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This paper looks at the first and second-best jointly optimal toll and road capacity investment 

problems from both policy and technical oriented perspectives. On the technical side, the paper 

investigates the applicability of the constraint cutting algorithm for solving the second-best 

problem under elastic demand which is formulated as a bilevel programming problem. The 

approach is shown to perform well despite several problems encountered by our previous work in 

Shepherd and Sumalee (2004). The paper then applies the algorithm to a small sized network to 

investigate the policy implications of the first and second-best cases. This policy analysis 

demonstrates that the joint first best structure is to invest in the most direct routes while reducing 

capacities elsewhere. Whilst unrealistic this acts as a useful benchmark. The results also show that 

certain second best policies can achieve a high proportion of the first best benefits while in general 

generating a revenue surplus. We also show that unless costs of capacity are known to be low then 

second best tolls will be affected and so should be analysed in conjunction with investments in the 

network.    
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1. INTRODUCTION 

Theoretical developments in road pricing have stemmed from applications of 

spatial economics and have concentrated on solving the second-best optimal toll 

problem where only a subset of links may be charged (see e.g. Verhoef, 2002).  

In addition to the work on pricing there have been studies into deriving optimal 

investment in capacity, usually of a single road link (Wheaton, 1978; Wilson, 

1983; and d’Ouville and McDonald, 1990). Mohring and Harwitz (1962) have 

shown that under certain conditions revenues from optimal pricing are just 

sufficient to cover the cost of optimal supply of road infrastructure.   

 

While the relationship between pricing and capacity is well connected, there do 

not appear many studies in the literature that combine the simultaneous analysis of 

both variables. In an era of tightly constrained budgets, this analysis provides a 

useful framework to consider the interactions of both decision variables. 

However, as with optimal pricing, optimal investment in capacity will not always 

be feasible, and so a second-best optimum investment must be sought.  

 

The focus of this paper is two-fold. Firstly, the paper aims to investigate the 

policy implications of both the first and second-best optimal pricing with capacity 

investment policies. We consider the theoretical first best case where tolling and 

investment in capacity is possible on all links, forming a benchmark for our 

second best cases where we only toll and invest on pre-defined subsets of links.  

For the first-best policy, as discussed it has been shown that the self-financing 

principle can be achieved under optimal pricing and capacity investment and this 

has been extended to a general network by Yang and Meng, (2002). However, it is 

also important to analyse the impacts of such policy at the network level in terms 

of charges and changes to network structure. This is also the case for the second-

best scenario where constraints on toll and investment locations will naturally lead 

to a different result. Throughout this paper we consider capacity to be a 

continuous variable following the extensive literature in Network Design Problem 

(e.g. Suwansirikul et al,1991; Yang and Meng, 2002).  

 

The second purpose of this paper is to develop a robust algorithm. This problem 

has a so-called bi-level structure, with the upper and lower levels representing the 
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social objective of the transport planner and the response of the road users 

respectively. Such Bi-Level Programming Problems (BLPPs) are recognised as 

one of the most challenging problems in the optimisation field.   

 

For this reason, a wide range of solution methods have been applied in an attempt 

to devise an efficient technique, ranging over heuristic iterative methods (Allsop, 

1974; Suwansirikul et al, 1987; Verhoef and Rouwendal, 2004), linearisation 

methods (Ben-Ayed et al, 1988), stochastic search methods (Shepherd and 

Sumalee, 2004), sensitivity-based methods (Friesz et al, 1990; Yang, 1997), 

Karush-Kuhn-Tucker based methods (Marcotte, 1986; Verhoef, 2002), and 

recently a marginal function method (Meng et al, 2001) and constraint cutting 

method (Lawphongpanich and Hearn, 2004).  

 

Our own work (Shepherd and Sumalee, 2004) looked at the second-best optimal 

toll problem for a small network and showed that the derivative based approach 

proposed by Verhoef (2002)1 failed due to the change in the active path set of the 

users during the optimisation process. In addition we also found that the algorithm 

also failed when a perfectly converged UE solution could not be achieved. In this 

paper, we revisit this numerical example to test the capability of the constraint 

cutting algorithm (CCA) (Lawphongpanich and Hearn, 2004).  

 

The CCA sets up a continuous optimal toll design problem (COTP) as an 

optimisation problem with the variational inequality (VI) condition of the traffic 

equilibrium as a constraint. The VI is redefined as a system of inequality 

constraints in relation to the set of extreme points of the feasible region of the 

demand and traffic flows. We extend the original algorithm to deal with the joint 

problem of tolls and capacity investments under elastic demand.   

 

                                                 
1 Whilst Verhoef and Rouwendal (2004) have successfully employed the same approach for a 

simple 3 link network they also encountered problems with the stability of this algorithm.  In 

particular they stated that “a pragmatic trial-and-error approach was employed, where the trade-

off concerned speed of convergence on the one hand and instability of the convergence process on 

the other…. Instability was particularly relevant for sets of policy instruments including both taxes 

and capacities.” (Verhoef and Rouwendal, 2004, pp 421). 
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This paper consists of four further sections, the next section deals with the first-

best conditions for the joint problem (which can be considered as a performance 

benchmark for the second-best solutions). Section three deals with the second-best 

formulation in terms of the extreme-point formulation and adapts this to the joint 

problem. Finally section four gives a numerical example while section five draws 

conclusions and looks at further research. 

2. FIRST BEST TOLLS AND CAPACITY 

Since Walters (1961), economists have advocated the first best pricing policy of 

highways and roads. This requires that all links in a road network are charged 

with tolls equivalent to the marginal costs of congestion on those links. In addition 

when capacity is simultaneously considered as a decision variable for the policy 

maker, Mohring and Harwitz (1962) have shown that under certain conditions 

revenues from optimal pricing are sufficient to cover the cost of providing the 

optimal supply of road infrastructure. For a more detailed discussion readers are 

referred to d’Ouville and McDonald (1990) and Hau (1992). De Borger and 

Proost (2001) have pointed out that capacity investment may be more attractive 

when the pricing regime does not take into account congestion costs and that 

incorrect pricing will in general lead to over investment in infrastructure2. Thus 

solving the joint problem of optimal tolls and capacity investments is crucial to an 

integrated investment decision.    

 

While the conclusions reached by Mohring and Harwitz (1962) were developed 

for a single link model, Yang and Meng (2002) have shown that this same 

principle extends to general network formulations with the same conditions of 

constant returns to capacity expansion and congestion technology. To calculate 

the first best tolls and capacities we follow Yang and Meng (2002).  

 

                                                 
2 The attractiveness of capacity investment depends on, among other things, the elasticity of 

demand (d’Ouville and MacDonald, 1990). If demand is very elastic (elasticity >1), then induced 

traffic undermines the potential benefits from capacity investment if tolls are not present and 

optimal capacity could then be higher with tolls than without.  
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Let  A  be the set of directed links, each link Aa∈  is assumed to have a 

monotonically increasing travel cost function ),( aaa vc β  of link flow av    for 

a given link capacity aβ   (which may be fixed or a variable in the context of the 

formulations to be discussed). Let K  denote the set of origin destination (O-D) 

pairs. In addition, we assume that the demand function kd  is a continuous and 

monotonically decreasing function of the generalized travel cost kμ   between 

this OD pair alone.  

 

The feasible region of the flow vectors, Ω , is defined by a linear equation system 

of flow conservation constraints. Finally, let the unit investment cost for each link 

be given by ai  which is independent of the level of investment following the 

Mohring and Harwitz (1962) assumptions. Note that cost of capacity is dependent 

on link length and so has units of Euros per pcu per km. Finally we will assume 

that the objective of the planner is to maximise the net social welfare defined in 

equation 1 as follows: 

 

( )

1

0
( ) ( , )

. .
,

kd

a a a a a a
k K a A a A

d c v v i

s t

ψ ω β β−

∈ ∈ ∈

= − −

∈Ω

∑ ∑ ∑∫

v d
 

     (1)

 

The first term represents the user benefits, the second user costs and the final term 

the costs of providing and maintaining the road capacity discounted over its useful 

life. We shall use this welfare function as a theoretical benchmark against which 

we compare welfare improvements resulting from second-best toll and capacity 

problems. The convex-nonlinear optimization problem in (1) was solved by the 

Sequential Quadratic Programming (SQP) algorithm in MATLAB to obtain the 

first best tolls and capacities for a network. 
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3. SECOND BEST FORMULATION 

This section explains in detail the adaptation of the Cutting Constraint Algorithm 

(CCA) from Lawphongpanich and Hearn (2004) which was primarily formulated 

for solving the COTP. Note that Marcotte (1983) proposed a similar method for 

solving the Continuous Network Design Problem. 

 

Let  τ and β  be the vector of link tolls and capacities. It is known that the UE 

condition can be defined as a variational inequality (VI) (Smith, 1979): 

( ) ( ) ( ) ( ) ( )* * * *, , , , 0  for ,
T T1c v v v D d d d v dτ β τ β−⋅ − − ⋅ − ≥ ∀ ∈Ω . 

As mentioned above, Ω  is defined by a linear equation system of flow 

conservation constraints. Thus, Ω   is a bounded polyhedral set. From convex 

set analysis, any point in Ω  can be defined by a linear combination of the 

extreme points (u,q)T of Ω . Let H be the matrix whose columns are the extreme 

points of  Ω , defined by a pair of vectors (u,q)T. Then, for any ( ), ∈Ωv d , 

( ), T θ= ⋅v d H ,  for some 0θ ≥  , where θ  is a column vector and 1i
i

θ =∑ . 

This condition implies that  ( ), ∈Ωv d  can be defined as a convex combination 

of a set of extreme points (for a proof see Theorem 2.1.6 in Bazaraa et al, 2006). 

Thus, the VI for the UE condition can be redefined as a function of the extreme 

points of  Ω  assuming the monotonic condition of c and D-1: 

( ) ( ) ( ) ( )* * * *, , , , 0  for 
T Te e e Eτ β τ β−⋅ − − ⋅ − ≥ ∀ ∈1c v u v D d q d  

Where (ue,qe) is the vector of extreme link flow and demand flow indexed by the 

superscript e, and E is the set of all extreme points of Ω . Thus, the VI or 

optimisation problem above can be redefined as:   

( )
( )

( )

( ) ( ) ( )

1, , ,

* * *

min , , ,

. .
0                                            for given  and 

0                                           for given  and 

,

, , , ,

a a a

aa a

T Te

s t
a A

a A

τ β
ψ τ β

τ ε τ ε

β γ β γ

τ β τ β−

≤ ≤ ⋅ ∀ ∈

≤ ≤ ⋅ ∀ ∈

∈Ω

⋅ − − ⋅

v d

1

v d

v d

c v u v D d ( )* 0  for e e E− ≥ ∀ ∈q d

 (2)
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where ε and  γ are binary variables indicating whether a link in the network can 

be tolled or is subject to capacity enhancement respectively. 

 

This is the formulation proposed by Lawphongpanich and Hearn (2004). The 

practical solution algorithm for solving the problem is to sequentially generate 

and include necessary extreme points into the set E. The problem stated in (2) is 

referred to as the ‘Master Problem’. The key to the algorithm is the sub-problem 

used to generate the necessary extreme points from given ( ), , ,τ βv d   from the 

Master Problem. The strategy adopted is to include the most rapid descent 

direction (to achieve the UE condition) for given  ( ), , ,τ βv d  into the set E. That 

is to solve the problem: 

( )
( ) ( )( )

( )

1

,
min , , , ,

. .
,

TT

s t
u q

c v u D d q

u q

τ β τ β−⋅ − ⋅

∈Ω

 (3)

This problem is referred to as the ‘Sub Problem’. One may notice the similarity 

between the problem in (3) and the sub-problem in the Simplicial Decomposition 

Algorithm (Hearn et al, 1987) (or in the Frank-Wolfe algorithm) used in solving 

the traffic assignment problem.  

 

Indeed, the problem in (3) can be treated in the same manner as the sub-problem 

in the Simplicial Decomposition Algorithm in which the problem is decomposed 

into a number of separated problems for each O-D pair and then each problem is 

solved as a separate shortest path problem to obtain the auxiliary vector of link 

flow. Next the generalised cost on this shortest path (including the toll) is 

substituted into the inverse demand function to obtain q. Then, the vector of link 

flow (u) can be obtained by loading the related row of q to the shortest paths of 

different OD pairs and summing up the link flows. The CCA can then be 

summarised as follows: 
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Algorithm CCA  

Step 0:  Initialise the problem by finding the shortest paths for each O-D pair; 

set l = 0; define the aggregated link flow and demand flow (ul,ql); and 

include (ul,ql) into E. 

Step 1: l = l +1; Solve the Master Problem with all extreme points in E and 

obtain the solution vector ( ), , ,τ βv d ;then set ( ), , ,l l l lτ βv d . 

Step 2: Solve the Sub Problem with ( ), , ,l l l lτ βv d and obtain the new extreme 

point (ul,ql); 

Step 3: Termination check:  

if ( ) ( ) ( )( ) ( )1, , , , 0
TTl l l l l l l l l lc v u v D d q dτ β τ β−⋅ − − ⋅ − ≥ , terminate 

and ( ), , ,l l l lτ βv d  is the solution, otherwise include  (ul,ql) into E 

and return to Step 1. 

4. NUMERICAL EXAMPLE 

Our numerical example involves the same network (Figure 1) as in Shepherd and 

Sumalee (2004) to illustrate how the CCA algorithm overcomes the problem of 

changes in active path sets between iterations of the optimisation approach and 

also the poor convergence of the UE assignment problem. The network consists of 

18 links, 7 nodes and has 3 origins and 3 destinations (nodes 1, 5 and 7) with 6 

OD pairs. While this network is a simplistic abstraction of reality, it embodies a 

typical mono-centric city centred at node 5 with 1 and 7 being suburbs. Movement 

from suburbs to the city and suburb to suburb is facilitated by radial movements 

and two alternative bypass routes. At the same time, this network is more complex 

than a majority of networks used in the literature and yet not too large to obscure 

the tractability of results3. 

                                                 
3 While the network we have used comprises only 18 links and 3 OD pairs, the CCA solving the 

second best toll only pricing problem has already been tested on a much larger network of Hull, 

Canada with 798 links and 158 OD pairs. For details see Lawphongpanich and Hearn (2004). 
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The cost of travel on each link is given by the usual power law type function of 

the following form: 
n

vacvc ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

β0)(  , where )(vc  refers to the travel time,  

 0c and   a are constants and v   and β are link flow and capacity respectively.  

Please refer to the Appendix for all relevant parameters for this network.  

 

The demand function adopted is based on the power law form:  
k

k

k
kk dd

δ

μ
μ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 0

0  

where  kkkd δμ ,, 00  are the demand, cost in the no toll equilibrium and elasticity 

respectively. All other parameters are as defined previously. In a general case,  

kδ  could adopt different values for different OD pairs. For the numerical tests 

reported in this paper,  kδ  is set to -0.57 for all OD pairs as in Shepherd and 

Sumalee (2004).   

 

We now discuss the results in terms of the problem being solved starting with the 

toll only solutions to first and second best and subsequently consider the 

simultaneous optimisation of capacity and tolls in the first and second best case. 
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Figure 1: Theoretical network used. Source: Shepherd and Sumalee (2004) 
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 First Best Tolls 

The optimal tolls for the first best solution where all links can be charged to 

account for marginal costs of congestion were calculated by solving the system 

optimal equivalent optimisation problem (Sheffi, 1985). This first-best solution 

acts as a benchmark for comparing gains in welfare for the second-best toll 

problem. The first best tolls only problem resulted in a gain in welfare of 461k 

seconds. 

 Second Best Tolls 

Firstly we investigate optimal second best single link tolls. As reported in 

Shepherd and Sumalee (2004) there was no benefit in using positive tolls on links 

5, 8, 9, 14 and 15 so these are omitted from this part of the analysis.  Table 1 

shows the optimal single link tolls, change in welfare and percentage of the first 

best welfare gain for each link. First of all we can see that the CCA approach 

provides a solution for all links considered. It can also be seen that tolling links 17 

and 13 individually provide the largest increase in welfare.  

 

To demonstrate the advantage of the algorithm over the heuristic suggested by 

Verhoef (2002) and tested in Shepherd and Sumalee (2004) a detailed 

investigation of the problem with link 4 was conducted. Figure 2 shows the total 

benefit and lagrangian curves plotted against toll level for this link. The 

lagrangian in this case represents the welfare or total benefit plus a term for each 

used path (associated with a lagrange multiplier) which incorporates the user 

equilibrium conditions. As discussed in Shepherd and Sumalee (2004) the 

lagrangian based approach was disturbed by relatively small convergence errors 

which become amplified by the lagrange multipliers. If the error in the 

convergence of the UE assignment is not significant, then the lagrangian curve 

should be relatively close to the actual objective function curve. However as can 

be seen in Figure 2 convergence errors for tolls in the range 10-40 seconds 

resulted in the optimisation algorithm eventually converging to a toll level of 27 

seconds which is the local optimum of the erroneous lagrangian curve. The jumps 

in this curve are caused by a combination convergence errors and changes in path 

set as the toll is varied. For more details see Shepherd and Sumalee (2004). 
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Using the CCA we were able to find the correct optimal toll of approximately 104 

seconds. This demonstrates that the CCA can overcome the issue of convergence 

error by operating on a relaxed equilibrium condition at each iteration. On the 

other hand, the Karush Kuhn Tucker approach or Sensitivity Analysis approach 

finds the predicted toll by relying on the perfect satisfaction of the UE condition at 

each iteration which may not be achieved in a real network. In addition, in the 

formulation of the CCA there is no explicit requirement for path variables. All 

variables are related to link flows or demand flows hence avoiding the problem 

with the change of the active path set. 

 

 

Figure 2: Optimisation of the toll for link 4. (Source: Shepherd and Sumalee, 2004.) 

Table 1: Optimal second best single link tolls and changes in welfare 

Link Optimal Single 

link Toll 

(seconds) 

Change in welfare 

(seconds) 

Percentage of first best 

welfare gain 

1 497.7 86 283 18.7% 

2 157.0 18 251 4.0% 

3 140.5 19 445 4.2% 

4 103.9 17 023 3.7% 

6 31.3 5181 1.1% 

7 141.9 95 797 20.8% 

10 130.8 63 764 13.8% 

11 105.94 66 568 14.4% 

12 93.17 32 108 7.0% 
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Link Optimal Single 

link Toll 

(seconds) 

Change in welfare 

(seconds) 

Percentage of first best 

welfare gain 

13 178.6 168 480 36.6% 

16 556.3 72 631 15.8% 

17 184.5 179 740 39.0% 

18 567.3 33 095 7.2% 

Pairs of tolls and cordon around the centre  

Table 2 shows the tolls and welfare improvement as a result of implementing link 

tolls on three pairs of links as well as a three link cordon around node 5. The 

results for the pairs of links increase the benefits but the increase is seen to be 

additive only i.e. there is no evidence of synergy from tolling on these pairs of 

links. In addition the optimal toll levels do not vary much from that obtained from 

the individual link optimisation. 

 

Table 2: Link Pair and Cordon Toll Solutions with CCA 

 Link Optimal second best Toll 

(seconds) 

Welfare gain 

(seconds) 

% of  

First Best 

Link Pair 1 1 497.9 266 020 57.7% 

 17 184.5   

Link Pair 2 7 141.9 275 530 59.8% 

 17 184.4   

Link Pair 3 13 178.6 348 220 75.6% 

 17 184.4   

Cordon 1 7 181.8 382 050 82.9% 

 10 179.3   

 17 184.4   

 

However, the cordon option generates the largest benefit providing nearly 83% of 

the first best benefits. In this case there is evidence that charging these three links 

together provides some synergy as the increase in benefits is greater than the sum 

of the individual increases (382k seconds compared to 339k seconds). This result 

taken with that for link pair 2 demonstrates the inefficiency of leaving a toll free 
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route to the central node. Thus a cordon around the central area would seem to be 

a reasonable solution in policy terms for this network. 

 Joint First Best Tolls and Investment in Capacity 

Here we present the results of the combined problem whereby we aim to optimise 

the welfare function by optimising toll levels and investment levels 

simultaneously under the first best condition. The change in welfare takes into 

account any changes in the cost of capacity provision compared to the Do-nothing 

investment as set out in equation (1). 

 

First we adopt the approach as detailed in section 2 and solve the joint first best 

problem. Since we assume a constant cost of capacity expansion (1 generalised 

second per unit of capacity in this example) and the BPR type travel time 

function, we can expect to find a solution under the self-financing principle. Table 

3 shows the joint first-best optimal tolls and capacities compared to the system 

optimum for the toll only solution and initial values used for the capacities of the 

links. The joint first best resulted in an increase in welfare of 1.5 million seconds 

which is more than three times that generated by the first-best toll only solution 

(but obviously this depends on the assumption made about costs of capacity).   

 

It should be noted that any reduction in capacity leads to cost savings4 on a given 

link, and indeed some links are removed in our benchmark solution. However at 

the same time other links have capacity increased significantly so that the total 

expenditure on capacity is higher than in the base case. It was also verified that 

the self-financing result did hold with total revenue equal to total cost of capacity 

i.e. 97k seconds. The optimal configuration of the network found is illustrated in 

Figure 3. 

 

As we can see the capacity has been increased along one main route which 

corresponds to the shortest free-flow paths between the OD pairs. Although this 

solution would be impractical in most realistic cases it is used as a benchmark and 

to illustrate the self-financing result (which breaks down if we impose general 

                                                 
4We emphasize that the costs of capacity provision in equation (1) includes the cost of 

maintenance discounted over its useful life. It is this cost saving that translates into actual savings.  
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second-best policies such as limited tolling and investment in capacity). In total 

eight links have been removed by the optimisation as these are routes with a 

longer free flow travel time than the more direct routes and as such become sub-

optimal when capacity investment is allowed. In part this collapse in structure is 

due to the assumed demand matrix and the fact that there is no source or sink at 

node 4. We shall investigate what happens with a more fully connected demand 

structure below.   

 

Notice also that the tolls under joint first best are an order of magnitude smaller 

than under the toll only system optimal solution. This is of course related to our 

arbitrary choice of costs of capacity and as capacity has been increased 

significantly on the remaining links then the marginal costs of congestion are 

reduced and so the tolls are reduced whilst maintaining the self-financing 

principle. Further tests showed that as the per unit cost of capacity increases, the 

structure of the optimised network remains the same but the predicted amounts of 

capacity were lower as expected.  Similarly to achieve the self-financing result, 

lower tolls were required when capacity was cheap and higher tolls resulted when 

capacity was more expensive. 
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Figure 3:  Joint Toll and Capacity Optimal Network Configuration 
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Table 3: Joint first best capacities and tolls compared to the toll only system optimal 

Link 
Base Capacities 

(pcus/hr) 

Joint first best 

capacities 

Joint first 

best tolls 

(seconds) 

System 

optimal tolls 

(seconds) 

1 1800 5464.1 1.98 52.08 

2 1800 4079.8 1.98 22.34 

3 1100 10101.6 6.59 224.00 

4 1100 0 0 203.76 

5 1100 0 0 2.53 

6 1100 7542.5 6.59 131.18 

7 1100 9643.0 5.24 55.43 

8 1100 0 0 2.62 

9 1100 0 0 110.08 

10 1100 0 0 54.05 

11 1100 7200.1 5.24 13.48 

12 1100 0 0 12.53 

13 1100 7898.9 4.29 132.52 

14 1100 0 0 5.38 

15 1100 0 0 5.47 

16 1800 4375.0 1.98 19.87 

17 1100 9300.0 4.29 176.91 

18 1800 5151.0 1.98 38.69 

 

Joint First Best Test with Additional Origin and Destination Nodes  

Before moving on to the second-best tests, as noted above it was thought that the 

resulting first best structure may be a little unrealistic and that the removal of links 

may actually be due to the assumed demand structure (only three origin-

destination pairs). To investigate this we extended the demand matrix to include 

origins and destinations at nodes 3 and 4 as well as at 1,5 and 7. We did not move 

to a fully connected network as in most practical networks and indeed in reality 

there does not exist an origin or destination at every node in the network. Figure 4 

shows the resulting structure of the joint first best network with the added demand 

to/from nodes 3 and 4 (see appendix for full matrix). Note that although links 4 
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and 9 connected to node 4 are now retained, the four bypass links 5,8,14 and 15 

are still removed as in the previous case. This is because the free flow costs for 

these links exceed the combined free flow costs of the routes through node 5 by 

approximately 100 seconds. Also these links are physically longer in total and so 

the first best solution is to invest in the lower free flow cost and shorter physical 

routes.   

 

Table 4 shows the optimal capacities and tolls for the three and five OD pair 

cases. Firstly note that the optimal capacities cannot be compared directly as we 

have a different demand matrices/structures. However apart from the retention of 

links 4 and 9 to maintain connectivity with node 4 the increases are greater on the 

more direct routes as in the three OD pair case and as noted above, the longer 

bypass links are still removed. Notice also that the optimal tolls for those links 

still active in the three OD pair case are identical to those under the five OD pair 

case. This is because under first best the tolls are defined by the long run cost 

functions and provided certain conditions hold are constant and independent from 

demand (see Verhoef et al, (2008) equation 6e).   
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Figure 4 : First best structure with five origin-destination pairs 

 

The fact that links are still removed in this case does not come as a surprise as it is 

in fact similar to the well known Braess paradox (Braess et al, 2005) which says 

that in some circumstances road closures can improve welfare. Under the Braess 

paradox we would require that the system shows an increase in welfare with 

removal of links without increases in capacities on other links, so our case is in 
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fact a weaker version of the paradox as we are also adjusting the network on 

alternative routes with tolls and changes in capacity.  

 

Whether the Braess paradox is pure theory or whether it can occur in real 

networks has recently been discussed by Youn et al (2008) where they show that 

removal of certain links can improve system efficiency in real networks of 

London, Boston and New York. This backs up the assertion that investments 

should be directed at the quickest free flow routes, however whether the full 

removal of a link occurs will depend on the network and demand structure.    

Of course once again the results are also specific to the cost assumptions used for 

costs of capacity by link. 

 

Table 4: Joint first best capacities and tolls compared to the toll only system optimal 

Link 

Base 

Capacities 

(pcus/hr) 

Joint first best 

Capacities 

3OD pairs 

Joint first 

best tolls 

(seconds) 

3OD pairs 

Joint first 

best 

Capacities 

5OD pairs 

Joint first 

best tolls 

(seconds) 

5OD pairs 

1 1800 5464.1 1.98 2240.2 1.98

2 1800 4079.8 1.98 1648.3 1.98

3 1100 10101.6 6.59 3155.2 6.59

4 1100 0 0 963.2 7.15

5 1100 0 0 0 0

6 1100 7542.5 6.59 2268.8 6.59

7 1100 9643.0 5.24 4005.4 5.24

8 1100 0 0 0 0

9 1100 0 0 760.4 7.15

10 1100 0 0 2656.3 5.72

11 1100 7200.1 5.24 4056.0 5.24

12 1100 0 0 2180.2 5.72

13 1100 7898.9 4.29 2951.3 4.29

14 1100 0 0 0 0

15 1100 0 0 0 0

16 1800 4375.0 1.98 1634.9 1.98
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Link 

Base 

Capacities 

(pcus/hr) 

Joint first best 

Capacities 

3OD pairs 

Joint first 

best tolls 

(seconds) 

3OD pairs 

Joint first 

best 

Capacities 

5OD pairs 

Joint first 

best tolls 

(seconds) 

5OD pairs 

17 1100 9300.0 4.29 3716.7 4.29

18 1800 5151.0 1.98 2058.6 1.98

 

 

The most general policy statement which comes from the first best analysis is that 

if costs of capacity are uniform over a network then this implies investments 

should be aimed at the most direct routes at the expense of others. Obviously this 

may not be the case in practice as costs of capacity will vary by link type and area.  

The most obvious case being where it becomes impossible to add capacity 

through a town centre without demolishing existing buildings in which case the 

first best solution may well include bypass links. So whilst we have demonstrated 

an approach for calculating the benchmark the policy implications are specific to 

both network and demand structure and to the cost assumptions used. 

 

In the following sections regarding second-best strategies we revert to using the 

three OD pair network demand as we wish to compare results with the previous 

toll only solutions. 

 Joint Second Best Tolls and Investment in Capacity 

This section reports the numerical results of the application of the CCA to the 

joint toll-capacity second best problems. Four sets of tests are conducted. The first 

set considers the case where we do not allow any reduction in capacity from the 

base case. This was designed to test the impact on welfare of not allowing any 

links to be downgraded and was intended as an alternative to the traditional first 

best benchmark. The second looked at different sets of links optimising their tolls 

and capacities. The third varies the costs of capacity to demonstrate the impact of 

cost assumptions on optimal tolls and capacities under the second best regime.  

The final test investigates different capacity investment strategies under the 

cordon toll scheme.  
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Joint Second Best without Capacity Reduction 

Table 5 shows the results for the first test where no reductions in capacity are 

allowed. As can be seen where before we removed a link it now remains with 

capacity set to the base level. However the tolls in this case became irrelevant and 

could be set to zero with no flow resulting from the assignment problem on these 

links. These links are unused as it is better from a system point of view to invest 

in the shorter (in terms of free flow costs) routes and users choose to use these 

routes as opposed to the higher free flow costs on the other retained routes.   

 

In terms of impact on welfare, there is a 2% reduction compared to the first best 

solution and this reduction corresponds to the capacity costs of maintaining the 

unused links.   

Table 5: Joint Toll and Capacity Optimization with restrictions on reduction in Capacity of Links 

    Joint first best 

With Capacity restricted to be at least 

equal to base case 

Link 

Base 

Capacities 

(Pcus/hr)  

Tolls 

(seconds)

Capacities 

(Pcus/hr) 

Link 

Flows 

(Pcus/hr)

Tolls 

(seconds)

Capacities 

(Pcus/hr) 

Link 

Flows 

(Pcus/hr)

1 1800 1.98 5464.1 2757.8 1.98 5466.7 2757.8 

2 1800 1.98 4079.8 2059.2 1.98 4077.1 2059.1 

3 1100 6.59 10101.6 2757.8 6.59 10103.0 2757.8 

4 1100 0 0 0 0 1100 0 

5 1100 0 0 0 0 1100 0 

6 1100 6.59 7542.5 2059.2 6.59 7537.9 2059.1 

7 1100 5.24 9643 2757.8 5.24 9643.7 2757.8 

8 1100 0 0 0 0 1100 0 

9 1100 0 0 0 0 1100 0 

10 1100 0 0 0 0 1100.0 0 

11 1100 5.24 7200.1 2059.2 5.24 7194.1 2059.1 

12 1100 0 0 0 0 1100.0 0 

13 1100 4.29 7898.9 2208.2 4.29 7898.8 2208.1 

14 1100 0 0 0 0 1100 0 

15 1100 0 0 0 0 1100 0 
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16 1800 1.98 4375 2208.2 1.98 4377.3 2208.1 

17 1100 4.29 9300 2599.8 4.29 9291.1 2599.8 

18 1800 1.98 5151 2599.8 1.98 5149.7 2599.8 

Welfare  1,512,955 1,478,415 

 

Joint Second Best with Cordon Toll 

Table 6 contains the results for the second set of tests. In this test, we consider 

tolls and capacities on the subset of links forming the cordon under two scenarios. 

- Scenario 1 allows capacity to be enhanced on link 17 only. 

- Scenario 2 allows capacity to be changed on all three cordon links.   

Comparing back with the toll only solution for the cordon in table 2 we can see 

that varying capacity has the effect of increasing the welfare significantly from 

382k seconds to 588k and 606k seconds for increases in capacity on link 17 and 

all three cordon links respectively. We can also observe that when capacity is 

increased the optimal toll is slightly reduced. Overall the relative gains in welfare 

are around 40% of the joint first best. In terms of comparisons with the joint first 

best, the investment in capacity was lower but the toll revenue generated much 

higher. Obviously this result is dependent on our assumptions about costs of 

capacity which will be discussed next. 

Table 6: Capacity and Toll Optimisation Results for Scenarios 1 and 2(Capacity Cost of 1 second) 

Scenario Link 
Optimal Tolls 

(seconds) 

Optimal Capacity 

(pcu/hr) 

Welfare Change 

(% of joint first best) 

7 181.8 N/A 

10 179.3 N/A 1 

17 162.2 7123 

587 765 (38%) 

7 177.8 2499 

10 176.2 2365 2 

17 162.3 7024 

606 215 (40%) 

 

Joint Second Best with Cordon Toll with Varying Investment Cost 

To illustrate the impacts of changes in capacity costs, we varied the unit cost of 

capacity from 1 second to 50 and 100 seconds. Table 7 shows that as the cost of 
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capacity increases tolls are increased and capacity may be reduced. In the base 

case, all three links had a capacity of 1100 pcus/hr. With the higher cost of 

capacity, there was a reduction in the capacities of links 7 and 10 but not that of 

link 17, though the total inbound capacity has been reduced.   

 

In terms of impacts on second-best toll levels we can see from tables 6 and 7 that 

with low costs of capacity the tolls are only slightly reduced, whereas with 

increased costs the tolls are increased significantly when capacity is reduced 

except for link 17 where capacity is still increased and so the toll is reduced 

slightly. This would suggest that although costs of capacity play an important role 

in determining whether tolls will rise or fall compared to the toll only case, it is in 

fact the resulting direction of capacity enhancement which determines the 

direction of change in the toll level. 

 

Table 7:  Scenario 2: Impacts of Different Capacity Cost Assumptions 

Capacity Cost Link
Optimal Tolls 

(seconds) 

Optimal Capacity 

(pcu/hr) 

7 381.9 705 

10 378.5 528 50 

17 178.2 2535 

7 440.2 605 

10 436.2 392 100 

17 183.3 1656 

 

It is also important to point out that there are potential synergies that can be 

harnessed to increase social welfare. As shown previously in the toll only 

situation, the tolling of links 7, 10 and 17 produced welfare gains greater than the 

sum of the individual elements. The same can be said for the simultaneous toll 

and capacity case. The sum of the social welfare gains from further tests (not 

shown) with tolling and optimising capacities on links 7, 10 and 17 in turn amount 

to 550k seconds. However when they are tolled and optimised simultaneously as 

was done in Test 2, the social welfare achieved was 606k seconds, representing an 

increase of approximately 10%.   
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Joint Second Best with Cordon Toll and Alternative Investment Strategies 

Finally we consider an alternative investment strategy whereby we consider tolls 

on the cordon (Links 7, 10 and 17) and capacity enhancements on the peripheral 

links. These peripheral links form a bypass around the city centre area centred on 

Node 5. It is designed to simulate the policy of charging tolls around a cordon of a 

city centre while devoting resources to the expansion of a bypass. It is evident that 

the social welfare is higher than that achieved in Scenario 2 (667k seconds or 44% 

of joint first best) as shown in Table 8. This is primarily attributed to the fact that 

the optimised capacity would generally benefit a larger proportion of the users 

determined by the demand matrix. However it is also noticeable that links 8 and 

15 are effectively removed and that this solution is starting to resemble that of the 

joint first best network. 

 

Table 8: Capacity and Toll Optimisation Results: Scenario 3  

(Capacity Cost of 1 second) 

Tolled 

Links 
Optimal Tolls

Links with Capacity 

Optimised 

(These Links are not 

subject to tolls) 

Optimised 

Capacities  

Welfare Gain 

(% of joint 

first best) 

7 176.5 3 5790 

10 153.2 4 2215 

17 166.4 5 1884 

  6 5210 

  8 0 

  9 714 

  14 1948 

  15 0 

667 319 

(44%) 

 

Table 9 summarises the revenues from tolls and capacity costs of obtaining the 

structure prescribed by the above second best scenarios. From Table 9, it appears 

that there is a budgetary surplus in all cases. However this would be clearly 

dependent on the cost of capacity assumed.   
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Table 9: Impacts on Revenues and Capacity Costs 

Scenario Capacity Cost 

(seconds) 

Toll Revenue 

(seconds)  

1 58 882 549 677 

2 63 144 568 779 

3 31 608 390 143 

 

Whether there is a deficit or surplus depends on the location of tolls and 

investments and using the CCA algorithm it is possible to investigate possible 

alternative strategies as we have done here. In our simple network we have 

demonstrated that a simple cordon plus investments in some of the bypass links is 

a reasonable strategy resulting in around 44% of the joint-first best benchmark.  

This strategy is not necessarily the best second best strategy available and the 

ranking of strategies tested here again depends on the costs of capacity.   

5. CONCLUSIONS 

This paper has demonstrated the application of the constraint cutting approach due 

to Lawphongpanich and Hearn (2004), to the second-best toll problem for pre-

defined candidate links. This extreme point formulation was shown to work even 

when there exist discontinuities due to changes in path sets or lack of perfect 

convergence of the UE solution, thus improving on our attempts with a derivative 

based method. The algorithm has also been adapted to deal with the joint toll and 

capacity problem with elastic demand bringing in non-linear functions and added 

complexity. The results showed the algorithm to be robust in all cases with only 

minor changes in the bounds required for a couple of single link optimisations to 

find the global optimum. 

 

In terms of possible policy conclusions, the joint first best solution implies more 

investment in direct routes should be made where costs of capacity are uniform 

over a network. Initially our test network collapsed to a single route due to the 

limited demand structure used. Further tests with a more fully connected demand 

structure showed that connectivity of the network is maintained under first best 

but that removal of links could still be warranted. Removal of a link can be 

theoretically optimal if it is assumed that costs of the existing capacity are sunk.   
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This finding is consistent with the Braess Paradox but with a more general setting 

(variables including both toll and capacity). However we also recognised that this 

may not be practical and so investigated the case where existing capacity cannot 

be downgraded. In this case we saw that the previously removed links were now 

retained but unused even with no toll applied. Our policy conclusion from the first 

best tests is that we should invest in the quickest free flow routes when costs of 

capacity are assumed to be uniform across the network.  

 

For the second-best cases, there are potential synergies to be exploited by 

considering tolling and capacity expansion on a subset of links simultaneously.   

In our case presented we have illustrated that investing in the bypass links while 

tolling the cordon around the city centre was the best second best policy, among 

those investigated here, to pursue. This result crucially depends on the constituent 

components of the demand matrix and on assumptions regarding the capacity 

costs.  

 

The finding from the second best tests in fact contrasts with the finding from the 

first best tests which suggested removal of bypass routes. This contrast in finding 

shows a complex interaction between the toll and capacity under the second best 

case in which it is crucial to analyse them simultaneously as illustrated in the 

paper.  

 

As more links in the network are simultaneously tolled and capacity optimised, 

the results tend to the joint first best situation. In terms of impact on second-best 

tolls it was seen that tolls are not significantly affected when costs of capacity are 

low but that as costs are increased and capacities reduced then tolls for these links 

can be increased significantly.   

 

Whilst it has been difficult to draw out more general policy implications we have 

demonstrated that unless costs of capacity are known to be low then tolls should 

be analysed in conjunction with investments in the network. Furthermore we have 

shown that the CCA can be used for such an analysis for pre-defined options of 

where to toll and invest. Our current research presented in this paper is limited to 

the case of optimal continuous toll and capacity with a given set of tolled and 
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invested links. For a more practical application, our future research will 

investigate the issue of discrete toll and capacity as well as location of tolled and 

invested links. In addition, in a more general case the toll operator and highway 

planner/authority may not necessarily be the same. Under such a situation future 

research should look into aspects of competition and differing objectives between 

these authorities.  
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Appendix:  

 

Table A-1: Parameters for Link Cost Functions for Network  

Link 

Number 

A Node B Node  0c  a   β   n  Distance 

(km) 

1 1 2 45 9.55 1800 4.5 1 
2 2 1 45 9.55 1800 4.5 1 
3 2 3 108 108 1100 3 1.8 
4 2 4 120 120 1100 3.1 2 
5 3 6 270 57.27 1100 3.5 6 
6 3 2 108 108 1100 3 1.8 
7 3 5 90 90 1100 3.2 1.5 
8 4 6 274.5 58.23 1100 3 6.1 
9 4 2 120 120 1100 3.1 2 
10 4 5 96 96 1100 3.1 1.6 
11 5 3 90 90 1100 3.2 1.5 
12 5 4 96 96 1100 3.1 1.6 
13 5 6 72 72 1100 3.1 1.2 
14 6 3 270 57.27 1100 3.5 6 
15 6 4 274.5 58.23 1100 3 6.1 
16 6 7 45 9.55 1800 4.5 1 
17 6 5 72 72 1100 3.1 1.2 
18 7 6 45 9.55 1800 4.5 1 

 

Table A-2: Demand Function Parameters for Network in Figure 1 

Origin 

Node 

Destination 

Node 

0
kd  0

kμ  

1 5 637 1125 

1 7 1027 1050 

5 1 522 675 

5 7 391 600 

7 1 964 1050 

7 5 442 850 
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Table A-3: Demand Function Parameters with Additional Origin Destination Pairs  

Origin 

Node 

Destination 

Node 

0
kd  0

kμ  

1 3 295 272 

1 4 296 272 

1 5 496 281 

1 7 729 263 

3 1 277 162 

3 4 388 167 

3 5 201 185 

3 7 434 155 

4 1 293 216 

4 3 403 223 

4 5 200 247 

4 7 433 206 

5 1 479 169 

5 3 202 160 

5 4 186 160 

5 7 233 150 

7 1 734 263 

7 3 457 238 

7 4 441 238 

7 5 255 213 
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