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CHAPTER NUMBER 

PRACTICAL OBSTACLES IN THE 

SENSITIVITY ANALYSIS OF NETWORK 

EQUILIBRIA 

Richard Connors, Institute for Transport Studies, University of Leeds, Leeds, UK. 

Agachai Sumalee, Institute for Transport Studies, University of Leeds, Leeds, UK. 

David Watling, Institute for Transport Studies, University of Leeds, Leeds, UK. 

ABSTRACT 

Static network equilibrium continues to be the favoured paradigm used in network modelling 

and policy appraisal. Underlying much of this work, in particular for network optimisation 

problems, is the technique of sensitivity analysis, with the inherent assumption that the 

equilibrium flows are differentiable. Recent research has called into question the validity of 

conducting such analysis of the user equilibrium (UE) flows, for which the total derivatives 

do not always exist.  

 

For the case of stochastic user equilibrium (SUE) it is clear that the analytical obstacles faced 

in the case of UE do not arise; differentiability of both logit and probit SUE model has been 

established, but this is not the whole story. Difficulties arise in calculating derivatives of the 

link-based probit model whenever rank deficiencies occur in the path covariance matrix, due 

to the network topology. We investigate the nature of this problem for some simple examples 

and show that it can sometimes be resolved. 
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INTRODUCTION 

Sensitivity analysis has a long-established presence in the transport network research 

literature, with numerous applications covering problems such as trip matrix estimation, bi-

level optimisation, reliability analysis and error estimation. Essentially, this technique aims to 

find derivatives of the implicit relationship between the input data (including policy variables) 

and the equilibrium flows, which may then be exploited to provide either gradient-like 

information, such as in a bi-level optimisation context, or a linear approximation, such as in 

the case of error estimation. It is perhaps surprising that a technical problem such as this 

should generate controversy, yet the work of Patriksson & Rockafellar (2002) achieved this 

by bringing into question the validity of the seminal transportation paper on the subject of 

network equilibrium sensitivity analysis by Tobin & Friesz (1988). The fact that virtually all 

the transportation applications reported in the literature were derived from Tobin & Friesz’s 
analysis makes this a highly pertinent issue to address. However, the sophisticated 

mathematical tools utilised in Patriksson & Rockafellar’s analysis deter many in the transport 

research field, even the more mathematically-minded, and appreciating the significance of the 

subtle arguments presented is not a straightforward task. 

 

By coincidence, in parallel to the work of Patriksson & Rockafellar, the present authors were 

themselves presenting a series of new results on the sensitivity analysis of network equilibria 

(Clark and Watling, 2000, 2002, Connors et al., 2004a, 2004b, 2007). A key distinction 

between these two fields of enquiry was, however, the network equilibrium model used for 

the analysis: the later work was based on the Probit Stochastic User Equilibrium (probit SUE) 

model, whereas Patriksson’s findings related (as did the original Tobin & Friesz analysis) 
exclusively to Wardrop’s Deterministic User Equilibrium (DUE) model. Indeed, in terms of 

sensitivity analysis this issue turns out to be a critical feature: in theoretical terms, the PSUE 

model behaves in a ‘smooth’ way that circumvents many of the difficulties inherent in DUE 
sensitivity analysis. On the other hand, practical computational problems are then introduced 

into the analysis of the PSUE sensitivities, most notably the problem of calculating the 

Jacobian of the probit choice probability fractions, expressions for these fractions not being 

available in closed form, leading to problems of degeneracy that have apparent (but 

misleading) parallels with the DUE case. 

 

The purpose of the present paper is to attempt to clarify the main difficulties in performing 

sensitivity analysis of the DUE and SUE models, reviewing the theoretical issues for both 

models and then considering concomitant practical/computational problems. Although a 

number of recent, as yet unpublished, manuscripts have also sought to make these 

clarifications for the DUE theoretical case (Josefsson and Patriksson, 2006), our objective is 

to add to this debate with a somewhat different approach. Namely, we explore DUE as a 

limiting case of SUE, and illustrate with analysis and examples how features of the different 
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models and/or of the network under consideration give rise to distinctive characteristics of the 

sensitivity analysis for the two models.  

DEFINITIONS AND NOTATION  

The network is represented by a directed graph consisting of N links labelled Na ,...,2,1 ; a 

demand matrix q, with entries r
q representing the travel demand on the r

th
 origin-destination 

(OD) movement; and a set of paths connecting the r
th

 OD movement denoted r
K with the set 

of all paths ...1  KK having cardinality K . The link-path incidence matrix Δ has elements 

that are Kronecker delta functions r

ka, , denoting the links a that are part of path k serving OD 

movement r. An assignment of flows to all paths is denoted by the vector f . The assignment 

f is feasible for demand vector q if and only if  

rqf
r

Kk

r

k
r




and rkf
r

k ,0 .   (1) 

The (closed, convex) set of feasible path flows thus defined is denoted F. The vector of link 

flows is denoted x. The link cost-flow relationships are assumed to be single-valued and 

differentiable, with  sxt ,  the vector of link costs when the link flow is x  and the design 

parameters s. The mapping between link flows and path costs  sxc ,  is derived from the link 

cost-flow relationships according to the standard link-additive model: 

   sxtsxc ,, T .      (2) 

The link flow vector ** fx  is a solution to the DUE if *f satisfies (1), and for each OD 

movement r: 

 rr

j

r

k

r

k Kjccf  min0      (3) 

The reverse implication does not follow; there can be minimum cost paths that have zero 

flow. This is non-strict complementarity, 

  0min  r

k

rr

j

r

k fKjcc .     (4) 

 

For the case of SUE, we first define a random utility model for each OD movement r, 

representing the proportion of the OD flow on movement r that chooses path k when the mean 

(deterministic) path costs are c: 

   rr

j

r

j

r

k

r

k

r

k KjccP  Prc .    (5) 

For each movement r, the stochastic terms  rr

k Kk:  are assumed to have a non-degenerate 

joint probability density function that is continuous, strictly positive, and independent of the 

deterministic path costs c. The stochastic terms are assumed to be independent between OD 

movements. The vector of path choice proportions is P . 

 

The basic principle underlying the SUE model is then: 

At SUE, no driver can improve their perceived travel cost by unilaterally changing route. 

Formally, an SUE is defined to be a feasible path flow vector f
~

(in the sense of (1)) that 

satisfies the fixed-point condition (Sheffi, 1985): 
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  fcPQf
~~
  ,                (6) 

where the demand matrix Q is constructed from the vector q, such that each OD demand r
q  is 

repeated r
K times along its diagonal. The corresponding SUE link flow solution is fx

~~  . 

DUE AND SUE SENSITIVITY ANALYSIS: THEORETICAL 

ISSUES 

In the search for (directional) derivatives of the DUE flows with respect to perturbations of 

the design parameters, there are several cases that present difficulties: 

a) The set of ‘active’ paths (the paths with non-zero flow) changes. 

This occurs when, due to the perturbation, a new path is assigned some flow that was 

previously unused. 

b) The occurrence of non-strictly complementary solutions. 

When the equilibrium solution includes a minimum cost path with zero flow, under 

any perturbation the flow on this path can only increase or remain zero, the flow 

cannot decrease and become negative. 

c) Non-uniqueness of the path flows. 

For some network topologies (e.g. Figure-8 network), the DUE path flows are not 

uniquely defined at any value of the design parameters. The gradient of the path flow 

with respect to perturbations of the design parameters is therefore not well-defined. 

 

If we consider the DUE link flows as a function of the design parameters,  sx* , the surface 

of equilibrium flows is not differentiable everywhere. In particular, where non-strict 

complementarity occurs, not all of the directional derivatives exist. By seeking only those 

directional derivatives that exist, the method of Patriksson & Rockafellar (2002) calculates 

the available sub-gradients and naturally provides the total derivative when this exists. In this 

way sensitivity analysis of DUE can be conducted despite these problematic features of the 

equilibrium surface. 

 

For the case of SUE, if the probability density function for the stochastic terms assigns strictly 

positive probabilities to all path costs, from (5) it is clear that every path is assigned some 

flow. This is the case, for example, for the probit and logit models. Therefore, all paths are 

always active. No path has zero flow. Moreover, since the SUE is defined by the fixed point 

condition (6), there is nothing corresponding to the issue of non-strict complementarity. Issues 

(a) and (b) above do not occur for the case of SUE. Regarding (c), if the link travel time 

functions are strictly increasing functions of the link flow (see Sheffi, 1985) then the SUE link 

flows are unique. It follows (see Rosa, 2003) that, at equilibrium, the path flows are also 

uniquely determined by the fixed point condition (6). 

 

Assuming that the link cost functions and the probability density function of the stochastic 

terms are (single valued and) differentiable, then the SUE link flows and path flows are 

differentiable. Davis (1994) stated that this was the case for the logit and probit models. For 

the case of logit SUE, Davis (1994) provided the gradients of the equilibrium flows. 

Furthermore, Patriksson (2004) shows that where the DUE gradient exists, it is the limiting 
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case of the logit SUE gradient. For the case of probit SUE, Clark and Watling (2002) derive 

sensitivity expressions for the equilibrium link flows.  In the light of the SUE fixed-point 

condition (6), they consider the link flow gap function 

    sxcPQxsxd ;;  . 

For design parameters, s, the link flows x~ are a solution to the SUE if and only if   0;~ sxd . 

As stated above, the probit link flows are differentiable and clearly, so is the gap function. We 

can therefore write down the Taylor series expansion of the gap function about the 

equilibrium flows at some initial setting, s0, of the design parameters: 

                0;~0;~00
0000

~;~; ssdsxxdssxdsxd
ssxdsssxdx    (7) 

The link flow Jacobian, dx , and design parameter Jacobian, ds , are evaluated at the initial 

equilibrium flows. Evaluating d(.) with the network flows at (the new) equilibrium,  sxx ~ , 

by definition of the gap function, gives    0ssxd ,~ . We can therefore write 

      00
~~0 ssdsxsxd sx        (8) 

For those points 0s where the link flow Jacobian is non-singular, 0 dx
, the equilibrium 

flows at s can be expressed in terms of those at s0 (Clark and Watling, 2002): 

     0

1

0
~~ ssddsxsx sx   .      (9) 

Note that this requires inversion of the link flow Jacobian. Sufficient conditions for 

differentiability of the probit SUE flows are presented in Connors et al. (2007). In calculating 

the two Jacobian matrices, they are naturally decomposed as follows 

tPQId xcx  T    and   tPQd scs  T ,  (10) 

for the case where the design parameters do not represent changes to demand. Clark & 

Watling (2002) showed that the path choice probability Jacobian, Pc , can itself be 

calculated using a probit equilibrium assignment of reduced dimension (c.f. the original 

equilibrium problem). 

DUE SENSITIVITY ANALYSIS: PRACTICAL ISSUES 

While Patriksson & Rockafellar (2002) provide a method to derive the available (sub-) 

gradient information for DUE, some practical issues remain. The set of paths to be included in 

the analysis, including those paths that might be non-strictly complementary, must be 

determined; thus far only heuristics methods have been proposed to accomplish this task 

(Josefsson and Patriksson, 2006). 

For the case of DUE, the set of non-differentiable points constitutes a set of measure zero: it is 

on a ‘knife edge’ that only some directional derivatives are available, rather than the total 
derivative. This might appear to diminish the amount of effort worth expending in dealing 

with the non-differentiable points, but there are two reasons why this would be short sighted. 

Firstly, while the set of non-differentiable points is of zero measure, this does not mean that 

such features are rare. The zero measure is due to non-strict complementarity occurring at 

specific settings of the design parameters rather than for whole ranges: it infers nothing about 

the profusion of non-differentiable points. Secondly, in practice the impact of non-

differentiable points extends into the region surrounding them due to the imperfect 
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convergence of any equilibrium assignment algorithm. Consider, for example, a bi-level 

optimisation (maximisation) program that computes the gradients of the flows and hence of 

the objective function, with respect to the design parameters being optimised. 

 

At a given setting of the design parameters, s, the equilibrium flows, x*(s) are sought, but the 

equilibrium assignment algorithm terminates when the flows are calculated to be x*(s)+. The 

gradient is then calculated at x*(s)+, (dashed tangent line in Figure) but this gradient is 

assumed to be that of the flows at s, when it is not. The error induced would be small if the 

surface of equilibrium flows were smooth, but whenever such calculations occur near to non-

differentiable points, misleading gradient information may be passed to the optimisation 

algorithm. Common use of the Frank Wolfe algorithm with its well documented lack of 

uniform convergence (e.g. Sheffi, 1985) compound this problem in a bilevel setting 

(Shepherd and Sumalee, 2004). 

SUE SENSITIVITY ANALYSIS: PRACTICAL ISSUES 

While in principle all paths are used at SUE, in practice (especially for large networks) this is 

not the case, and which paths are actually assigned flow at the termination of a numerical 

solution algorithm will depend on the properties of that algorithm. There are two reasons why 

a given path may be unused at the estimate of equilibrium obtained by such an algorithm: 

1. The algorithm assigned zero flow to this path, instead of the correct, positive 

equilibrium flow. 

2. The algorithm did not consider this path. 

 

The probit path choice probabilities are defined by an integral that cannot be evaluated 

exactly (see (12) below) necessitating use of an estimation method, most commonly Monte 

Carlo simulation or analytic approximation (e.g. Clark, 1961, or Mendell and Elston, 1974). 

Case 1 may result from inaccuracies inherent in such methods coupled with the fact that 

machine precision may round to zero small choice probabilities multiplied by finite OD 

demand. 

 

Gradient at x*(s)+ used 

as the gradient at x*(s) 

x*(s) 

Equilibrium 

Flows 

Objective 

Function 

x*(s)+ 



 

 

Obstacles in the Sensitivity Analysis of UE & SUE 7 

 

 

One of the standard methods for calculating probit SUE is the link-based Method of 

Successive Averages (MSA) algorithm proposed by Sheffi (1985), in which all paths are 

implicitly available. The active paths are generated incrementally during the course of a 

Monte Carlo-based solution algorithm, using auxiliary solutions generated by a stochastic 

shortest path method. While in an infinite number of iterations this algorithm would assign 

flow to all conceivable paths, in practice (at the end of a finite number of iterations) many 

paths will have never been generated during the procedure, and will therefore not be assigned 

any flow. In such a case, provided a large number of iterations had been used, the correct 

equilibrium flow to such an unused path will be extremely small, but nevertheless positive. 

This is an example of the second case stated above. One problem with this approach is that 

the active path set may change between equilibrium assignments calculated at ‘adjacent’ 
settings of the design parameters, calling into question the precise meaning of the gradient 

calculated at any point. 

 

An alternative method for calculating probit SUE is to define the active path set upfront. For 

small networks this may include every conceivable path, for large networks it will almost 

certainly not. At each iteration of the equilibrium assignment algorithm (MSA for example), 

the choice probabilities are calculated for all paths in the active path set and each of these 

paths is assigned some flow. One benefit of this approach is that the surface of equilibrium 

flows and its gradient are consistent for the (fixed) active path set. Re-running the model with 

additional paths included in the active path set will give new equilibrium flows, and hence 

will alter the equilibrium solution surface and its gradient. The path set may be generated 

heuristically in an attempt to include all paths that carry “significant” flow at equilibrium, or 
may be generated according to other criteria. Neglected paths are not assigned any flow 

(under case 2 listed above). 

Degeneracy Issues with Probit SUE 

For the most common implementation of probit SUE, where the path covariance matrix is 

constructed from variances of the constituent links, a practical obstacle remains: the 

possibility of degeneracies arising from the network topology. To understand the significance 

of this we present the details of the probit model and then investigate the nature of these 

degeneracies using some simple examples. 

 

The probit model is a particular instance of the SUE formulation described above; it is 

constructed by introducing stochastic terms to the link costs. The perceived cost on the a-th 

link is aaa tT  ; the stochastic terms a are independent and normally distributed about 

zero with (non-zero but finite) flow-independent variances a . The resulting perceived path 

costs are 

    



Aa

r

kaaa

r

k

r

k tc , ff .     (11) 

The random error terms from the constituent links have been collected in the stochastic terms 

 r

k , whose joint probability density function is multivariate normal (MVN) with zero mean, 

and variance-covariance matrix r for the r-th OD movement. By construction, the network 

topology is reflected in the correlation structure (the variance-covariance matrix) of the 
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perceived path costs. Since the perceived costs are MVN distributed, the path choice 

probabilities cannot be written in closed form: 

 
  



 





ccc dP

rT

Kr

r

k r

1

2

1
exp

2

1



.    (12) 

The region of integration is where the k-th path is the cheapest:  kjcc
r

j

r

k  :min . The 

probit path choice probabilities therefore rely on the existence of the (so called) precision 

matrix,   1
r . For network topologies where the link-path incidence matrix is rank deficient, 

even for only one constituent OD movement, construction of the path-costs from the link-

costs will result in a singular covariance matrix for this OD. For such cases, the path choice 

probability, (11), and hence the probit model itself, are not well defined. Clark & Watling 

(2002) suggest several mechanisms for working around this issue, but do not find a way to 

include it in their analysis. 

 

Note that this problem can be avoided by restricting the probit path covariance matrix to be 

diagonal; after all, the logit SUE path covariance matrix is a scalar multiple of the identity 

matrix. Alternatively, by adding a small path-specific component to the perceived path costs 

the degeneracy would be removed. However, construction of the path covariance from the 

constituent link variances is an intuitively appealing aspect of the probit model and, as we will 

discuss below, may not necessarily pose a problem. 

 

The MVN distribution can be defined for the case of singular covariance matrix as follows: 

If the eigenvalues of r  are 0,...,0... 11   r
Kmm dddd . Defining  

 m

r
ddD ,...,diag 1  gives the spectral decomposition Trr

EED where E is size [k x m], of 

rank m, and comprises columns that are eigenvectors of r corresponding to the non-zero 

eigenvalues. The probability density function of the singular MVN distribution is then 

 
 

  






ccc

TrT

Kr

EDE

D

g
r

1

2

1
exp

2

1


. 

This transformation performs a rotation of the original coordinate axes (the link costs) such 

that the new coordinates are aligned with the eigen-vectors of the covariance matrix; the 

singular dimension of the probability density function can then easily be neglected as it 

corresponds to one of the coordinate axes. The path choice probabilities are well defined with 

reference to the new coordinates, although the limits of integration that define r

kP in (12) must 

be transformed. Whereas there are several well known techniques (for example the method of 

Mendell-Elston) to efficiently calculate the MVN probability  kjCC
r

j

r

k Pr , the 

transformed integral is not of this type and does not allow convenient estimation methods to 

be used (though of course Monte Carlo simulation can be applied, as it can for the initial 

singular integral). 

  

The simplest network having singular a path-covariance matrix is the Figure-8. But although 

the degeneracy problems stated above appear in the Figure-8 network, the equilibrium flows 

can be shown to exist and be differentiable. This illustrates that some of the practical 



 

 

Obstacles in the Sensitivity Analysis of UE & SUE 9 

 

 

obstacles are introduced by our method of decomposing the Jacobians for calculation, and are 

not inherent to the sensitivity analysis of the network. 

The Figure-8 Network 

The Figure-8 network and its four paths are drawn below. 

 

The perceived path costs are derived from their constituent link costs as follows: 

3322324

4411413

4422422

3311311











ttTTC

ttTTC

ttTTC

ttTTC

 

The link path incidence matrix is of rank three, and the covariance matrix of the probit model 

for this single OD pair network is therefore singular: 



























2

3

2

2

2

2

2

3

2

4

2

1

2

4

2

1

2

2

2

4

2

4

2

2

2

3

2

1

2

3

2

1

0

0

0

0







 

Despite analytical concerns regarding whether or not the probit choice probabilities are well 

defined, it seems reasonable that equilibrium flows exist, and that under smooth perturbations 

to the link cost function parameters, the equilibrium flows will smoothly vary. 

 

By taking a link based approach, this network is surprisingly amenable to analysis. The path 

choice probability for path 1 is  4131211 ,, CCCCCCP  P : 

 
 
 43211

214342311

3231413142311

,

,,

,,

TTTTP

TTTTTTTTP

TTTTTTTTTTTTP






P

P

P

 

Note that one of the conditions, comparison with path 2, is redundant. The path that can be 

ignored shares no links with the path in question (path 1 in this case).  

 

t1 t3 

2 31

t2 t4 

2 31

t1 

t4 

2 31

t2 

t3 

2 31

Path 1 

 

Path 2 

 

Path 3 

 

 

Path 4 

t1 

t2 

t3 

t4 

2 31
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We consider the simplest case, and assume that the link error terms are independent. 

Following from above, for this case we have for path 1 

       00 432143211  TTTTTTTTP PPPP  

and similarly for the other paths. The path choice probabilities for the Figure-8 split into 

independent terms around the central node: the chosen path must be ‘piecewise cheapest’ on 
each of the independent parts of the network. This view extends to further examples presented 

below. 

 

We can calculate these probabilities directly by defining jiij TTY   so that jiij ttY   and 

222

jiY   . With Yijijij YYZ  ,  1,0~ NZij  and so 

   








































































2

4

2

3

34

2

2

2
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Where  F  is the cumulative (standard) normal distribution function. The path choice 

probabilities are thus 
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Recalling (9) and (10), in order to write down sensitivity expressions we need to calculate 

derivatives of the choice probabilities with respect to the link flows. With the standard normal 

density function  f  these immediately follow 
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When all links have covariance 3.02 i the path choice probability Jacobian with respect to 

the link costs is 
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These analytical derivatives match those calculated numerically by finite differencing. The 

figure below illustrates the changes in flows and costs as the toll on link 1 is varied. The solid 

line represents DUE and the broken line SUE with link covariances 0.3 as above. When the 

toll reaches 2, link 1 becomes unused and the DUE solution is non-complementary; the link 

flow gradient is not well  defined at this point. At higher tolls, the cost of link 1 increases and 

the DUE flow on it remains zero; all the flow is on link 2 which attains the appropriate (max) 

cost  of 2. Meanwhile, the SUE flows and costs vary smoothly across the range of tolls. 
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Toll on Link 1  
It is worth noting that the analytic approximation method of Mendell-Elston appears to work 

for the Figure-8 network, calculating the choice probabilities despite the singular covariance 

matrix. Moreover this method seems to work for other MVN distributions with singular 

covariance, although the authors are not aware of any analysis relating to the use of this 

method with singular MVN distributions. This is doubly useful because the method (see Clark 

and Watling, 2002) used to calculate the probit path choice probability Jacobian, Pc in (10), 

and hence the gradients, also relies on calculating choice probabilities for a singular MVN 

distribution. 

Multiple Figure-8 Network 

The analytic approach used for the Figure-8 network extends to networks of similar geometry 
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Between each pair of adjacent nodes there are only two competing links; the path taking every 

‘upper’ link, [1, 3, 5, 7], has choice probability 
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and the derivatives follow easily, as above. 

Figure-8 Network with Additional Link 

 A further extension includes more than two links between adjacent nodes. 

 
The choice probability for path 1 is  
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The network decomposes in the same way as for the Figure-8. For a given path, the 

constituent links simply have to be the most attractive between the adjacent nodes. However 

in this case the relevant choice probabilities for the component 3-link network cannot be 

written in terms of the cumulative normal distribution function, instead the probit choice 

probabilities (and their derivatives) for the non-degenerate 3-link network must be calculated. 

For example: 
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The derivatives can be calculated using the method already referred to (Clark and Watling, 

2002) for calculating the probit choice probability Jacobian for a non-degenerate network. For 

the three link network, denote the link choice probabilities (choosing links 1,2 or 3) by iPL  
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Figure-8 Network with Alternative OD Path 

 
Here we have 
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This network does not decompose into independent non-degenerate parts because link 5 spans 

the central node. In this case we cannot simply follow a link based approach and find analytic 

expressions for the derivatives of the path choice probabilities. However, there is surely no 

doubt that this network has equilibrium flows that vary smoothly with changes to the link cost 

function parameters, and is not fundamentally different from those presented above. 

Nevertheless, for this case we have to revert to less elegant techniques for calculating the path 

choice probabilities, using either Monte Carlo on the transformed MVN integral, or applying 

estimation techniques without proper justification to the singular MVN distribution. 

CONCLUSION 

Patriksson and Rockafellar (2002) provide a full theoretical treatment of DUE sensitivity 

analysis. While this provides a technically correct methodological approach, practical 

problems remain due to the fundamentally non-smooth variation of the equilibrium flows 
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under perturbations. When conducting sensitivity analysis of DUE flows, the presence of 

inaccuracies in the calculations needs to be accounted for. 

 

The SUE flows are unique and vary smoothly under perturbations, so the analytic concerns 

that have plagued DUE analysis evaporate. However, while the theoretical behaviour of the 

SUE model is benign, issues arise in practical applications. In particular for the probit SUE 

model, network topology can give rise to degeneracies in the path covariance matrix that 

undermine the definition of the probit path choice probabilities. For some cases these 

analytical obstacles can be shown to disappear, simply by following a link based analysis, but 

problem networks remain where this approach does not provide an analytical solution. In all 

cases the method of Mendell-Elston (1974) can be used to estimate the choice integrals and, 

following Clark & Watling (2002), the path choice probability Jacobian and hence the 

gradient of the equilibrium flows. However, the application of this method to singular MVN 

distributions lacks rigorous theoretical foundation. 

 

Further work is required to extend the link-based analytical approach to more general network 

topologies, in particular to accommodate the final example presented above. In addition, 

justification is required for the use of the Mendell-Elston method in the case of MVN 

distributions with singular covariance. 
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