu-9

als) [5, 10]. Additional rules can be incorporated to represent environmen-10

tal factors, for example, navigation towards a target or response to preda-11

tors [6–8,11].12

Typically, such individual-based models do not constrain the number13

of interactions that contribute to the motion of an individual. These are14

known as “metric” models, as they sum the interactions with all cues within15

a given distance of a focal individual [6, 7, 9]. However, empirical evidence16

suggests that social interactions may in fact be topological, with each indi-17

vidual responding only to a fixed number of other individuals [12]. Studies18

which develop an asynchronous updating method have demonstrated that19

this topological property for interactions emerges spontaneously [8]. Signif-20
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icant features of this modelling approach include varied speed distributions21

and emergent stochastic noise in the decision making process, both of which22

contribute to a greater degree of biological realism.23

The importance of this updating scheme becomes apparent when indi-24

viduals interact with other environmental factors and averaging becomes25

inappropriate. Of particular interest is when these environmental factors are26

of significant societal or conservational relevance. For example, a growing27

demand for renewable energy has led to a significant increase in the num-28

ber of wind farm developments [13]. Wind farms are often sited in areas29

which intersect existing flight paths of migratory bird species, thereby form-30

ing a potential barrier to movement [14]. It is important that we understand31

the impact such developments could have on the level of avian mortality32

as a direct result of collisions in order to protect the population of at risk33

species [15]. There is considerable variablility in the collision risk for avian34

species from wind turbines, not least due to variable sampling techniques35

and carcass loss from scavengers, estimates for per turbine collision rates per36

annum span 4 orders of magnitude [15]. However, few studies in the field37

of collective motion have investigated the interactions of bird flocks with38

wind turbines or other obstacles [16, 17], primarily because of ambiguity in39

the methodology for incorporating obstacles (and their avoidance) within40

existing models.41

Previous work investigating the interaction of groups with a single ob-42

stacle shows that group size has a non-linear relationship with collision risk,43

and that whilst initially social interactions cause a higher per capita risk of44

collision this is reduced with further increases [9]. This has implications for45

the modelling of real-world applications, especially for avian collisions where46

current probabilistic models [18] have no explicit dependence on group size47

and cannot incorporate changes in behaviour driven by social dynamics [19].48

Recent studies using an asynchronous update scheme have outlined a49

robust framework to investigate the effect of complex behaviours such as50

the influence of social networks [20]. This has important applications in51

simulating real-world animal movement where empirical evidence suggests52

that both ability and influence are unlikely to be distributed evenly [21–23].53

The results show that when compared to previous studies, which focus on54

the effects of varied ability [6,24,25], underlying networks representing sim-55

ple examples of leadership can have a significant impact on group dynamics56

and navigational performance. Whilst leadership provides one example of57

a social network structure, other characteristics such as clustering, as a re-58

sult of strong interactions between members of family groups, could also be59

present and have the potential to produce distinct group behaviours. This60
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highlights the importance of identifying plausible network structures in or-61

der to produce realistic simulations of animal movements. In the case of62

geese such networks structures are not well established; and in pigeons it63

has been shown that in-flight hierarchies cannot be inferred reliably from64

ground-based networks [23]. Network structures in other systems are better65

developed, for example in humans [26], in other social animals [27] and in66

other application areas [28,29].67

Here, we describe an individual-based model with an asynchronous up-68

dating algorithm to investigate group interactions with obstacles. Using this69

model we explore the response of individuals to changes in group size. We70

determine the effect this may have on collision risk; initially with a single71

obstacles, and then with an array of obstacles representing a typical wind72

farm. We parametrise and then continue to simulate group interactions with73

an obstacle array, investigating the impact underlying social networks have74

on collision risk by comparing four example networks (homogeneous, ran-75

dom, clustered and leadership; to be defined in Methods) each representing76

a distinct structural characteristic. We discuss how different environmental77

factors may contribute to collision risk paying particular attention to the role78

of weather conditions, such as environmental turbulence and visibility. These79

factors have proved difficult to assess empirically as many studies rely upon80

a degree of visual observation to determine behaviour [15, 30, 31]. Finally,81

we investigate the trade-off between avoidance and migratory pressures such82

as energetic efficiency [32] by introducing a fixed straight route which group83

members attempt to follow, thereby minimising energy expenditure. Such84

behaviour imposes a previously ignored cost to obstacle avoidance which may85

have an important impact on predicted collision risk.86

Methods87

Modelling Framework88

The model is adapted from the stochastic implementation outlined in [20].89

Groups consist of a set of {1, . . . , N} individuals each represented by a posi-90

tion xi and a unitary heading vector v̂i in continuous two dimensional space.91

Inspired by computational techniques for object reconstruction, obstacles are92

represented by a finite set of {1, . . . ,M} vertexes and connecting edges [33].93

Each obstacle vertex is represented by a position p
i
and an outwardly facing94

normal vector n̂i. By describing obstacles in this way we provide a flexible95

approach for approximating any shape, size or orientation without the need96

for complex differential geometry. The degree of error in this method can be97
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controlled by varying the number of vertices which comprise each obstacle.98

This allows us to distinguish between obstacles of equal size which induce99

different avoidance potentials, for example as a result of varying levels of100

transparency. In this study we minimise the error in behavioural response101

by adopting a standard spacing of 1 spatial unit between vertices; provided102

the minimum distance used to categorise behavioural response is greater103

than this value individuals will detect the obstacles and react appropriately.104

Motivated by our wind turbine application, obstacles are considered to be105

transparent to the extent that they do not occlude vision.106

In common with established models [5, 6, 10] an individual determines107

a direction of motion by responding to selected navigational cues within a108

given sensory zone, including migration towards a particular target. This109

sensory zone is defined by a circle of radius Ra centred on the individual,110

with an omitted blind angle β to the rear [34]. However, unlike these models,111

individuals are updated asynchronously according to the following algorithm:112

1. Choose individual i at random.113

2. Choose an “update partner” j (which may be another individual, an114

obstacle vertex, or the target direction) with probability Pij at random115

from all stimuli within sensory zone (see below). If there is no stimulus116

then continue on current heading.117

3. Determine v̂i in response to chosen partner j.118

4. Update xi and v̂i.119

We ensure that each individual updates on average once per time interval120

∆t by performing N realisations of the steps 1-4 [35]. Simulation outputs121

are recorded every τ = λ∆t seconds, where λ (≥ 1) defines the average122

number of updates performed by each individual. When λ > 1 the resulting123

behaviour between consecutive model outputs is the sum over a number of124

updates [20]. The choice of λ is discussed in table 1.125

The probability of an individual selecting a particular update partner is126

initially weighted based on the type of interaction. Interaction weighting are127

defined as social (ws), obstacle (wo) and target (wt). Each of these weightings128

is modified according to a spatial relationship providing distinction between129

partners of the same type. Social and obstacle interactions are each scaled by130

a factor equal to the inverse of relative distance (dij = |xj − xi|); capturing131

the averaged effect of visual occlusion. In addition, obstacle vertices which132

appear outside of the frontal region defined by a sector of angle α and radius133

greater than Rr
o are considered to have a weighting of zero.134
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In order to emulate the effect of social networks within the group we135

construct an underlying fixed matrix with elements eij (≥ 0). This matrix136

remains unchanged through the simulation and contains information on the137

long-term social preference and bonds between group members. The factor138

ǫi,j further scales the probability of an individual i selecting a particular139

neighbour j. The details and implications of this methodology are discussed140

in detail elsewhere [36,37].141

Finally, the weighting for target navigation comprises two parts, a con-142

stant directional part (wt0), and a variable part (wt1) which is determined by143

a function of the angle between the individuals current heading and its ideal144

target direction (φ). As an individual orientates away from its ideal target145

heading this angle becomes greater, increasing the target selection weighting.146

This simulates a desire for group members to follow a particular route with147

strong route fidelity, a well established trait of migratory birds (e.g. [38]).148

In summary, for an individual i in a group with individuals n = {1, .., N}149

augmented with the obstacle vertices m = {1, ..,M} and the target, then150

update partner j ∈ {1 +N +M} is chosen with probability:151

P s
ij = (

wseij

dij
)w−1, P o

ij = (
wo

dij
)w−1, P t

ij = (wt0 + wt1(1− cos(φ))w−1

where w is the sum of weighting for all stimulus. P s
ij , P

o
ij , P

t
ij denote the152

probabilities for social, obstacle and target interactions respectively. It is153

important to note that this differs from previous implementations of this154

model [20] which use a constant probability for the target; here the target is155

merged into the pool of update partners that can occur at each micro-step,156

and as a result the target preference is dependent upon the weight of other157

stimuli.158

Once a partner has been selected, the updating individual must deter-159

mine how to respond according to the type of update partner. If a neighbour160

is selected, then the focal individual’s sensory zone is divided into hierar-161

chical interaction zones of radius Rr
s, Ro

s and Ra which dictate whether162

repulsion, orientation or attraction manoeuvres are performed respectively.163

Here, attraction manoeuvres are applied with a velocity of 2v0, represent-164

ing the increased thrust required by an individual to reduce their distance165

to neighbours, maintaining group cohesion. Similarly, if an obstacle vertex166

is selected a repulsive manoeuvre is applied within a zone of radius Rr
o.167

For any vertices which appear at a distance greater than Rr
o we apply a168

pre-emptive avoidance strategy equivalent to social alignment which aims169

to limit more extreme repulsive action. Previously, it has been proposed170
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that individuals should attempt to align themselves with the surface of an171

obstacle at the point of interaction [9]. For birds, which have been shown172

to have largely monocular vision [17], this type of information requires a de-173

gree of depth perception that is likely to be beyond their sensory capability.174

Instead, in this model we suggest a simpler response where individuals turn175

away from obstacle vertices to maintain a minimum angle of α between their176

heading and the trajectory intersecting the vertex. The cumulative effect of177

this response results in an individual attempting to avoid an obstacle on a178

trajectory which requires the least deviation from its current heading.179

If target navigation is selected then an individual aims for a point that180

is a fixed distance (dt) from its current projected position along the group181

target trajectory, inspired by route fidelity found in other species. This182

target trajectory is defined by the straight line starting at the initial group183

centre of mass and continuing indefinitely in the direction specified by a fixed184

target vector (v̂t). This implements instantaneously perfect navigation on a185

linear route. Other studies have considered error in navigation [7], but when186

this variation is introduced into the model presented here it is dominated187

by the inherent noise in the underlying algorithm [39]. For the application188

to collision avoidance, navigation error is therefore of less importance then189

some of the other features varied in our analysis.190

To represent the finite ability of an individual to execute a turn in the191

direction of its preferred heading, we implement a maximum turning rate of192

θ. In simulations which apply a movement error to represent environmental193

turbulence we rotate the calculated heading vector, following the application194

of a turning limit, by an angle randomly drawn from a Von Mises distribution195

with mean of zero and equivalent standard deviation we. Intersections with196

obstacles are recorded when the trajectory of an individual intersects either197

an obstacle vertex or connecting edge. In this implementation of the model198

we consider the probability of these intersections resulting in a fatal collision199

to be zero. Consequently, intersecting individuals are not removed from200

simulations.201

We compute various metrics to summarise the data from our simulations.202

Target navigation ability is defined as the fraction of the trajectory that203

all birds spend travelling to the target direction. This is computed as the204

dot product of the mean group direction with the target direction, scaled by205

the mean distance traveled, averaged over the simulation. The probability206

of splitting is computed by calculating the fraction of simulations which207

contain more than one group at a fixed time period after passing the line208

y = 0. This include both spontaneous splitting and interaction with the209

obstacle to enable a measure of relative disruption to be computed. The210
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number of groups is calculated using an equivalance class relation with the211

equivalence based on the radius of alignment. The probability of avoid-212

ance is computed by averaging the number of individuals which intersect213

a single wind turbine (micro) or array of wind turbines (macro) across all214

independent simulations of a given scenario. The latter measure is utilised215

in all except figure 2(a), as noted in the captions.216

Parameterisation217

Parameters are chosen to nominally represent flocks of pink-footed geese218

(Anser brachyrhynchus) interacting with an array of wind turbines. Where219

possible parameter values have been taken from empirical data. Time and220

space steps, and model parameters, are related to their real world units and221

values in Table 1. Following [40] the width of obstacles used in simulations222

is fixed at 100 metres, which represents a typical offshore wind turbine.223

In simulations where we investigate the effect of heterogeneity in the224

abilities of group members, the values of obstacle avoidance and target pref-225

erence are varied. For each individual the parameters stated in table 1 are226

scaled by a value randomly selected from a normal distribution with mean227

equal to 1 and standard deviation wh, which provides a quantification for228

heterogeneity.229

In order to simulate underlying social networks we define interaction230

matrices with elements eij denoting the strength of the social connection231

individual i has towards neighbour j. For a unitary homogeneous net-232

work we consider connections between neighbours to have a weight equal233

to 1 (eij = 1). Connections between the same individual are disallowed234

(eii = 0). Random networks are generated relative to this unitary ma-235

trix so as to maintain a balance between the average weight of all detected236

social interactions relative to obstacle and target interactions. Initially, we237

assume that all individuals are at least weakly connected with weight wn.238

Connections are selected at random and incremented by wn until the sum of239

all elements is equal to that of the homogeneous case.240

For clustered and leadership networks the connections which can be241

incremented are limited to a specific subgroup. In the case of a leadership242

network l individuals are randomly identified as leaders. The only matrix243

elements which can be incremented are those which describe the connections244

from a remaining group member to any of these leaders. In the case of245

clustered networks, group members are assigned a number between 1 and c246

representing a fixed number of subgroups. The only matrix elements which247

can be incremented are those which describe the connections between group248
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members with matching cluster index. Unless otherwise stated simulations249

use a unitary homogeneous network.250

Simulations251

Simulations consist of two phases: an initial warm up, followed by a phase252

of interaction with obstacles. Each phase is performed for a period of 1000253

time steps in an unbounded environment. The warm up phase allows groups254

to form a representative configuration in the absence of obstacles. Here, we255

define a representative configuration to mean that all individuals belong to an256

equivalence class where neighbours are declared equivalent if they are within257

a distance equal to the radius of alignment (Ro
s). Thereby, each individual258

must as a minimum be in a position to align with at least one neighbour.259

It should be noted that individuals can become permanently separated from260

the main group. In such cases where a representative configuration is not261

formed the warm up phase is repeated.262

The group is then reset with its centre placed on a selected origin and263

rotated so that the average heading is equal to the specified target direction.264

In simulations with a single obstacle we use a fixed origin which is located265

5000 metres from the obstacle centre in the target direction. Otherwise,266

groups interact with an array containing 25 obstacles uniformly arranged267

on a square grid at 500 metre intervals, the representative spacing of wind268

turbines [44].269

To focus on behavioural effects and minimise the effect of starting condi-270

tions we perform the following randomisation scheme on the initial positions.271

The origin is randomly selected on a line segment with midpoint 6000 metres272

from the array centre (approximately 5000 metres from the nearest obsta-273

cle) in the target direction and extending perpendicular to this vector. The274

group centre may be placed either side of the segment midpoint at a distance275

corresponding to the cross-sectional width of the obstacle array excluding a276

50 metre buffer zone at both ends. This guarantees that, if there is no avoid-277

ance behaviour, individuals will intersect the area bounding the array. By278

varying the origin of groups we sample all potential interactions with the279

array. To minimise the number of direct routes through the array we offset280

the angle of approach, between the target direction and the orientation of281

columns in the array, by 12 degrees, at which the probability of an individual282

avoiding all obstacles without evasion is negligible.283

Once the simulation warm up phase is complete, the phase of obsta-284

cle interaction is initiated, during which individual level trajectory data is285

recorded at discrete time intervals (τ). For each set of parameters we per-286
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Symbol Value Description and Unit (where appropriate)

N 30 Number of individuals within the group [9].
τ 1 Time interval for each individual to perform, on average, λ updates (in

seconds) [8, 20].
∆t 0.01 Time interval for each individual to perform, on average, a single update

step (in seconds) [8, 20].
λ 100 Update frequency represents the average number of updates an individ-

ual performs per second [8, 20,41].
v0 15 Average cruise speed in metres s−1 [32].
α 45 Angle of pre-emptive obstacle avoidance needed to observe a minimum

distance of Rr
o from vertexes.

β 60 Angle of rear blind region of an individual (in degrees) [34].
θ 80 Maximum horizontal turning rate (degrees s−1) [32].

Rr
s 2 Radius of social repulsion, in metres, representing the average size of an

individual, in this case the wingspan [32].
Rr

o 150 Radius of obstacle repulsion, in metres, average minimum distance main-
tained by individuals from obstacles, in this case geese from wind tur-
bines [30].

Ro
s 20 Radius of social alignment, in metres, maximum nearest neighbour dis-

tance within groups, in this case flocks of geese [42].
Ra 1000 Radius of attraction, in metres, representing the maximum perception

distance of an individual, in this case the maximum distance from wind
farms which geese show avoidance action [43].

ws 1 Social preference weighting, the priority an individual shows towards
selecting a neighbour for an “update partner”.

wo 1 Obstacle avoidance weighting, the priority an individual shows towards
selecting an obstacle vertex for an “update partner”.

wt 0.1 Target preference weighting, the priority an individual shows towards
selecting the target for an “update partner”.

wt0 0.1 Baseline target preference weighting, the minimum weighting which
guarantees successful navigation towards a designated target.

wt1 0 Variable target preference weighting, the coefficient which scales the
maximum target preference weighting.

wn 0.1 Network weighting, the magnitude of increments applied to interaction
matrix elements used in random network generation.

wh 0 Heterogeneity, the standard deviation of the normal distribution used to
vary avoidance and target preferences between individuals.

dt 30000 Target heading distance, defines the distance along group target trajec-
tory which an individual navigates towards. This is chosen to minimise
the lateral effect on group structure.

Table 1: List of parameters used in model simulations. Values stated are for a
typical group interacting with a square array of 25 obstacles. Where appropriate,
physical parameters have been set based on values from existing empirical studies.
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form 100 iterations and using this trajectory data calculate the statistics287

characterising group dynamics and collision risk.288

Results289

Prior to introducing any obstacles, the first step is to establish what baseline290

target preference is necessary for the model to reproduce the observed biolog-291

ical phenomenon of coherent group navigation along a nominated trajectory.292

Figure 1 summarises this process: Panel (a) confirms that the minimum293

target preference required, relative to a social weighting of unity, is approx-294

imately 10−2; Panel (b) shows that group cohesion is initially improved by295

a common navigational direction but that there exists a maximum baseline296

target preference of approximately 10−1, above which relative social prefer-297

ence is insufficient to maintain group cohesion. Combining these results we298

identify this maximum threshold as an appropriate value for baseline target299

preference across all group sizes. In addition to the results shown in figure 1300

we observe that mean nearest neighbour distance decreases as a function of301

group size, consistent with Hemelrijk and Hildenbrandt [45].302

We can now begin to explore the effect of avoidance preference in relation303

to collision risk (Figure 2). In common with a simpler fixed time step model304

[9], we find that avoidance is dependent upon group size, with smaller groups305

displaying an increased ability to avoid both single obstacles and arrays306

across all parameter values. Furthermore, it can be seen in figure 7 that307

this relationship can be non-linear. In the context of avian interactions with308

wind turbines we aim to identify a suitable parameter value for avoidance309

preference by comparing the data in figure 2(b) to estimated wind farm310

avoidance rates for migrating geese. This plot shows a sharp improvement311

in avoidance around a value of 1 with an average probability of avoidance312

across all group sizes reaching approximately 60%. This lies well within the313

range of estimates for wind farm avoidance observed by empirical studies314

which record values between 50 and 70% [46]. Empirical studies also observe315

that of the remaining individuals which enter the wind farm area more than316

99% successfully avoid all wind turbine structures resulting in an overall317

avoidance rate of approximately 99.8% [31,47]. However, it should be noted318

that there are some studies which record 100% avoidance [30] – for our chosen319

value of wo = 1 individuals entering the array are able to successfully avoid320

all obstacles.321

Using the parameter values identified above for all subsequent simulations322

we explore the effect that heterogeneity within a group has on collision risk.323
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Figure 1: Parametrising target preference for coherent directed groups.

For social groups (ws = 1) of varying size (N) in an obstacle-free environment, we
plot: (a) average proportion of distance travelled parallel with target trajectory;
(b) probability of a group splitting; (recorded after 1000 time steps) as a function
of baseline target preference (wt0). We observe that beyond a critical value (0 <

wt ≤ 0.1), dependent on N , navigation occurs directly along the target trajectory.
This common direction appears to improve group cohesion reducing the probability
of splitting but as wt0 increases further social preference is overwhelmed resulting
in an increased proportion of groups splitting.
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Figure 2: Avoidance of an obstacle does not guarantee avoidance of

an array. For social groups (ws = 1) of varying size (N) and baseline target
preference (wt0 = 0.1) we plot the probability of avoiding the region bounding an
array containing: (a) a single obstacle; (b) 25 obstacles uniformly arranged on a
square grid at 500 metre intervals; (recorded after 1000 time steps) as a function of
avoidance preference (wo). For each, group target trajectory intersects the array at
an angle which minimises the probability of avoiding all obstacle given no avoidance
behaviour. As expected the probability of avoidance increases with wo. However,
this relationship is not linear but instead shows a sharp step at a critical value of
preference particularly evident in (b). In common with previous studies [9] there
appears a dependence upon N , with smaller groups displaying a higher propensity
for avoidance. We note that the probability of avoiding all obstacles in case (b)
(not shown) is qualitatively similar to (a) with transitions appearing at marginally
lower values of preference. Consequently, groups demonstrate total avoidance of all
obstacles in (b) prior to any avoidance of the array as a whole.
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In particular, we exploit the potential of an asynchronous update scheme to324

implement varying types of underlying social networks which may influence325

group decisions.326

Figure 3 shows that different network structures have distinct effects on327

both the probability of avoiding an obstacle array and the resulting group328

structure. We see that groups which navigate according to a homogeneous329

network show the least ability to avoid obstacles, but demonstrate little330

disruption to group structure (measured by the probability of the group331

splitting). Comparing subsequent groups to this benchmark we notice that332

any degree of heterogeneity within a network produces a higher probability333

of avoidance, but that this can be at a cost to group cohesion. This is334

most notably the case for leadership groups, which demonstrate the highest335

probability of avoidance but also a high probability of splitting. For these336

groups we see that avoidance is related to the number of leaders, with fewer337

influential individuals providing the highest levels of avoidance. The number338

of leaders does not affect splitting, which remains high. Clustered groups339

appear to follow a pattern similar to that seen for group size. Here, as the340

degree of clustering is increased, thus reducing the number of individuals341

per cluster, we observe an increase in avoidance. This is matched by an342

increase in the probability of splitting suggesting that clusters may begin to343

act independently as their size is reduced.344

For all networks the probability of avoidance shows a bimodal distribu-345

tion in that, for a given simulation, either all group members traverse the ar-346

ray, or all successfully avoid the array. This is of particular significance when347

considered with figure 4 which maps the trajectories of groups responding to348

the array. Despite varying probabilities of avoidance we see only marginal349

differences between movement patterns. This suggests that avoidance is lim-350

ited by the ability of a group to initiate an avoidance response rather than351

an ability to perform the action. The horizontal trajectories seen for lead-352

ership networks (panel (d)) are likely due to a loss of contact with the lead353

individual during separation. A lower preference for other group members354

increases the probability of separations becoming permanent resulting in this355

self-navigation through the array.356

Motivated by previous studies [6, 24], we then introduce groups which357

contain individuals with heterogeneous abilities, in this case the preference358

for avoidance and target navigation, i.e. (wo)i = wo + wh ∗ N(0, 1) and359

similarly for the target weighting for each individual i. The results shown360

in figure 5 demonstrate that as the magnitude of heterogeneity is increased361

groups experience an increased disruption to group cohesion and reduced362

probability of avoidance. This suggests that the relative variation of avoid-363
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Figure 3: Heterogeneous social structure promotes obstacle avoidance.

For social groups (ws = 1) of 30 individuals with baseline target preference
(wt0 = 0.1) and avoidance preference (wo = 1) intersecting an array containing
25 obstacles uniformly arranged on a square grid at 500 metre intervals, we plot:
(a) probability of avoiding a region bounding the array; (b) probability of a the
group splitting; (recorded after 1000 time steps) for various examples of underly-
ing social network (homogeneous, random, clustered and leadership), as a function
of network structure index indicating the precise number of clusters or leaders in
respective network types (homogeneous and random networks are invariant). We
observe that homogeneous groups display the least avoidance ability, generally fol-
lowed by random networks. Clustered networks produce increasing avoidance and
splitting with the number of clusters. Groups which employ a single leader exhibit
the highest levels of avoidance but as the number of leaders increases avoidance is
reduced.
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Figure 4: Similar movement patterns for distinct network structures.

Mapped trajectories for groups with baseline target (wt0 = 0.1) and avoidance
preference (wo = 1) intersecting an array which contains 25 obstacles uniformly
arranged on a square grid at 500 metre intervals and: (a) homogeneous; (b) random;
(c) clustered; (d) leadership; underlying network structures. Each plot displays
trajectories for 100 groups (light grey) of 30 individuals. 10 groups are highlighted
(dark grey) with a focal individual (black). In (d) this focal individual represents the
group leader. These plots can be compared to empirical data presented in [44]. We
observe similar patterns of movement for all networks with only marginal differences
in coherence ((b) shows less splitting) and cohesion ((c) shows high and (d) low
density reflecting neighbour distances). See also supplementary movies S1a - S1d,
corresponding to the panels in this figure.
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Figure 5: Variable ability reduces avoidance and group cohesion. For
social groups (ws = 1) of 30 individuals with baseline target preference (wt0 = 0.1)
and avoidance preference (wo = 1) intersecting an array containing 25 obstacles
uniformly arranged on a square grid at 500 metre intervals, we plot: (a) probability
of avoiding a region bounding the array; (b) probability of a the group splitting;
(recorded after 1000 time steps) for various examples of underlying social network
(homogeneous, random, 5 clusters and a single leader), as a function of hetero-
geneity wh (magnitude of variation in avoidance and baseline target preferences).
We observe that groups with a single leader are the most affected by changing
heterogeneity showing a decrease in avoidance and increase in splitting as abilities
become more variable. Clustered networks also induce this pattern although it is
less pronounced. Groups with homogeneous and random networks appear largely
unaffected by changes in heterogeneity showing only at small increases in splitting
at high levels.

ance and target preferences alters the balance towards target navigation. In364

general, we see that groups which rely on fewer individuals for navigational365

decisions are more affected by this variation.366

In order to assess whether the collisions observed by empirical studies367

could be explained by an increased risk as a result of environmental condi-368

tions, we vary the magnitude of movement error and the radius of attraction,369

the limit of an individuals sensory zone, to simulate turbulence and visibility370

respectively. Figure 6 shows that in both cases as parameters are varied to371

simulate poorer environmental conditions groups which rely on a particu-372

lar individual for navigation are significantly influenced, transitioning from373
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showing the most avoidance to the least. In the case of turbulence this result374

contradicts [7], which shows asocial groups navigate more effectively in vari-375

able environments than their social counterparts. However, the trajectories376

mapped in panel (b)(i) (when compared with figure 4(a)) support the idea377

that at least for social groups, target navigation is significantly affected by378

turbulence. In highly turbulent environments groups are less likely to fol-379

low the target trajectory intersecting the array, and so appear to improve380

their ability to avoid obstacles. For those groups which are able to maintain381

accurate target navigation, such as those which rely on a particular individ-382

ual, we have clear evidence that avoidance behaviour is susceptible to poor383

conditions. Our simulations suggest that in all groups environmental condi-384

tions affect avoidance behaviour, but the response is dependent on the social385

structure. The increased dependence on local decisions makes it less likely386

that the groups will enter the array but the effect of this is to cause greater387

disruption to the group which may have significant effects on other fitness388

costs not captured here.389

Despite the erratic movements of groups in turbulent environments (panel390

(b)(i)), individuals retain the ability to avoid obstacles and we observe no391

collision risk for any level of turbulence. This is not the case in environments392

which simulate low visibility. We find that, as visibility is reduced, group393

show much later and more extreme avoidance responses resulting in the394

stepped movement patterns in panel (b)(ii). Here, we see that for some395

groups the loss of pre-emptive avoidance means they are no longer able to396

react in time to prevent intersections with obstacles.397

Finally, we investigate the effect of introducing a variable target prefer-398

ence simulating the desire of groups to follow a direct migratory route with399

high fidelity. This is implemented by an allowing an increase in selection400

of an individual when the local angular deviation from the route increases.401

For comparison we parametrise the component of variable target preference402

such that with an inflated avoidance preference of wo = 3 the avoidance rate403

for a group of 30 individuals is equivalent to the typical case. It should be404

noted that the use of a variable target preference with this parametrisation405

does not alter the results seen for groups in obstacle-free or single obstacle406

environments. The plot in figure 7(a) shows that this need for route fidelity407

significantly alters the relationship between avoidance and group size, re-408

versing the trend from non-linearly decreasing with group size to show a409

marginal increase. The change in avoidance is most noticeable for smaller410

groups which show a reduction in avoidance whereas the values for larger411

groups remain relatively unchanged. In comparison with groups which apply412

no cost to avoidance, the mapped trajectories shown in panel (b) show that,413
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Figure 6: Leaderless groups appear less susceptible to environmental

factors. For social groups (ws = 1) with baseline target preference (wt0 = 0.1)
and avoidance preference (wo = 1) intersecting an array containing 25 obstacles
uniformly arranged on a square grid at 500 metre intervals, we plot: (a) probabil-
ity of avoiding a region bounding the array (recorded after 1000 time steps) as a
function of: (i) turbulence (we); (ii) visibility (Ra); for various social structures;
(b) trajectories for 100 groups of 30 individuals (light grey) with underlying ho-
mogeneous network in an environment where: (i) we = 0.1 (increased from 0); (ii)
Ra = 100 (decreased from 1000). 10 groups are highlighted (dark grey) with a focal
individual (black). Groups with a leader initially display the most avoidance but as
conditions worsen they transition to showing the least. Mapped trajectories show
that when visibility is reduced collisions can occur.
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despite evidence indicating an earlier initiation of avoidance, the response is414

limited by the increased route fidelity. Consequently, groups are much less415

likely to avoid the array when required to travel across the corridors between416

columns of obstacles.417

Discussion418

We have outlined a method by which obstacle interactions can be incorpo-419

rated into an asynchronous individual-based model without compromising420

biological realism. The novel mechanism by which our model balances social421

and navigational forces creates a trade-off between group interactions and422

responses to environmental cues. Social interactions are dependent not only423

on social preference but also relative distance, meaning that groups with424

decreased nearest neighbour distance will exhibit more social tendencies.425

When individuals interact socially they pass on indirect information about426

environmental cues. This information is necessarily ‘noisy’, but averaging427

across multiple neighbours can filter noise [7]. A complementary study [48]428

shows that the noise experienced by individuals can have an important role429

on group dynamics in the presence of obstacles – where this noise is small,430

the group may be too inflexible to adjust to the presence of obstacles and431

maintain cohesion.432

For environmental cues, such as target navigation, where the directional433

information is similar for all group members, averaging provides a robust434

method by which individuals can combine knowledge to formulate a cohe-435

sive group response. However, when individuals are subject to conflicting436

information averaging can result in an inappropriate group decision, as can437

be case for obstacle avoidance where response is highly dependent upon438

spatial position. This is of particular relevance where the ideal avoidance439

strategy is unclear, for example when an obstacle is spaced equally either440

side of the group centre. In such situations the movements of an informed441

individual or cluster can sufficiently influence group decisions to initiate a442

successful avoidance response [6] and break the decision deadlock [49]. This443

is consistent with our results for varied group sizes which show an increase444

in avoidance for groups comprising fewer individuals. Here, average informa-445

tion is obtained across a smaller sample thus allowing for a greater bias from446

particular individuals, with leaders emerging more frequently. When infor-447

mation cannot be resolved to achieve a unified group decision this results448

in the formation of localised subgroups which overwhelm the social bonds449

holding the group together and separate away in a different direction.450
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Figure 7: Route fidelity outweighs collision risk for small groups. For
social groups (ws = 1) with baseline target preference (wt0 = 0.1) intersecting an
array containing 25 obstacles uniformly arranged on a sEnergetic benefitquare grid
at 500 metre intervals, we plot: (a) probability of avoiding a region bounding the
array (recorded after 1000 time steps) for different sets of avoidance and variable
target preference (wo = 1, wt1 = 0 and wo = 3, wt1 = 2), as a function of group size
(N); (b) trajectories for 100 groups of 30 individuals (light grey) with avoidance
(wo = 3) and variable target preference (wt1 = 2). Groups with no consideration
for route fidelity show a non-linear relationship where avoidance decreases with
group size. When an cost to avoidance, due to a lack of fidelity, is introduced the
relationship with group size is reversed. Mapped trajectories show few avoidance
manoeuvres which cross multiple corridors between columns. Groups are most likely
to traverse the array along the nearest corridor in the target direction. Exceptions
occur when this is an outer corridor with groups instead choosing to navigate outside
the array.
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Our results show that underlying social networks produce significant dif-451

ferences to both group structure and navigational response. When compared452

with the leaderless homogeneous case described above, we find that for any453

underlying networks where preference is shown towards interactions with454

particular individuals, groups demonstrate a higher probability of avoidance.455

This is consistent with the similar improvements shown elsewhere [50]. This456

behaviour results from an increased bias within the group decision making457

process. Consistent with existing studies we observe that groups with fewer458

influential individuals provide the most effective response to contradictory459

environmental information [24]. In contrast with this type of leadership, ex-460

amples which simulate clustering show the emergence of smaller independent461

groups showing less cohesion but maintaining an ability to initiate avoidance462

actions without clearly defined leaders.463

Whilst a reliance upon fewer individuals for navigation can be beneficial464

it is also less robust to sensory variability [7]. When variation is applied to465

both target and avoidance preferences the ability of such individuals to lead466

a group may not justify the influence which neighbours show towards them467

resulting in impaired navigational responses. Conversely, we find that when468

movement error is applied to simulate turbulence groups which navigate469

either asocially or with a single leader maintain coherent target navigation470

even in highly disruptive environments. Unlike in Codling et al. [7] where471

this result represents a positive outcome, in our model avoidance ability is472

not maintained at a relative level and whilst other groups avoid the array473

as a result of inaccurate navigation those which maintain target navigation474

consequently intersect the array more frequently. However, it is clear that475

even at high turbulence individuals maintain a safe distance from obstacles476

which suggests in our chosen parameter range that the risk of collision is477

effectively zero. This is not the case when the sensory range of individuals478

is reduced, mimicking conditions of poor visibility 7. Collisions are observed479

when the sensory range falls below the radius of obstacle repulsion thus480

reducing the distance in which individuals have to respond to initiate an481

avoidance manoeuvre.482

Throughout this study we have assumed that collision rates are the result483

of deficiencies in sensory ability. We challenge this assumption by suggesting484

that all groups may in fact posses an ability to avoid obstacles but instead485

choose to enter arrays because of strong route fidelity related to migratory486

efficiency. By introducing a variable element to target preference which pro-487

duces an increasing desire to select target navigation as individuals deviate488

further away from the optimal target trajectory, we show that groups con-489

taining fewer individuals are much more likely to voluntarily enter the array.490

21



This has potentially important consequences for groups that are weakened,491

for example by lack of food, and may make different times of the year more492

important for collision vulnerability.493

The ultimate goal of this modelling study is to quantify the risk of avian494

collisions with wind turbines. We recognise that at present the model out-495

lined here is limited to specific scenarios in which individuals show no verti-496

cal avoidance. In reality, large-scale studies suggest that in good conditions497

birds, such as geese, favour vertical avoidance. Our modelling methods are498

amenable to generalisation to three-dimensions [31] where data are available.499

However, through simulations with an array containing multiple obstacles500

we demonstrate that the cumulative avoidance response to those obstacles501

is sufficient to produce movement patterns which can be compared to those502

recorded by empirical studies. We show that by selecting reasonable param-503

eter values we can reproduce estimated avoidance rates. Furthermore, we504

use the model to explore conditions which are difficult to assess empirically.505

These results reinforce the suggestion that birds are most at risk of collision506

when conditions reduce detection distance, for example during nocturnal507

navigation.508

The effect of social networks has not previously been modelled in the509

context of obstacle avoidance. We have shown in this study that social in-510

teractions can affect the ability of a group to perform suitable avoidance511

responses and it would therefore be ecologically informative to include real-512

istic social networks when assessing risk. The structure of networks has been513

shown to have considerable impact on group behaviour, in ecological exam-514

ples [6, 36] as well as in other biological settings [51]. Compared with our515

simple examples, goose social networks have been shown to be more complex516

and highly variable [21, 22]. The relationship between in-flight communica-517

tion networks and important social structures, such as foraging groups or518

family grouping, has been shown to have complex correlations which make it519

difficult to interpolate between them [23]. Therefore, caution must be exer-520

cised in making social inferences from in-flight interactions and consequences.521

Our results indicate that movement patterns, similar to those obtained by522

current radar studies which assess collision risk, cannot be used to infer the523

structure of social networks. This observation highlights the need for greater524

focus on the motion of individuals in the context of obstacle avoidance. To525

address these deficiencies new experimental approaches are necessary so that526

individual-based social network models can be verified and utilised to their527

full potential to predict avoidance rates in silico. With these advances it528

may be possible to inform decisions regarding the impact on birds prior to529

the construction of wind farms.530
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