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Markov Model of Binary Route Choice 

MOMENT APPROXIMATION TO A 

MARKOV MODEL OF BINARY ROUTE CHOICE 

 

 

David Watling, Institute for Transport Studies, Leeds University, UK. 

 

 

ABSTRACT 

 

The paper considers a discrete-time, Markov, stochastic process model of drivers’ day-to-day 

evolving route choice, the evolving ‘state’ of such a system being governed by the traffic 
interactions between vehicles, and the adaptive behaviour of drivers in response to previous 

travel experiences. An approximating deterministic process is proposed, by approximating 

both the probability distribution of previous experiencesthe “memory filter” and the 

conditional distribution of future choices. This approximating process includes both flow 

means and variances as state variables. Existence and uniqueness of fixed points of this 

process are examined, and an example used to contrast these with conventional stochastic 

equilibrium models. The elaboration of this approach to networks of an arbitrary size is 

discussed. 

 

1.  INTRODUCTION 

 

Stochastic network equilibrium approaches to modelling driver route choice in congested traffic 

networks are concerned with predicting network link flows and travel costs, corresponding to a 

fixed point solution to a problem in which (Sheffi, 1985): 

 actual link travel costs are dependent on the link flows; and 

 drivers’ route choices are made according to a random utility model, their perceptual 
differences in cost represented by a known probability distribution. 

The term Stochastic User Equilibrium (SUE) is typically used to describe such a fixed point. 

 

A radically different approach to modelling this interaction between flow-dependent travel costs 

and travel choices was proposed by Cascetta (1989), and studied further by Davis & Nihan (1993), 

Cantarella & Cascetta (1995) and Watling (1996). This Stochastic Process (SP) approach differs 

in two major ways from SUE. Firstly, the SP model is specified as a dynamical process of the day-

to-day adjustments in route choice made by drivers, in response to travel experiences encountered 

on previous days. The concept of long-term “equilibrium” is therefore related to an explicit 
adjustment process. Secondly, in the SP approach flows are modelled as stochastic quantities, in 

contrast to SUE in which they are regarded throughout as deterministic quantities. Equilibrium in 
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the SP sense, if achieved, relates to an equilibrium probability distribution of network flows, 

relating to the probabilities of the alternative discrete flow states. 

 

Certainly, since it is well-known that the flows on roads may vary considerably from day-to-day, it 

is not difficult to make a case that flows are more appropriately represented as stochastic variables. 

However, it is recognised that the SP approach makes a radical departure from conventional 

network equilibrium wisdom. Moreover, if we are interested only in the equilibrium behaviour of 

the SP, there seems no clear way of directly estimating it, without simulating the actual dynamical 

behaviour of the process (as suggested by Cascetta, 1989). 

 

The work in the present paper was therefore motivated by two broad objectives: firstly, to gain an 

improved understanding of the relationship between the SUE and SP approaches, and secondly to 

examine the extent to which the equilibrium behaviour of the SP model may be estimated directly. 

Due to the limitations on space, and in order to make the analysis more accessible, the paper will 

restrict attention to the simplest case of a binary choice. (In section 6 the extension to general 

networks is briefly discussedfurther details are available on request from the author). 

 

 

2.  STOCHASTIC PROCESS MODEL: SPECIFICATION AND NOTATION 

 

Consider a network serving a single origin and destination with a fixed integer demand of q 

over some given time period of the day (e.g. peak-hour) of duration   hours. Here, q is a 

known, deterministic, integer quantity that does not vary between days. Suppose that the origin 

and destination are connected by two parallel links/routes, link 1 and link 2. We wish to 

examine how the flows on these links will vary over time, i.e. days. We therefore let the 

random variables F(n) (n=1,2,…) denote the flow on link 1 on day n. Clearly the flow on link 2 

will then be q- F(n), and so knowledge of F(n) is sufficient to characterise the state of the 

network on any given day. We suppose that these flows arise from the choices of individual 

drivers, and so may only take integer values. The demand-feasible flows on link 1 (denoted 

fD ) are therefore 0,1,2,…,q. 

 

Related to a flow f  in a period of duration >0 hours, we define f 1  vehicles/hour to be the 

flow rate (similarly, q1  is the origin-destination demand rate). We shall suppose that the 

actual cost (e.g. travel time) of travelling along link j at a given flow rate f 1 on link 1 is 

given by  c fj  1  (j=1,2), the cj() being time-independent, known, deterministic functions. 

Denote the mean perceived cost of travel on link j at the end of day n by 

U j nj
n( ) , ; , ,...) (   1 2 1 2 . These are random variables, whose stochasticity iswe shall 

assumerelated entirely to the stochasticity in the flows, from the learning model: 
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  U
m

c F j nj
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j
n i

i

m
( ) ( ) , ; , ,...)  


  1 1

1

1
1 2 1 2      (                 (2.1) 

where m is some given, finite, positive integer. That is to say, U j
n( )1  is an average cost over all 

drivers, based on the actual costs from previous days. Finally, suppose that conditional on the 

past, the q drivers select a route at the beginning of each day n independently of one another. 

The probability of a randomly selected driver choosing route 1 on day n, given mean perceived 

costs at the end of day n-1 of ( , )( ) ( )u un n
1

1
2

1  , is then assumed to be given by p u un n( , )( ) ( )
1

1
2

1  , 

where p(,) is a time-independent, known, deterministic function. 

 

For a given initial condition F f D( ) ( )0 0  , the evolution of this process can be written: 

    F F i m q p U Un n i n n( ) ( ) ( ) ( ): , ,..., , ( , )   1 2 1
1

2
1 ~  Binomial             (2.2) 

where theU jj
n( ) , ) 1 1 2 (  are related to the  F i mn i( ) : , ,...,  1 2  by (2.1). Cascetta (1989) has 

shown that under mild conditions, the above process converges to a unique stationary 

probability distribution regardless of the initial conditions. These are basically conditions for 

the process to be irreducible and Markov, for which it is sufficient that m be finite, and  p(,) 
give values strictly in the open interval (0,1). 

 

 

3. APPROXIMATING DETERMINISTIC PROCESS AND EQUILIBRIUM 

CONDITIONS 
 

3.1 Approximation of memory filter 

 

Now for any fD, by standard laws of conditional probabilities we have: 

 

Pr Pr   

                                                                      Pr(

( ) ... ( , ,..., )

, ,..., ).

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

F f F f F f F f F f

F f F f F f
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m

m

        

  

 

  

  
21

1
1

2
2

1
1

2
2

(3.1) 

 

Since the dependence on the past is, from (2.1), only in the form of dependence on the 

U jj
n( ) , ) 1 1 2 ( , then if we define the set of implied demand-feasible mean perceived costs as 

     







( , ) : ( ) ( , ) ( , ,..., )u u u c f j f D i mj m j i i
i

m

1 2
1

1
1 2 1 2       for   -1  

 we can write (3.1) as 

Pr Pr  Pr(( ) ( ( , ) ( , )) ( , ) ( , )).( )

( , )

( ) ( ) ( ) ( ) ( )F f F f U U u u U U u un

u u

n n n n n     


   

1 2
1

1
2

1
1 2 1

1
2

1
1 2


    (3.2) 
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Now, it is proposed that an approximation to the joint distribution of  ( , )( ) ( )U Un n
1

1
2

1   is, as 

m , 

Pr(
if E[ E[

otherwise
( , ) ( , ))

( , ) ( ], ])( ) ( )
( ) ( )

U U u u
u u U Un n

n n

1
1

2
1

1 2
1 2 1

1
2

11

0
 

 

 





.           (3.3) 

Although intuition suggests that, from (2.1), as m  then var   (( ) , )( )U jj
n  1 0 1 2 , which 

would support the approximation (3.3), a formal proof has yet to be obtained, although some 

suggestive points should be noted. In stationarity, F F Fn n n m( ) ( ) ( ), ,...,  1 2  will have a 

common marginal probability distribution, and hence so will 

     c F c F c Fj
n

j
n

j
n m( ) ( ) ( ), ,...,  1 2  -1 -1 -1   (j=1,2). If these were independent, then applying 

a Central Limit Theorem would establish the required result, but they are clearly correlated.  

 

However, 

   var( ) var ( ) cov ( ), ( )( ) ( ) ( ) ( )

( )

U
m

c F
m

c F c Fj
n

j
n i

i
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j
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k

k i

m

i

m
  
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   





   1

2
1

1
2

1 1

11

1 2
   . 

The first term is the variance that would arise if the costs were independent over time, and the 

second term is the sum of cost covariances i-k time periods apart (i-k=1,2,…,m-1). Now for a 

typical choice probability function for p(,) such as a random utility model, in which the 

probability of choosing an alternative is a decreasing function of the cost of that alternative, 

and cost functions in which c j ( )  is an increasing function of the flow rate on alternative j, we 

could guarantee that costs one time period apart will be negatively correlated. This is because 

an increased cost of alternative j on day i, will tend to reduce the number of users choosing j on 

day i+1, which in turn will tend to reduce the cost of alternative j on day i+1. Although this 

does not extend to other, more distant costs, which may be positively correlated, there would 

appear to be some possibilities here for future work examining conditions under which cost 

covariances may decay in magnitude over time, and/or of using the variance obtained in the 

independent case as some sort of bound. 

 

The proposed approximation (3.3) then gives rise to the approximating process of: 

 

Pr Pr E E  ( ) ( ( , ) ( [ ], [ ])) .( ) ( ) ( ) ( ) ( ) ( )F f F f U U U Un n n n n n      
1

1
2

1
1

1
2

1             (3.4) 

 

3.2  Approximation to the flow probability distribution 

 

The approximation proposed in section 3.1 simplifies the process by saying that we need not 

condition on the whole cost probability distribution of the previous day (which describes the 

memory of all previous days) in order to determine approximately the flow probability 

distribution for the current day. The approximating process (3.4)/(2.1) does, however, still 
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require computation of the evolution of the individual state probabilities, i.e. the whole flow 

probability distribution. Here we introduce a further approximation, which allows us to 

consider only the evolution of the first two moments of the flow probability distribution. 

 

Now, by (2.1), and using a second order Taylor series approximation to cj() in the 

neighbourhood of E[F(n-i) 1 ], we obtain: 

 

 
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                                                      =                                       (3.5)
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where the mean flow rate, and variance in the flow rate, are given by 

      ( ) ( ) ( ) ( ) ( )[ ] [ ]       an var( ) var( )n n n (n) n nF F F F      E E d      1 1 1 2 .  

 

Therefore, with such an approximation, the right hand side of (3.4) can be written in terms of 

the evolution of the flow rate means and variances alone. In other words, in order to know the 

evolution of this approximating process, there is no need to compute the whole flow 

probability distribution, only its first two moments. Now, from (2.2) and the approximation 

(3.4), combined with standard properties of the Binomial, we have on the demand-side: 

 
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          = var  E E  E E
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-2 -2
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       (3.6) 

and so, letting q q  1  denote the origin-destination demand rate and combining (3.5)/(3.6), 

we end up with the approximating deterministic process given by the linked expressions: 
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(3.7) 

where 

       h c c h c q c q1 1 1 2 2 22 2
( , ) . ( , ) .  


   


             and                      (3.8) 

where we have used (in the expression for h2 ) the fact that the mean flow rates on the two 

routes must sum to q , and that by the binomial assumption the (absolute) flow variances on 

the two routes must be the same, hence the flow rate variances must also be the same (  ). 

 

 

3.3  Equilibrium conditions 
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Stationary points of the process (3.7) are obtained by setting  

    ( ) * ( ) * ( , ,..., )n i n i i m       and         1 2  

and in this case the summations in (3.7) drop out to yield: 

 

    
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* * * * *

* * * * * * * * *

,

, ,
















q p h ( , ) h ( , )

q  p h ( , ) h ( , )  p h ( , ) h ( , )

1 2

1
1 2 1 21=  

                     (3.9) 

A flow allocation ( , )* *   satisfying the fixed point conditions (3.9) will be termed a Second 

Order Stochastic User Equilibrium, or Second Order SUE for short. It will also be denoted 

SUE(2), the 2 relating to the 2nd order approximation made in forming (3.5). It is trivial to 

show that had a first order approximation been made here instead, we would have obtained a 

conventional SUE for * , i.e. a SUE(1) is a conventional SUE. 

 

 

4.  EXAMPLE 

 

Consider a problem with an origin-destination demand rate of q = 200 vehicles/hour over a period 

of duration >0  hours, and relationships between cost and flow rate of the form: 

    1
1

1 6

2
110

100
2c f  =  

f
     c q f  =  













      .                     (4.1) 

(For information, this problem has a unique Wardrop equilibrium, at a flow rate on route 1 of 

approximately 76.5.)  Let us suppose that the choice probability has the logit form: 

  p u u u u1 2 1 2
11 0, ( exp( ( ))) ( )                             (4.2) 

with dispersion parameter   0 3. . This problem has a unique SUE at f  82 6. . 

 

Now, this problem does not have a unique SUE(2) solution, but rather one that varies with the 

value of the time period duration   ; for a given  , there is a unique SUE(2) solution. Such 

solutions have been determined numerically, by a fine grid search technique, for various given 

values of  , and the resulting mean flow rates are illustrated in Figure 1. The horizontal dashed 

line in the figure is the SUE solution, which is invariant to  . As we might have expected from 

(3.9), as   then the SUE(2) mean flow rate approaches the SUE solution. This may be 

regarded as an asymptotic (“law of large numbers”) result, in a similar spirit to that of Davis and 

Nihan (1993), since for fixed q  by letting  , we are effectively letting the number of drivers 

tend to infinity. 
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           Figure 1: SUE(2) mean flow rate as a function of time period duration   

 

 

5.  EXISTENCE AND UNIQUENESS CONDITIONS 

 

It is pertinent to ask under what conditions will there exist solutions to the SUE(2) model proposed 

in (3.9), and under what conditions will there be a unique solution. The existence question is quite 

straightforward to answer, using tools similar to those used by Smith (1979) for deterministic user 

equilibrium and Cantarella & Cascetta (1995) for conventional SUE. Basically, if all the functions 

involvedi.e. the choice probability function p u u( , )1 2  and the modified cost-flow functions 

given by (3.8)are continuous, then Brouwer’s fixed point theorem (Baiocchi & Capelo, 
1984) will ensure the existence of at least one solution to the fixed point problem (3.9), since 

the mapping implied by the right hand side of (3.9) is to a closed, bounded, convex set. In 

order for the modified cost-flow functions to be continuous, it is clearly sufficient that the 

original cost-flow functions are twice continuously differentiable throughout their range. 

 

The uniqueness question needs a little more thought. In the introduction of the SUE(2) problem 

(expressions (3.7)-(3.9)), it was notationally convenient to express the problem purely in terms of 

the flow mean and variance on route 1. However, let us now assume the functions h1  and h2  given 

by (3.8) are instead replaced by functions of ( , ) ( , )   1 1 2 2 and , respectively the flow rate 

mean and variance on routes 1 and 2, i.e. 

 
~

( , ) ( ) ( ) ( , )h c c jj j j j j
j

j j  


   
2

1 2      .               (5.1) 

Letting 

 ( , )  = p h h(
~

( , ),
~

( , ))1 1 1 2 2 2     where   ( , ) 1 2  and   ( , ) 1 2              (5.2) 

then the SUE(2) conditions on ( , )   are: 

 1
*  q ( , )* *      1

1*  q  ( , )( ( , ))* * * *   1                      (5.3) 

with 
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    2 1 2 1
* * * *  q       and         .                 (5.4) 

 

Writing the condition on 1
*  in (5.3) in terms of 1

*  (similarly, for 2
*  and 2

*  from (5.4)), yields: 

 






j
j j

q
j*

* *( )
( , )  

2

1 2            .                 (5.5) 

Now, (5.5) holds only at SUE(2) solutions, i.e. at any solution to the fixed point problem (3.10). 

However, if this condition were imposed at all points, i.e.: 

 






j
j j
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j  

2

1 2            ( , )                  (5.6) 

then under (5.6), we would then be able to regard the modified cost-flow functions (5.1) as 

functions of the  j  only: 
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which, in view of (5.6), may be expressed after some rearrangement as: 

 








  




~

( ) ( ) ( ) ( ) ( , )
h

c
q

c c c j
j

j
j j

j
j j j j

j
j j   









     1

2
1

2
1 2      .              (5.8) 

Now let us consider separately two possibilities for the cost-flow functions, firstly that they are 

linear and secondly that they are non-linear. If they are linear and increasing, then all derivatives 

but the first are zero, and (5.8) reduces to one term which is positive. In the second case, let us 

assume they are non-linear on link j (say) and satisfy the following conditions: 

   c x xj ( ) 0 0   for all                    (5.9) 

   c x xj ( ) 0 0   for all                  (5.10) 
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c x
q x
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j

 
   for all  




 

( )

( )
 0                 (5.11) 

(For example, in the case of power-law functions c x xj a a
na( )    , then conditions (5.9)-

(5.11) hold if   a a a an n q     0 0 1 2 1, ,  and  or .) Under conditions (5.9)-(5.11), it 

can be seen that the first (bracketed) term and third term in (5.8) are non-negative, and the second 

term positive, and so the derivative overall is positive. 

 

Hence, under (5.6), in both the linear and non-linear cases, the modified cost-flow functions are 

strictly increasing in the mean flow rates, and so the vector function 

 ~
( , ),

~
( , )

~
, ,

~
, (  ( ),  ( ))h h h

q
h

q
h h1 1 1 2 2 2 1 1

1 1
2

2 2
2 2

2

1 1 2 2    













  








 



















   (say)  

(5.12) 
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is strictly monotonically increasing in ( , ) 1 2 . This holds for any ( , )   related by (5.6), and so 

certainly holds at a SUE(2) solution ( , )* *  , which is guaranteed to satisfy (5.5). A slight 

complication is that in view of (5.9), this result only applies to the case where all  j
*  are non zero 

((5.9) notably excludes the case x=0). However, this complication may be overcome by requiring 

the path choice probability function p to produce a result strictly in the open interval (0,1), thus 

excluding the possibility of an assignment with some  j
*  0  being a SUE(2) solution. Such a 

condition is satisfied by conventional logit and probit choice models, for example. 

 

With this monotonicity condition, we can apply similar arguments to those used by Cantarella and 

Cascetta (1995) to establish SUE uniqueness. We shall require the choice probability function 

( ) ( ( , ), ( , ))u  p u u p u u1 2 1 21  to be monotonically non-increasing in u  ( , )u u1 2 , as satisfied 

by random utility models that are ‘regular’ (in the sense that the probability distribution of 
perceptual errors is independent of ( , )u u1 2 , as in logit choice or probit choice with a constant 

covariance matrix). Letting  ( )h  = (  ( ),  ( ))h h1 1 2 2   be given by the right hand side of (5.12), then 

let us suppose that two SUE(2) solutions do, on the contrary, exist: 

            h h h h h h( ) ( ) ( ) ( ).       and        where      and   q q  

Then 

 ( ) ( ) ( ( ) ( )) ( )                T T h h h h h hq 0             (5.13) 

since   is monotonically non-increasing, by hypothesis. But we also have: 

 ( ) ( ) ( ) ( ( ) ( ))                  T Th h h h 0             (5.14) 

since we have established above that  ( )h   is monotonically increasing (and note that here, we 

only use the monotonicity condition at a SUE(2) mean flow solution) . Since (5.13) and (5.14) 

together give a contradiction, we can conclude that only one SUE(2) solution may exist. 

 

 

6.  CONCLUSION AND FURTHER RESEARCH 

 

The SUE(2) model derived, in approximating the equilibrium behaviour of a SP approach, goes 

some way to achieving the objectives stated in the Introduction. Firstly, it gives the potential to 

derive efficient algorithms for directly estimating equilibrium behaviour, without regard to the 

underlying dynamical process. Secondly, by providing an intermediate modelling paradigm, it 

provides an insight into the relationship between the SP approach and conventional stochastic 

network equilibrium (an SUE(1)).  

The extension of this work to general networks is a natural step to consider. The author has strong 

evidence that this is achievable, though with rather greater complexity: for example, (2.2) becomes 

a multinomial route flow distribution, (3.6) then involves route flow covariance terms, and the step 

to (3.7) (transformation from the route flow to link flow domain) is no longer trivial. Existence and 
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uniqueness of SUE(2) may be established in an analogous way, but with the h  expressions in 

(5.12) now being considered functions of the mean link flows disaggregated by origin-destination 

movement. One efficient, heuristic solution algorithm is derived by repeated application of the 

“method of successive averages” (Sheffi, 1985) to the modified costs (5.1), conditional on the link 
flow variances. 

 

In parallel with this extension to more general networks, more elaborate approximations to the SP 

model may be consideredfor example, relating equilibrium conditions to the assumed learning 

model (a dependence noted by Cascetta, 1989, in the context of the SP approach). 

 

A third area of further research is to extend the modelling capabilities, such as the incorporation of 

stochastic variation in travel demand, by including a no-travel option with a user-specified choice 

probability, and the extension to multiple driver classes with different learning and predictive 

capabilities (as may occur if some drivers are provided with travel information). 
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