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Abstract

This paper investigates the inverse problem of determining the time-dependent heat source
and the temperature for the heat equation with a non-classical boundary and an integral
over-determination conditions. The existence, uniqueness and continuous dependence upon
the data of the classical solution of the inverse problem is shown by using the generalised
Fourier method. Furthermore in the numerical process, the boundary element method (BEM)
together with the second-order Tikhonov regularization is employed with the choice of reg-
ularization parameter based on the generalised cross-validation (GCV) criterion. Numerical
results are presented and discussed.
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1 Introduction

Inverse time-dependent source problems for the heat equation with local, nonlocal, integral or
nonclassical (boundary) conditions have become the point of interest in many recent papers,
[10, 12, 13, 14, 17, 31, 33], to name only a few. In the present paper, we consider yet another
reconstruction of a time-dependent heat source from an integral over-determination measurement
of the thermal energy of the system and a new dynamic-type boundary condition.

Let T > 0 be a fixed number and denote by DT = {(x, t) : 0 < x < 1, 0 < t ≤ T} =
(0, 1)× (0, T ]. Consider the following initial-boundary value problem for the heat equation:

ut = uxx + r(t)f(x, t), (x, t) ∈ DT , (1.1)

u(x, 0) = φ(x), x ∈ (0, 1), (1.2)

u(0, t) = 0, t ∈ (0, T ], (1.3)

auxx(1, t) + dux(1, t) + bu(1, t) = 0, t ∈ (0, T ], (1.4)

where f , φ are given functions and a, b, d are given numbers not simultaneously equal to zero.
When the function r(t) is given, the problem of finding u(x, t) from the heat equation (1.1), initial
condition (1.2), and boundary conditions (1.3) and (1.4) is termed as the direct (or forward)
problem. The well-posedness of this direct problem has been established elsewhere, [21].

This model can be used in heat transfer and diffusion processes with a source parameter
present in (1.1). Also, in acoustic scattering or damage corrosion the dynamic boundary condi-
tion (1.4) is also known as a generalized impedance boundary condition, [3, 4, 5, 6].

Taking into account the equation (1.1) at x = 1, the boundary condition (1.4) becomes

aut(1, t) + dux(1, t) + bu(1, t) = ar(t)f(1, t), t ∈ (0, T ]. (1.5)
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In order to add further physics to the problem, we mention that the boundary condition (1.5)
is observed in the process of cooling of a thin solid bar one end of which is placed in contact
with a fluid [24]. Another possible application of such type of boundary condition is announced
in [7, p.79], as this boundary condition represents a boundary reaction in diffusion of chemical.
We finally mention that we have also previously encountered the dynamic boundary condition
(1.5) when modelling a transient flow pump experiment in a porous medium [25].

When the function r(t) for t ∈ [0, T ] is unknown, the inverse problem formulates as a problem
of finding a pair of functions (r(t), u(x, t)) which satisfy the equation (1.1), initial condition (1.2),
the boundary conditions (1.3) and (1.4) (or (1.5)), and the energy/mass overdetermination
measurement

∫ 1

0
u(x, t) dx = E(t), t ∈ [0, T ]. (1.6)

It is also worth mentioning that a related parabolic inverse source problem given by equations
(1.1)–(1.3), (1.6) and the following dynamic boundary condition

ut(1, t) + ux(1, t) + σ(u(1, t)) = 0, t ∈ (0, T ]. (1.7)

where σ is a given Lipschitz function, has very recently been investigated in [26]. However, no
numerical results were presented and the boundary condition (1.7) is different of the boundary
condition (1.5) considered in the present study.

The condition (1.6) is encountered in modelling applications related to particle diffusion in
turbulent plasma, as well as in heat conduction problems in which the law of variation E(t) of
the total energy of heat in a rod is given, [16].

If we let u(x, t) represent the temperature distribution, then the above-mentioned inverse
problem can be regarded as a source control problem. The source control parameter r(t) needs
to be determined from the measurement of the thermal energy E(t).

Because the function r is space independent, a, b and d are constants and the boundary
conditions are linear and homogeneous, the method of separation of variables is suitable for
studying the problem under consideration. It is well-known that the main difficulty in apply-
ing the Fourier method is the explicit availability of a basis, i.e. the expansion in terms of
eigenfunctions of the auxiliary spectral problem











y′′(x) + µy(x) = 0, x ∈ [0, 1],

y(0) = 0,

(aµ− b)y(1) = dy′(1).

(1.8)

In contrast to the classical Sturm-Liouville problem, this problem has the spectral parameter
also in the boundary condition. It makes it impossible to apply the classical results on expansion
in terms of eigenfunctions [28]. The spectral analysis of such type of problems was started
by Walter [30]. After that, important developments were made by Binding et al. [2], Fulton
[11], Kapustin and Moiseev [18], Kerimov and Allakhverdiev [19, 20]. It is useful to note the
reference [22] whose results on expansion in term of eigenfunctions will be used in the present
paper.

The paper is organized as follows. In Section 2, the eigenvalues and eigenfunctions of the
auxiliary spectral problem and some their of properties are introduced. Then the existence,
uniqueness, and continuous dependence upon the data of the solution of the inverse problem
(1.1)–(1.3), (1.5) and (1.6) are proved. The numerical discretisation of the inverse problem
is based on the boundary element method (BEM) which is described in Section 3. Section 4
discusses numerical results obtained for a couple of benchmark test examples and emphasises the
importance of employing regularization in order to achieve a stable numerical solution. Finally,
Section 5 presents the conclusions of the paper.

2



2 Mathematical Analysis

Consider the spectral problem (1.8) with ad > 0. It is known from [2] that its eigenvalues
µn, n = 0, 1, 2, ... are real and simple. They form an unbounded increasing sequence and the
eigenfunction yn(x) corresponding to µn has exactly n simple zeros in the interval (0, 1). We
can also give the sign of the first eigenvalue µ0 as











µ0 < 0 < µ1 < µ2 < · · · , if − b
d
> 1,

µ0 = 0 < µ1 < µ2 < · · · , if − b
d
= 1,

0 < µ0 < µ1 < µ2 < · · · , if − b
d
< 1.

It was shown in [22] that the eigenvalues and eigenfunctions have the following asymptotic
behaviour:

√
µn = πn+O

(

1

n

)

, yn(x) = sin(πnx) +O

(

1

n

)

,

for sufficiently large n.
Let n0 be arbitrary fixed non-negative integer. It was shown in [22] that the system of

eigenfunctions {yn(x)} (n = 0, 1, 2, ...;n ̸= n0) is a Riesz basis for L2[0, 1]. The system {un(x)}
(n = 0, 1, 2, ...;n ̸= n0) which is biorthogonal to the system {yn(x)} (n = 0, 1, 2, ...;n ̸= n0) has
the form

un(x) =
yn(x)− yn(1)

yn0 (1)
yn0(x)

∥yn∥2L2[0,1]
+ a

d
y2n(1)

.

The following Bessel-type inequalities are true for the systems {yn(x)} and {un(x)} (n =
0, 1, 2, ...;n ̸= n0), see [21].

Lemma 1. (Bessel-type inequalities) If ψ(x) ∈ L2[0, 1], then the estimates

∞
∑

n=0
(n ̸=n0)

|(ψ, yn)|2 ≤ c1 ∥ψ∥2L2[0,1]
,

∞
∑

n=0
(n ̸=n0)

|(ψ, un)|2 ≤ c2 ∥ψ∥2L2[0,1]

hold for some positive constants c1 and c2, where (ψ, yn) =
∫ 1
0 ψ(x)yn(x)dx and (ψ, un) =

∫ 1
0 ψ(x)un(x) dx denote the usual inner products in L2[0, 1].

Let us denote Φ4
n0
[0, 1] := {ψ(x) ∈ C4[0, 1];ψ(0) = ψ′′(0) = 0, ψ(1) = ψ′(1) = ψ′′(1) =

ψ′′′(1) = 0,
∫ 1
0 ψ(x)yn0(x)dx = 0}.

Lemma 2. If ψ(x) ∈ Φ4
n0
[0, 1], then we have:

µ2n(ψ, yn) = (ψ(4), yn), µ2n(ψ, un) = (ψ(4), un), n ≥ 0, (2.1)
∞
∑

n=0
(n ̸=n0)

|µn(ψ, yn)| ≤ c3∥ψ∥C4[0,1],
∞
∑

n=0
(n ̸=n0)

|µn(ψ, un)| ≤ c4∥ψ∥C4[0,1], (2.2)

∞
∑

n=0
(n ̸=n0)

|(ψ, yn)| ≤ c5∥ψ∥C4[0,1],
∞
∑

n=0
(n ̸=n0)

|(ψ, un)| ≤ c6∥ψ∥C4[0,1], (2.3)

where c3, c4, c5 and c6 are some positive constants.
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Proof. From (1.8), since µnyn = −y′′n and yn(0) = 0, the identities (2.1) follow by applying
four times integration by parts in (1.8) and using that ψ ∈ Φ4

n0
[0, 1]. The estimates (2.2) are

obtained from Lemma 1, equation (2.1) and using the Schwarz inequality. Finally, since for a
sufficiently large m the series

∑∞
n=m |µn(ψ, yn)| is majorant for the series

∑∞
n=m |(ψ, yn)|, the

estimates (2.3) also hold.

Theorem 1. (Existence and uniqueness) Let the following conditions be satisfied:
(A1) φ(x) ∈ Φ4

n0
[0, 1];

(A2) E(t) ∈ C1[0, T ]; E(0) =
∫ 1
0 φ(x)dx;

(A3) f(x, t) ∈ C(DT ); f(x, t) ∈ Φ4
n0
[0, 1], ∀t ∈ [0, T ];

∫ 1
0 f(x, t)dx ̸= 0, ∀t ∈ [0, T ];

Then the inverse problem (1.1)–(1.3), (1.5) and (1.6) has a unique classical solution (r(t), u(x, t)) ∈
C[0, T ]× (C2,1(DT ) ∩ C2,0(DT )). Moreover, u(x, t) ∈ C2,1(DT ).

Proof. For given r(t) ∈ C[0, T ], to construct the formal solution u(x, t) of the direct problem
(1.1)–(1.3) and (1.5) we will use the generalized Fourier method. Based on this method, the solu-
tion u(x, t) is sought in a Fourier series in terms of the eigenfunctions {yn(x)} (n = 0, 1, 2, ...;n ̸=
n0) of the auxiliary spectral problem (1.8), namely,

u(x, t) =

∞
∑

n=0
(n ̸=n0)

vn(t)yn(x), vn(t) = (u, un).

The functions vn(t), n = 0, 1, 2, ...;n ̸= n0, satisfy the Cauchy problem

{

v′n(t) + µnvn(t) = r(t)fn(t),

vn(0) = φn,

where fn(t) = (f, un) and φn = (φ, un). Solving these Cauchy problems, we obtain

vn(t) = φne
−µnt +

∫ t

0
r(τ)fn(τ)e

−µn(t−τ)dτ,

and then formally,

u(x, t) =

∞
∑

n=0
(n ̸=n0)

[

φne
−µnt +

∫ t

0
r(τ)fn(τ)e

−µn(t−τ)dτ

]

yn(x). (2.4)

Under the conditions (A1) and (A3), the series (2.4) and its x-partial derivatives are uniformly
convergent in DT since their majorizing sums are absolutely convergent, see the inequalities
(2.2) and (2.3). Therefore, their sums u(x, t) and ux(x, t) are continuous in DT . The t-partial
derivative and the xx-second-order partial derivative series also are uniformly convergent in
DT . Thus, u(x, t) ∈ C2,1

(

DT

)

and satisfies the conditions (1.1)–(1.3) and (1.5) for arbitrary
r(t) ∈ C[0, T ].

The formulas (2.4) and (1.6) yield a following Volterra integral equation of the first kind
with respect to r(t):

∫ t

0
K(t, τ)r(τ)dτ + F (t) = E(t), (2.5)

where

F (t) =
∞
∑

n=0
(n ̸=n0)

[

φne
−µnt

∫ 1

0
yn(x)dx

]

, K(t, τ) =
∞
∑

n=0
(n ̸=n0)

[

fn(τ)e
−µn(t−τ)

∫ 1

0
yn(x)dx

]

. (2.6)
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By using (2.2), under the assumptions (A1) and (A3), the term F (t) and the kernel K(t, τ)
are continuously differentiable functions in [0, T ] and [0, T ]× [0, T ], respectively. From (2.6), it
is easy to show that

F (0) =

∞
∑

n=0
(n ̸=n0)

[

φn

∫ 1

0
yn(x)dx

]

=

∫ 1

0
φ(x)dx,

K(t, t) =

∞
∑

n=0
(n ̸=n0)

[

fn(τ)

∫ 1

0
yn(x)dx

]

=

1
∫

0

f(x, t)dx.

Further, under the assumption (A2), by differentiating equation (2.5) yields the following Volterra
integral equation of the second kind:

K(t, t)r(t) +

∫ t

0
Kt(t, τ)r(τ)dτ + F ′(t) = E′(t). (2.7)

Note that the function K(t, t) is never equal to zero because of the assumption
∫ 1
0 f(x, t)dx ̸= 0,

∀t ∈ [0, T ] in (A3). In addition, the functions F ′(t), E′(t) and the kernel Kt(t, τ) are continuous
functions in [0, T ] and [0, T ] × [0, T ], respectively. We therefore obtain a unique function r(t),
continuous in [0, T ], which, together with the solution of the problem (1.1)–(1.3) and (1.5) given
by the Fourier series (2.4), form the unique solution of the inverse problem (1.1)–(1.3), (1.5) and
(1.6). Theorem 1 has been proved.

The solution of (2.7) is given by the series

r(t) =

∞
∑

n=0

(KnB)(t),

where (KB)(t) :=
∫ t

0 Q(t, τ)B(τ)dτ with B(t) = E′(t)−F ′(t)
K(t,t) and Q(t, τ) = −Kt(t,τ)

K(t,t) . It is easy to
verify that

|(KnB)(t)| ≤ ∥B∥C[0,T ]

(

t ∥Q∥C([0,T ]×[0,T ])

)n

n!
, t ∈ [0, T ] , n = 0, 1, . . . .

Thus, we obtain the estimate

∥r∥C[0,T ] ≤ ∥B∥C[0,T ] e
T∥Q∥C([0,T ]×[0,T ]) . (2.8)

We finally prove the continuous dependence on the data of the solution of the inverse problem
(1.1)–(1.3), (1.5) and (1.6).

Theorem 2. (Continuous dependence upon the data) Let ℑ be the class of triples {f, φ,E}
which satisfy the assumptions (A1)− (A3) of Theorem 1 and

∥f∥C4,0(DT ) ≤ N0, ∥φ∥C4[0,1] ≤ N1, ∥E∥C1[0,T ] ≤ N2, 0 < N3 ≤
∣

∣

∣

∣

∫ 1

0
f(x, t)dx

∣

∣

∣

∣

,

for some positive constants Ni, i = 0, 3. Then the solution pair (r(t), u(x, t)) of the inverse
problem (1.1)–(1.3), (1.5) and (1.6) depends continuously upon the data in ℑ.
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Proof. Let {f, φ,E} and {f̃ , φ̃, Ẽ} be two sets of data in ℑ. Let (r(t), u(x, t)) and (r̃(t), ũ(x, t))
be the solutions of inverse problems (1.1)–(1.3), (1.5) and (1.6) corresponding to these data.

According to (2.7) we have

r(t) =

∫ t

0
Q(t, τ)r(τ)dτ +B(t), r̃(t) =

∫ t

0
Q̃(t, τ)r̃(τ)dτ + B̃(t), (2.9)

with B(t) = E′(t)−F ′(t)
K(t,t) , Q(t, τ) = −Kt(t,τ)

K(t,t) , B̃(t) = Ẽ′(t)−F̃ ′(t)

K̃(t,t)
and Q̃(t, τ) = − K̃t(t,τ)

K̃(t,t)
.

Differentiating (2.6) we obtain

F ′(t) = −
∞
∑

n=0
(n ̸=n0)

[

µnφne
−µnt

∫ 1

0
yn(x)dx

]

, Kt(t, τ) = −
∞
∑

n=0
(n ̸=n0)

[

µnfn(τ)e
−µn(t−τ)

∫ 1

0
yn(x)dx

]

According to (2.2) we have

|B(t)| ≤ 1

|K(t, t)|
(
∣

∣E′(t)
∣

∣+
∣

∣F ′(t)
∣

∣

)

≤ 1

N3

(

∥E∥C1[0,T ] + c4M ∥φ∥C4[0,1]

)

≤ 1

N3
(N2 + c4MN1) ,

(2.10)

where M is the constant such that M ≥ |yn(x)|, ∀n ∈ N, ∀x ∈ [0, 1].
Analogously, we can show that

∣

∣

∣
Q̃(t, τ)

∣

∣

∣
≤ c4M

N3
max
t∈[0,T ]

∥

∥

∥
f̃(·, t)

∥

∥

∥

C4[0,1]
≤ c4MN0

N3
. (2.11)

Let us estimate the difference r − r̃. From (2.9) we obtain:

r(t)− r̃(t) =

∫ t

0
Q̃(t, τ) [r(τ)− r̃(τ)] dτ

+

∫ t

0

[

Q(t, τ)− Q̃(t, τ)
]

r(τ)dτ +B(t)− B̃(t). (2.12)

Denoting R(t) = |r(t)− r̃(t)| and H1 =
∥

∥

∥
B − B̃

∥

∥

∥

C[0,T ]
+ T

∥

∥

∥
Q− Q̃

∥

∥

∥

C[0,T ]×C[0,T ]
∥r∥C[0,T ],

identity (2.12) implies that

R(t) ≤ H1 +

∫ t

0

∣

∣

∣
Q̃(t, τ)

∣

∣

∣
R(τ)dτ.

Then, a Gronwall’s-type inequality, see Theorem 16 of [8], implies that

R(t) ≤ H1 exp

(

∫ t

0
sup

σ∈[τ,t]

∣

∣

∣
Q̃(t, τ)

∣

∣

∣
dτ

)

, t ∈ [0, T ].

Using (2.11) we obtain

∥r − r̃∥C[0,T ] ≤M0

(

∥

∥

∥
B − B̃

∥

∥

∥

C[0,T ]
+ T

∥

∥

∥
Q− Q̃

∥

∥

∥

C[0,T ]×C[0,T ]
∥r∥C[0,T ]

)

, (2.13)

where M0 = exp
(

T c4MN0
N3

)

. Since ∥r∥C[0,T ] ≤ M0
N3

(N2 + c4MN1) (see (2.8) and (2.11)), it can

be seen from (2.13) that r continuously depends upon B and Q.
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By using the inequalities:

∣

∣

∣
F ′(t)− F̃ ′(t)

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=0
(n ̸=n0)

µn (φn − φ̃n) e
−µnt

∫ 1

0
yn(x)dx

∣

∣

∣

∣

∣

∣

∣

≤ c4M ∥φ− φ̃n∥C4[0,1] ,

∣

∣

∣
Kt(t, τ)− K̃t(t, τ)

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=0
(n ̸=n0)

µn

(

fn(τ)− f̃n(τ)
)

e−µn(t−τ)

∫ 1

0
yn(x)dx

∣

∣

∣

∣

∣

∣

∣

≤ c4M
∥

∥

∥
f − f̃

∥

∥

∥

C4,0(DT )
,

∣

∣

∣
K(t, t)− K̃(t, t)

∣

∣

∣
=

∣

∣

∣

∣

∫ 1

0

(

f(x, t)− f̃(x, t)
)

dx

∣

∣

∣

∣

≤
∥

∥

∥
f − f̃

∥

∥

∥

C(DT )
,

simple manipulations yield the estimates

∣

∣

∣
B(t)− B̃(t)

∣

∣

∣
≤M1

∥

∥

∥
E − Ẽ

∥

∥

∥

C1[0,T ]

+M2 ∥φ− φ̃∥
C4[0,1]

+M3

∥

∥

∥
f − f̃

∥

∥

∥

C4,0(DT )
,

∣

∣

∣
Q(t, τ)− Q̃(t, τ)

∣

∣

∣
≤M4

∥

∥

∥
E − Ẽ

∥

∥

∥

C1[0,T ]

+M5∥φ− φ̃∥
C4[0,1]

+M6

∥

∥

∥
f − f̃

∥

∥

∥

C4,0(DT )

where Mk, k = 1, 6 are constants that are determined by c4,M and Nk, k = 0, 3. By using these
inequalities, from (2.13) we obtain

∥r − r̃∥C[0,T ] ≤M7

(

∥

∥

∥
E − Ẽ

∥

∥

∥

C1[0,T ]

+ ∥φ− φ̃∥
C4[0,1]

+
∥

∥

∥
f − f̃

∥

∥

∥

C4,0(DT )

)

for some positive constant M7. This means that r continuously depends upon the data.
Similarly, we can prove that u, which is given in (2.4), depends continuously upon the data.

Theorem 2 has been proved.

Theorems 1 and 2 in fact establish that the inverse problem under investigation given by
equations (1.1)–(1.3), (1.5) and (1.6) is well-posed in appropriate spaces of regular functions.
However, in practice the input data, especially the measured one, such as the energy (1.6), is
non-smooth and hence, the solution of the inverse problem becomes unstable under unregularised
inversion. The next section describes the discretisation of the inverse problem using the BEM,
whilst Section 4 will discuss the regularization of the numerical solution.

3 Boundary Element Method (BEM)

In this section, we explain the numerical procedure for discretising the inverse problem (1.1)–
(1.3), (1.5) and (1.6) by using the BEM. First of all, let us introduce the fundamental solution
G of the one-dimensional heat equation, as

G(x, t, y, τ) =
H(t− τ)
√

4π(t− τ)
exp

(

−(x− y)2

4(t− τ)

)

,

where H is the Heaviside step function. On multiplying the heat equation (1.1) by this fun-
damental solution and using the Green’s identity, we obtain the following boundary integral
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equation, see e.g. [10]:

η(x)u(x, t)

=

∫ t

0

[

G(x, t, ξ, τ)
∂u

∂n(ξ)
(ξ, τ)− u(ξ, τ)

∂G

∂n(ξ)
(x, t, ξ, τ)

]

ξ∈{0,1}

dτ +

∫ 1

0
G(x, t, y, 0)u(y, 0) dy

+

∫ 1

0

∫ T

0
G(x, t, y, τ)r(τ)f(y, τ) dτdy, (x, t) ∈ [0, 1]× (0, T ], (3.1)

where η(0) = η(1) = 1
2 , η(x) = 1 for x ∈ (0, 1), and n is the outward normal to the space

boundary {0, 1}. For discretising (3.1), we divide the boundaries {0} × [0, T ] and {L} × [0, T ]
into N small time-intervals [tj−1, tj ], j = 1, N , with tj =

jT
N
, j = 0, N , whilst the initial domain

[0, L] × {0} is divided into N0 small cells [xk−1, xk], k = 1, N0 with xk = k
N0
, k = 0, N0. Over

each boundary element, the temperature u and the flux ∂u
∂n

are assumed to be constant and take

their values at the midpoint t̃j =
tj−1 + tj

2
, i.e.

u(1, t) = u(1, t̃j) =: h1j ,
∂u

∂n
(0, t) =

∂u

∂n
(0, t̃j) =: q0j ,

∂u

∂n
(1, t) =

∂u

∂n
(1, t̃j) =: q1j ,

for t ∈ (tj−1, tj ]. Similarly, in each cell, the initial temperature u(x, 0) is assumed to be constant

and takes its value at the midpoint x̃k =
xk−1 + xk

2
, i.e.

u(x, 0) = φ(x) = φ(x̃k) =: φk for x ∈ [xk−1, xk).

Applying the boundary condition (1.3), i.e. u(0, t) = 0, and using the constant BEM inter-
polations above, the boundary integral equation (3.1) becomes

η(x)u(x, t) =

N
∑

j=1

[A0j(x, t)q0j +A1j(x, t)q1j −B1j(x, t)h1j ] +

N0
∑

k=1

Ck(x, t)φk + d(x, t), (3.2)

where the coefficients are given by

Aξj(x, t) =

∫ tj

tj−1

G(x, t, ξ, τ)dτ for ξ = {0, 1}, (3.3)

B1j(x, t) =

∫ tj

tj−1

∂G

∂n
(x, t, 1, τ)dτ, Ck(x, t) =

∫ xk

xk−1

G(x, t, y, 0)dy, (3.4)

for j = 1, N , k = 1, N0, and the source double integral term is given by

d(x, t) =

∫ 1

0

∫ t

0
G(x, t, y, τ)r(τ)f(y, τ)dτdy. (3.5)

This integral term can also be approximated using piecewise constant approximations for the
functions f(x, t) and r(t) as

f(x, t) = f(x, t̃j), r(t) = r(t̃j) =: rj , x ∈ (0, 1), t ∈ (tj−1, tj ], j = 1, N.

Then we can approximate the double integral (3.5) as

d(x, t) =

∫ t

0
r(τ)

∫ 1

0
G(x, t, y, τ)f(y, τ) dydτ =

N
∑

j=1

Dj(x, t)rj , (3.6)
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where

Dj(x, t) =

∫ 1

0
f(y, t̃j)Ayj(x, t) dy, j = 1, N. (3.7)

The integrals in (3.3) and (3.4) can be evaluated analytically, [10], whereas the Simpson’s rule is
used as a numerical integration for calculating the integral (3.7). With the approximation (3.6),
equation (3.2) becomes

η(x)u(x, t) =

N
∑

j=1

[A0j(x, t)q0j +A1j(x, t)q1j −B1j(x, t)h1j +Dj(x, t)rj ] +

N0
∑

k=1

Ck(x, t)φk. (3.8)

Applying (3.8) at the boundary nodes (0, t̃i) and (1, t̃i) for i = 1, N gives the system of 2N
equations

A0q
¯0

+A1q
¯1

−B1h
¯1

+Dr
¯
+ Cφ

¯
= 0

¯
, (3.9)

where

A0 =

[

A0j(0, t̃i)
A0j(1, t̃i)

]

2N×N

, A1 =

[

A1j(0, t̃i)
A1j(1, t̃i)

]

2N×N

, B1 =

[

B1j(0, t̃i)
B1j(1, t̃i) +

1
2δij

]

2N×N

,

C =

[

Ck(0, t̃i)
Ck(1, t̃i)

]

2N×N0

, D =

[

Dj(0, t̃i)
Dj(1, t̃i)

]

2N×N

,

q
¯0

=
[

q0j
]

N
, q

¯1
=
[

q1j
]

N
, h

¯1
=
[

h1j
]

N
, φ

¯
=
[

φk

]

N0
, r

¯
=
[

rj
]

N
,

where δij is the Kronecker delta symbol.
In order to apply the boundary condition (1.5) we need to approximate the time-derivative

ut(1, t) by using finite differences. For this, we use the O(h2) finite difference formulae

ut(1, t̃1) =
u(1, t̃2)/3 + u(1, t̃1)− 4φ(1)/3

h
,

ut(1, t̃2) =
5u(1, t̃2)/3− 3u(1, t̃1) + 4φ(1)/3

h
,

ut(1, t̃i) =
3u(1, t̃i)/2− 2u(1, t̃i−1) + u(1, t̃i−2)/2

h
, i = 3, N,

where h = T/N . Applying the expressions above into the boundary condition (1.5) yields the
linear system of N equations as follows:


























a

h
u(1, t̃1) +

a

3h
u(1, t̃2) + bu(1, t̃1) = ar(t̃1)f(1, t̃1) +

4a

3h
φ(1)− dux(1, t̃1),

−3a

h
u(1, t̃1) +

5a

3h
u(1, t̃2) + bu(1, t̃1) = ar(t̃2)f(1, t̃2)−

4a

3h
φ(1)− dux(1, t̃2),

a

2h
u(1, t̃i−2)−

2a

h
u(1, t̃i−1) +

3a

2h
u(1, t̃i) + bu(1, t̃i) = ar(t̃i)f(1, t̃i)− dux(1, t̃i), i = 3, N.

This system can be rewritten as
Sh
¯1

= F r
¯
+ φ̃

¯
− dq

¯1
, (3.10)

where F = diag(f(1, t̃1), . . . , f(1, t̃N )), and

S =













a/h+ b a/3h 0 .
−3a/h 5a/3h+ b 0 .
a/2h −2a/h 3a/2h+ b .
. . . .
0 a/2h −2a/h 3a/2h+ b













N×N

, φ̃
¯
=













4aφ(1)/3h
−4aφ(1)/3h

0
.
0













N

.
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Assuming d ̸= 0, eliminating q
¯1

between (3.9) and (3.10) results in

[

h
¯1
q
¯0

]

=

[(

1

d
A1S +B1

)

∣

∣

∣
−A0

]−1(1

d
A1F r

¯
+

1

d
A1φ̃

¯
+ Cφ

¯
+Dr

¯

)

, (3.11)

where the matrix which is inverted is a 2N ×2N matrix formed with the 2N ×N block matrices
(

1
d
A1S +B1

)

and −A0 separated by the vertical line.
Next, we collocate the over-determination condition (1.6), by using the midpoint numerical

integration approximation, at the discrete time t̃i for i = 1, N , as

Ei := E(t̃i) =

∫ 1

0
u(x, t̃i) dx =

1

N0

N0
∑

k=1

u(x̃k, t̃i), i = 1, N. (3.12)

Using (3.2) at (x̃k, t̃i), expression (3.12) can be rewritten as

1

N0

N0
∑

k=1

[

A
(1)
0,kq

¯0
+A

(1)
1,kq

¯1
−B

(1)
1,kh¯1

+ C
(1)
k φ

¯
+D

(1)
k r

¯

]

= E
¯
, (3.13)

where

A
(1)
0,k =

[

A0j(x̃k, t̃i)
]

N×N
, A

(1)
1,k =

[

A1j(x̃k, t̃i)
]

N×N
, B

(1)
1,k =

[

B1j(x̃k, t̃i)
]

N×N
,

C
(1)
k =

[

Cl(x̃k, t̃i)
]

N×N0
, D

(1)
k =

[

Dj(x̃k, t̃i)
]

N×N
, E

¯
=
[

Ei

]

N
,

for k, l = 1, N0 and i, j = 1, N . Finally, eliminating q
¯0
, q
¯1

and h
¯1

between (3.9)–(3.11) and
(3.13), the unknown discretised source r

¯
can be found by solving the N × N linear system of

equations
Xr
¯
= y

¯
, (3.14)

where

X =
1

N0

N0
∑

k=1

{

[(

1

d
A

(1)
1,kS +B

(1)
1,k

)

∣

∣

∣
−A(1)

0,k

] [(

1

d
A1S +B1

)

∣

∣

∣
−A0

]−1(1

d
A1F +D

)

−
(

1

d
A

(1)
1,kF +D

(1)
k

)}

,

y
¯
=

1

N0

N0
∑

k=1

{

C
(1)
k φ

¯
+

1

d
A

(1)
1,kφ̃

¯

−
[(

1

d
A

(1)
1,kS +B

(1)
1,k

)

∣

∣

∣
−A(1)

0,k

] [(

1

d
A1S +B1

)

∣

∣

∣
−A0

]−1(

Cφ
¯
+

1

d
A1φ̃

¯

)

}

− E
¯
.

4 Numerical Results and Discussion

This section presents two benchmark test examples with smooth and non-smooth continuous
source functions in order to test the accuracy of the BEM numerical procedure introduced earlier
in Section 3. The following root mean square error (RMSE) is used to evaluate the accuracy of
the numerical results:

RMSE =

√

√

√

√

1

N

N
∑

i=1

(

Exact(t̃i)−Approximate(t̃i)
)2
. (4.1)

10



4.1 Example 1

In this example, we consider the analytical solution given by

r(t) = et, u(x, t) = x2et, (4.2)

for the inverse problem (1.1)–(1.3), (1.5) and (1.6) with the input data T = 1, a = d = 1,
b = −4, φ(x) = u(x, 0) = x2 and f(x, t) = x2 − 2. The direct problem (1.1)–(1.3) and (1.5),
when r(t) = et is known, is considered first with N = N0 ∈ {20, 40, 80} obtained by (3.10), (3.11)
and (3.13), and the RMSE results are shown in Table 1. From this table it can be concluded
that the BEM numerical solution is convergent to the corresponding exact values

u(1, t) = et, ux(0, t) = 0, ux(1, t) = 2et, E(t) = et/3, t ∈ [0, 1], (4.3)

as the number of boundary elements increases.

Table 1: The RMSE for u(1, t), ux(0, t), ux(1, t) and E(t) obtained using the BEM for the direct
problem with N = N0 ∈ {20, 40, 80}, for Example 1.

N = N0
RMSE

u(1, t) ux(0, t) ux(1, t) E(t)

20 6.43E-3 2.79E-3 8.85E-3 2.65E-3
40 2.20E-3 9.68E-4 2.98E-3 9.07E-4
80 7.46E-4 3.32E-4 1.00E-3 3.08E-4

Next, we consider the inverse problem (1.1)–(1.3), (1.5) and (1.6) and we use the BEM
with N = N0 = 40 for solving the resulting system of equations (3.14). Figure 1 displays the
analytical and numerical results of r(t), u(1, t), ux(0, t), and ux(1, t) and very good agreement
can be observed.

In practice, the contamination of measured data by unplanned error is unavoidable. Thus
we add noise to the input energy data E(t) in (1.6) in order to test the stability of the solution.
The perturbed input data E

¯
ϵ is defined as

E
¯
ϵ = E

¯
+ ϵ
¯
, (4.4)

where ϵ
¯
= random(′Normal′, 0, σ,N, 1) is a set of N variables generated randomly by the MAT-

LAB command from a normal distribution with the zero mean and standard deviation σ given
by

σ = p× max
t∈[0,T ]

|E(t)| = ep

3
, (4.5)

where p is the percentage of noise. This perturbation means that the known right-hand side
vector y

¯
is contaminated with noise, denoted as y

¯
ϵ. Then, when noise is present, we have to

solve the following system of linear equations instead of (3.14):

Xr
¯
= y

¯

ϵ. (4.6)

Figure 2 illustrates the analytical and numerical results for p = 1% noise in the input data
(4.4) obtained by the straightforward inversion of (4.6), i.e. r

¯
= X−1y

¯
ϵ. From this figure it can

be seen that the numerical solutions for r(t), ux(0, t) and ux(1, t) shown by the dash-dot line
(− · −) are unstable. However, the result for u(1, t) seems to remain stable.

To overcome this instability, we employ the second-order Tikhonov regularization method
which gives

r
¯λ

=
(

XtrX + λRtr
2 R2

)−1
Xtry

¯

ϵ, (4.7)
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Figure 1: The analytical (—–) and numerical results (− · −) of (a) r(t), (b) u(1, t), (c) ux(0, t),
and (d) ux(1, t) for exact data, for Example 1.

where λ > 0 is a regularization parameter to be prescribed and R2 is a second-order differential
regularization matrix, given by [15, 29],

Rtr
2 R2 =

1

(T/N)4













1 −2 1 0 0 . . .
−2 5 −4 1 0 . . .
1 −4 6 −4 1 0 . .
0 1 −4 6 −4 1 0 .
. . . . . . . .













. (4.8)

As it happened previously with some of our investigations [13, 14], we report that the second-
order Tikhonov regularization has produced more accurate results than the zeroth- or first-order
regularization and therefore, only the numerical results obtained using the former regularization
are illustrated in this section.

A popular method for choosing the regularization parameter is the generalised cross-validation
(GCV) criterion, which is based on minimising the following GCV function, [32]:

GCV (λ) =
∥X
(

XtrX + λRtr
2 R2

)−1
Xtry

¯
ϵ − y

¯
ϵ∥2

[trace(I −X(XtrX + λRtr
2 R2)−1Xtr)]

2 . (4.9)

For p = 1% noise, this minimization yields the minimum point of (4.9) occurring at λ=4.3E-6.
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Then the numerical results obtained using (4.7) with this value of λ, illustrated by circles (◦◦◦)
in Figure 2, show that accurate and stable numerical solutions are achieved.
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Figure 2: The analytical (—–) and numerical results of (a) r(t), (b) u(1, t), (c) ux(0, t), and
(d) ux(1, t) obtained using the straightforward inversion (− · −) with no regularization, and
the second-order Tikhonov regularization (◦ ◦ ◦) with the regularization parameter λ=4.3E-6
suggested by the GCV method, for p = 1% noise, for Example 1.

Next, we increase to p = 3% and 5% the percentage of noise with which the data (4.4) is
contaminated. Figure 3 presents the analytical and numerical results obtained using the second-
order Tikhonov regularization with the regularization parameter suggested by the GCV method,
namely λ=7.4E-6 for p = 3%, and λ=2.7E-5 for p = 5%. From this figure one can observe that
stable and accurate results for r(t), u(1, t), ux(0, t) and ux(1, t) with p = 3% noise are attained,
whereas the numerical results for p = 5% noisy input are rather inaccurate, but they remain
stable. For completeness, the RMSE errors (4.1) are displayed in Table 2.
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Figure 3: The analytical (—–) and numerical results of (a) r(t), (b) u(1, t), (c) ux(0, t), and
(d) ux(1, t) obtained using the second-order Tikhonov regularization with the regularization
parameter suggested by the GCV method, for p = 3% (· · ·) and p = 5% (−−−), for Example 1.

Table 2: The regularization parameters λ and the RMSE for r(t), u(1, t), ux(0, t) and ux(1, t),
obtained using the BEM with N = N0 = 40 combined with the second-order Tikhonov regular-
ization for p ∈ {0, 1, 3, 5}% noise, for Example 1.

p λ
RMSE

r(t) u(1, t) ux(0, t) ux(1, t)

0 (no noise) 0 4.16E-3 2.47E-4 1.20E-3 8.85E-4

1% 0 2.70 1.72E-2 1.12E-1 2.64E-1
1% 4.3E-6 1.73E-2 2.57E-3 8.92E-3 5.47E-3

3% 0 5.21 4.13E-2 3.51E-1 5.02E-1
3% 7.4E-6 3.32E-2 9.73E-3 1.97E-2 2.25E-2

5% 0 4.74 5.51E-2 4.64E-1 4.54E-1
5% 2.7E-5 1.95E-1 4.63E-2 1.29E-1 9.79E-2

4.2 Example 2

The previous example possessed an analytical solution being explicitly available; however the
source function f(x, t) chosen did not satisfy the condition in (A3) of Theorem 1 that f ∈

14



Φ4
n0
[0, 1]. Therefore, in this subsection we aim to construct an example for which the conditions

of existence and uniqueness of solution of Theorem 1 are satisfied. We choose T = 1, φ(x) = 0,
a = d = 1 and b = 0.

In the case a = d = 1, b = 0 the problem (1.8) has the eigenvalues µn = ν2n, where νn
are the positive roots of the transcendental equation ν sin(ν) = cos(ν). The corresponding
eigenfunctions are yn(x) = sin(νnx). The first eigenvalue is given by ν0 =

√
µ0 = 0.860333.

Then choosing f(x, t) = x3(1 − x)4(β1x + β2) we can determine the constants β1 and β2 such
that f ∈ Φ4

0[0, 1] (choosing n0 = 0 for simplicity), as required by the condition (A3) of Theorem
1. This imposes

0 =

∫ 1

0
f(x, t) sin(ν0x) dx =

∫ 1

0
x3(1− x)4(β1x+ β2) sin(ν0x) dx.

After some calculus, choosing β2 = −1 it follows that β1 ≈ 2.011. With these values of β1 and
β2 we also satisfy that

∫ 1
0 f(x, t) dx = −0.00037 is non-zero, as required by condition (A3). We

aim to retrieve a non-smooth source function given by

r(t) =

∣

∣

∣

∣

t− 1

2

∣

∣

∣

∣

, t ∈ [0, t]. (4.10)

In this case, the analytical solution of the direct problem for the temperature u(x, t) is not
available. Thus the energy E(t) is not available either. In such a situation, we simulate the
data (1.6) numerically by solving first the direct problem (1.1)–(1.3) and (1.5) with r known and
given by (4.10). The numerical solutions for u(1, t), ux(0, t), ux(1, t) and E(t) obtained using
the BEM with N = N0 ∈ {20, 40, 80} are shown in Figure 4. From this figure it can be seen
that convergent numerical solutions are obtained.

To investigate the inverse problem (1.1)–(1.3), (1.5) and (1.6), we use the numerical results
for E(t) in Figure 4(d) obtained using the BEM with N = N0 = 40, as the input data (1.6).
In order to avoid committing an inverse crime we keep N = 40, but we use a different N0,
say N0 = 30, than 40 which was used in the direct problem simulation. Figure 5 shows the
numerical results obtained without regularization, i.e. λ = 0, for p = 0 (exact) and p = 1%
(noisy) data. Remark that from Figure 4(d), the standard deviation in (4.5) for Example 2 is
given by σ = 1.2×10−5p. From Figure 5 it can be seen that, for exact data, the straightforward
inversion of (3.14) produces very accurate results. However, when noise is introduced into
the measured data (4.4), the numerical retrievals of especially r(t) and ux(1, t) become highly
oscillatory unstable.

In order to retrieve the stability, as in Example 1, the second-order Tikhonov regularization
with the GCV criterion are employed and the numerically obtained results are shown in Figure 6.
The numerical results from the direct problem presented in Figures 4(a)–4(c) are used to compare
in Figures 6(b)–6(d) the numerical results for u(1, t), ux(0, t), and ux(1, t), respectively, of the
inverse problem. Whereas the numerical solution for r(t) of the inverse problem is compared
with the analytical solution (4.10) in Figure 6(a). From Figure 6 it can be seen that stable and
accurate numerical solutions are obtained. For completeness, the RMSE errors (4.1) and the
GCV values for λ are displayed in Table 3.

If one would like to make a fair comparison between the accuracy of the numerical results
obtained for Examples 1 and 2, the RMSE values presented in Tables 2 and 3 should be divided
by the maximum absolute values of the corresponding quantities involved. For example, if we
divide the columns of RMSE values for r(t) in Tables 2 and 3 by e (maximum value of r(t) in
(4.2)) and 0.5 (maximum value of r(t) in (4.10)), respectively, then the relative errors for r(t) in
Example 1 are actually lower than those in Example 2, as expected from the regularity of these
solution.
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Figure 4: The numerical results of (a) u(1, t), (b) ux(0, t), (c) ux(1, t), and (d) E(t) obtained by
solving the direct problem with N = N0 ∈ {20(◦ ◦ ◦), 40(· · ·), 80(−−−)}, for Example 2.

Finally, although not illustrated, it is reported that for both Examples 1 and 2 we have
experienced with other values of λ close to the optimal ones but there was not much significant
difference obtained in comparison with the numerical results of Figures 2, 3 and 6. This con-
firms that the GCV criterion performs well in choosing a suitable regularization parameter for
obtaining a stable and accurate numerical solution.

5 Conclusions

The inverse problem of finding the time-dependent heat source together with the temperature
in the heat equation, under a non-classical dynamic boundary condition and an integral over-
determination condition has been investigated. Firstly, the existence, uniqueness, and continuous
dependence upon the data of the classical solution of the inverse problem have been established.
Next, a numerical method based on the BEM combined with the second-order Tikhonov regu-
larization has been proposed together with the use of the GCV criterion for the selection of the
regularization parameter. The retrieved numerical results were found to be accurate and stable
on both smooth and non-smooth continuous examples.

As for the experimental validation of the proposed inverse mathematical model in terms of
bias and inverting real noisy data we defer this challenging task to a possible future work. We
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Figure 5: The analytical solution (4.10) and the direct problem numerical solution from Figures
4(a)–4(c) (—–) and numerical results of (a) r(t), (b) u(1, t), (c) ux(0, t), and (d) ux(1, t), with
no regularization, for exact data (◦ ◦ ◦) and noisy data p = 1% (− · −), for Example 2.

only remark that unlike certain applications, e.g. some significant mismatch has been reported in
[1, 23, 27] between experimental data of electromagnetic waves propagating in a non-attenuating
medium and data produced by idealized computational simulations, in inverse heat conduction
the mathematical models have been shown to perform much better in industrial applications
with actual real measured data, [9].
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