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DOUBLY DYNAMIC EQUILIBRIUM 

DISTRIBUTION APPROXIMATION MODEL 

FOR DYNAMIC TRAFFIC ASSIGNMENT 

N.C.Balijepalli and D.P.Watling, Institute for Transport Studies, University of Leeds, Leeds, 

England 

ABSTRACT 

The paper presents research aimed at unifying the fields of (i) dynamic network equilibrium, 

(ii) dynamic whole-link models and (iii) stochastic process models of between- and within-

day dynamics. An approximation result and computational procedure is derived for 

determining the equilibrium probability distribution of a within- and between-day dynamic 

stochastic process traffic assignment model. The method is based on an analytic procedure 

requiring only knowledge of within-day dynamic stochastic user equilibrium flows, together 

with the Jacobians of the dynamic network loading map and of the choice probability 

function. An implementation is reported with a particular form of whole-link, continuous-

time, dynamic network loading model, commonly found in the literature on dynamic traffic 

assignment, where travel times at the time of entry to a link are a function of the number of 

vehicles on the link at that time. Illustrative numerical examples are presented. 

INTRODUCTION 

The dominant research theme in traffic network modelling for more than a decade has been 

the effort to formulate and solve more complex and realistic models, especially to support 

applications of ITS (Intelligent Transport System) measures. The objective of this theme of 

research has been to support both “on-line” problems, such as short-term forecasting, 

deployment of real-time traffic information and en route diversion advice, as well as “off-

line” problems, concerned with medium-term planning and appraisal of systems. The present 

paper focuses on such off-line, planning applications. In this context, while many limitations 
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have been identified in established network equilibrium theory in being able to reflect the 

impacts of such systems, two particular features have attracted much attention. These are 

namely: 

- the representation of dynamic traffic flow phenomena and their impact on departure-

time-dependent route choice (“within-day dynamics”); and 

- the representation of behavioural adaptation, learning and information acquisition 

processes (“between-day dynamics”). 

 

A range of techniques has been proposed to address each of these limitations, yet two broad 

philosophical approaches have been adopted. The first stream of work is based on the attempt 

to generalise existing network equilibrium theory to the within-day dynamic case, utilising 

formulations and solution methods from optimal control theory, variational inequalities and 

mathematical programming. Such a stream provides a range of potentially efficient solution 

methods, which can be applied and monitored in a well-controlled environment, based on an 

explicit and well-researched theoretical principle. This theory allows properties of existence 

and uniqueness of the model prediction and convergence of solution algorithms to be 

established, and to be linked to the specific assumptions of the underlying model. The second 

stream is based on an explicit representation of the emergent dynamical processes involved, 

rather than a direct characterisation of some stationary/equilibrium state of the process. When 

implemented using an explicit simulation of the system dynamics, this stream of work 

provides the opportunity to model behaviours that are well beyond those permitted in the 

well-controlled environment of equilibrium theory, yet without reference to a well-researched 

theoretical principle describing the system trajectory, and without the control on model 

outputs one can exert within an equilibrium framework. The price paid for the flexibility of 

this approach is the greatly added complexity in interpretation of model outputs (as well as in 

their use for an overall economic evaluation), with predictions that may be transient, 

stochastic, chaotic, periodic, auto-correlated and depend on the initial conditions. Thus, each 

of the two streams offers its own advantages, but has its drawbacks. 

 

In the present paper, we shall present research that for the first time unifies the advantages of 

these competing philosophies, by bringing together three elements, namely: 

- the representation of both within- and between-day dynamics within the overall 

framework of a discrete-time stochastic process, as proposed in the unifying 

framework of Cantarella and Cascetta (1995); 

- the representation of within-day traffic flow dynamics by a continuous-time, whole-

link, dynamic network loading model of the kind popularly used in the dynamic traffic 

assignment literature; and 

- the solution and estimation of the equilibrium properties of the resulting stochastic 

process using a combination of conventional within-day dynamic network equilibrium 

theory and a theoretical approximation result. 

In doing so, as well as providing a practical solution technique, we are able to place the 

diverse subjects of network equilibrium theory, simulation and stochastic process models 
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within a common theoretical framework, whereby advances in one area may be used to the 

advantage of other areas.  

Specifically, the modelling approach adopted is based on modelling the day-by-day evolution 

of driver decisions as a discrete-time markov process, and the evolution of traffic flow 

dynamics within the day by a continuous-time whole-link model (hence it is termed ‘doubly 

dynamic’). While it is known that the stationary output of such a model, in the form of an 

equilibrium probability distribution of time-dependent network flows, may in principle be 

estimated by Monte Carlo simulation, there are many potential drawbacks of such an 

approach, such as the difficulties of detecting stationarity and the effects of multiple 

attractors, and of dealing with Monte Carlo error in policy tests (Cantarella & Cascetta, 1995; 

Watling, 1996; Watling, 2002).  

 

With such considerations in mind, Hazelton & Watling (2004) proposed an analytic 

approximation method for directly estimating the equilibrium probability distribution of such 

a model, without the need for simulation, and requiring only knowledge of a conventional 

Stochastic User Equilibrium (SUE) solution. Utilising a result previous established by Davis 

and Nihan (1993), namely that this equilibrium distribution is asymptotically multivariate 

normal, with mean the SUE flow vector, then all that is required to complete the 

approximation process is the variance-covariance matrix of the flows, as provided by the 

approximation result of Hazelton and Watling (2004). However, a significant restriction of 

their work is that it was restricted to within-day static models. The contribution of the present 

paper is to make the important step of extending this work to the within-day dynamic case, in 

which the origin-destination demand flows are time-sliced by departure time (to any desired 

resolution), and in which the interactions on the network are handled through a continuous-

time, dynamic network loading model (estimated in practice by an arbitrarily fine 

discretisation). 

 

The paper is structured as follows. In the following section, the underlying model is explicitly 

stated in quite general terms, and an approximation derived for the moments of the 

equilibrium probability distribution of the process. This approximation in turn requires the 

computation of various equilibria and Jacobian matrices, and so the next sections are devoted 

to explaining techniques for performing these computations. In particular, one complete 

section is devoted to describe the derivation of the route travel time Jacobian for a particular 

form of popular whole-link, dynamic network loading model. Two simple numerical 

examples are then considered, whereby the approximation method is compared with a 

simulation-based approach. Finally, conclusions and areas for future research are identified. 

MODEL FORMULATION AND APPROXIMATION METHOD 

The model we consider examines the general case of multiple origin-destination movements, 

served by a network of links with overlapping path-flows on which there are time-varying 

travel time-flow relationships defined in continuous time. On the demand side, the origin-

destination flows are assumed to be specified (as is typically the case in practice) in discrete 
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departure periods, though these periods can be made as fine as the modeller desires. Though 

not a necessary restriction, for notational simplicity we assume that all origins are discretised 

into the same periods. On the network side we shall consider the continuous-time dynamic 

network loading map as a relationship between a given vector of path flows (by departure 

interval and origin-destination movement) and the vector of resulting  mean path travel times 

(by departure interval and origin-destination movement). Broadly speaking, the model and 

derivation of the approximation result in this section re-interprets that given in Hazelton and 

Watling (2004), with origin-destination movements instead interpreted here more generally as 

commodities. In this case, a commodity consists of a triple (origin, destination, departure 

period), so that the number of commodities will be the product of the number of origins, 

number of destinations and number of departure periods. (It is noted in passing that this 

definition of a ‘commodity’ is readily extended to consider ‘user class’ as a fourth dimension, 

at some additional cost of notational complexity in labelling perceived costs by commodity. 

Since already our notation is rather complex, this obvious generalisation is not given here, we 

shall focus only on the single user class case.) For the fine details and proofs of the results 

employed from Hazelton and Watling (2004), the reader is referred to the source paper. It will 

suffice to say that the thrust of the approximation method is an asymptotic (law of large 

numbers) argument, as the demand levels become large, but assuming that the network 

capacity grows in relation to the demand. This allows a large sample approximation to be 

made of any arbitrary network problem, whether or not the original problem has demands that 

are “large” in any sense. Below, an outline is provided of the key assumptions and results. 

 

We begin, then, by introducing the notation and assumptions of the model adopted. The 

commodity demand flows (i.e. origin-destination demands for each departure time period) are 

held in a vector q of dimension K with elements )K,...,2,1k(q k = . Each commodity k is 

served by a set of routes kR  with kR  elements; the full route set across all commodities thus 

has dimension ∑
=

=ρ
K

1k

kR . Note that this notation includes some duplication, since for each 

OD movement, each entry time period will be duplicated, yet this substantially eases the 

derivations below. If the ρ -vector of commodity route flows (across all commodities) is 

contained in the vector f, then )(fc  denotes the ρ -vector of mean commodity route costs as a 

function of the commodity route flows. We presume ( ) ( )= + γc f b c f% , where )(~ fc  denotes the 

mean commodity route travel times (obtained from a suitable dynamic network loading 

model), γ  denotes the value-of-time, and where b is a ρ -vector representing the composite 

effect on commodity route costs of other flow-independent attributes (tolls, distance, etc.). We 

suppose that )(~ fc  is sufficiently smooth to be at least piecewise differentiable in f. 

 

It is assumed that all the trip makers of commodity k are rational in their behaviour when 

choosing their route, in an attempt to minimise their perceived cost of travel. For each 

commodity k and route kRr∈ , the perceived travel cost k)n(

rĈ  at the start of day k is given by 
(n)k (n 1)k (n)k
r r rĈ C −= + η                          (1)  
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where (n 1)k
Cr

−  is the population-mean perceived cost for commodity k and route r at the end 

of day n-1, and k)n(

rη  is a random variable describing unobserved attributes contributing to the 

population-dispersion of the perceived attractiveness of route r by commodity k. The ρ -

vector C
(n-1)

 represents the collection of population-mean perceived costs across all routes and 

commodities. The probability of choosing route r on day n is then given by:  

( )k (n-1) (n-1)k (n)k (n-1)k (n)k
r r r i ip ( ) Prob C C i r= + η < + η ∀ ≠C .                                 (2)    

p
k
(.) then represents the vector (of dimension kR ) of route choice probabilities for the 

commodity k, and p(.) denotes the collection of these choice probability vectors over all the 

commodities (i.e. p(.) is a vector of dimension ρ ). The functional form of the path choice 

probabilities depends on the joint probability density function assumed for the residuals 

}Rr:{ k

k)n(

r ∈η  for each commodity k, resulting (for example) in a logit model if independent 

Gumbel distributions are assumed, and a probit model for a multivariate normal distribution. 

 

While the behavioural choice-side of the model is quite conventional, a simple linear learning 

filter is used to replicate drivers building up their experience of travel costs on a day-by-day 

basis following the completion of each day’s trip. Although several authors including 

Horowitz (1984), Cascetta (1989), Ben-Akiva et al (1991), Iida et al (1992), Nakayama et al 

(1999) etc used similar perception updating models, very few e.g., Iida et al (1992) presented 

some analysis of the model parameters. While there are other approaches for updating the 

perceptions such as Bayesian approach (Jha et al 1998), we restrict ourselves to the weighted 

average approach in order to derive analytic results though all others used learning models in 

simulation experiments. Thus following the completion of trips on any day n, the population-

mean perceived costs are updated based on a weighted average of costs actually incurred in a 

finite number of previous days m, using the form: 

∑
=

−−−− λλ=
m

1j

)jn(1j1)1n( )()(s FcC   0<λ<1                    (3) 

where )1/()1()(s m
m

1j

1j λ−λ−=λ=λ ∑
=

− is simply a scaling factor to make the weights sum to 

unity and c(.) is the commodity route cost-flow function as defined above, and where )n(
F  is a 

vector random variable of dimension ρ  denoting the network path flows by commodity on 

day n.  Assuming that for any day n and for each commodity k, all qk drivers wishing to travel 

make their travel choices independently, conditional on their experiences in past days, then 

the number of drivers taking each possible route on day n by each commodity k, conditional 

on the costs (3) experienced in the past, is obtained as:  

 ))(,q(ultinomialM~  1)-(nk

k

1)-(n(n)k
CpCF  independently for k = 1,2,…K               (4)   

where F
(n)k

 is the vector of route flows on day n by the commodity k.  

 

The route flows on day n are then given conditionally by the partitioned vector as below: 
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⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

−

=−

)1n(K)n(

)1n(2)n(

)1n(1)n(

)1n()n(

CF

CF

CF

CF

M

                     (5)  

where (n)k (n 1)F −C  is given by (4).  

 

Then the expectation and variance-covariance matrix would follow as: 

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

−

=−

]
)1n(K)n(

[E

]
)1n(2)n(

[E

]
)1n(1)n(

[E

]
)1n()n(

[E

CF

CF

CF

CF

M

                     (6)  

where,  [ ] )
1)-(n

(
k

 
k

q 
)1n(k)n(

E CpCF =−
                    (7)  

and the conditional covariance matrix has a block-diagonal form: 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−

=−

)
)1n(K)n(

(Var

)
)1n(1)n(

(Var

)
)1n(n

(Var

CF00

00

00CF

CF O                  (8)  

where by standard results for the multinomial distribution: 

]
T

))
)1n(

(
k

)(
)1n(

(
k

))
)1n(

(
k

[diag( 
k

q  )
)1n((n)k

(Var
−−−−=−

CpCpCpCF         (9)  

where the superscript T denotes the transposition operator. 

 

Note that the moments above are all obtained conditionally on the perceived route costs; 

however, for any sensible prediction we are interested in the unconditional moments. Based 

on standard results, the unconditional first moment is given as:  

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡ −=⎥⎦

⎤
⎢⎣
⎡ )1n()n(

EE
)n(

E CFF          (10)  

Now, applying the work of Davis and Nihan (1993) to the case of multiple departure periods 

(as opposed to multiple origin-destination movements, their application), the mean of the 

multinomial distribution in (10) converges asymptotically to the solution of the within-day 

dynamic stochastic user equilibrium (SUE) problem SUE
F , as the demand grows to infinity in 

tandem with the capacities. Since Davis & Nihan also establish asymptotic convergence in 

distribution of the process to a Multivariate normal, the only remaining piece of information 

thus required to characterise the full equilibrium distribution is the covariance matrix. 

 

Now, the unconditional second moment is given as (again by standard statistical identities): 

)
)1n()n(

E(Var)
)1n()n(

(VarE)
)n(

(Var ⎥⎦
⎤

⎢⎣
⎡ −+⎥⎦

⎤
⎢⎣
⎡ −= CFCFF      (11)  
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The first term on the right hand side of (11) is given by  

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−

=−

)]
)1n(K)n(

(Var[E

)]
)1n(1)n(

(Var[E

)]
)1n(n

(Var[E

CF00

00

00CF

CF O     (12)  

where for each commodity k, [ ] *

k

)1n(k)n( )(VarE ΘCF →−  with *

kΘ  given by the multinomial 

covariance matrix evaluated at SUE path flow proportions ),...,,( KSUE2SUE1SUE
ppp : 

])()(diag[q TkSUEkSUEkSUE

k

*

k pppΘ −=        (13)  

where kSUE
p  denotes the SUE path flow proportions for the commodity k. 

 

Based on applying the results established in Hazelton and Watling (2004) to this new 

application area, the second term on the right hand side of (11) can be shown to be in the limit  

])()([)(s])[E(Var T*T*2)1n()n( QDMBQDMBΘQDBQDBΘCF +λ→ −−    (14)  

where *Θ is the collection of the conditional covariance matrices (13) across all commodities; 

)diag(ΓqQ =  is a diagonalised matrix of the demand flow vector q where Γ  is the 

commodity/route incidence matrix; D is the Jacobian of commodity/route choice probabilities 

p(C) with respect to commodity/route costs C; and B  is the Jacobian of commodity/route 

travel costs )(fc  with respect to commodity/route flows f. The matrix M is an intermediate 

matrix, with IBDM λ+λ= −1)(s  where I represents an identity matrix of appropriate dimension. 

 

The implementation of the approximation method above requires the calculation of the two 

terms on the right hand side of (11), namely (13) and (14). Expression (13) is computed by 

finding the time-dependent SUE by the Method of Successive Averages, with the SUE route 

flow proportions by commodity then input to (13) along with the time-varying demand 

profile. Expression (14) requires as input the memory length, memory weights and demand 

profile, together with the Jacobians B and D evaluated at SUE. Computing D is 

straightforward for a logit model, and is possible for other approaches such as probit. 

Computing B is potentially more problematic, partially because the route travel time depends 

on link travel times at the appropriate link entry times for a vehicle following that route, and 

these entry times themselves depend on the network flows and the travel times on previous 

links in the route. In the following section we show how this Jacobian may be deduced for a 

common form of dynamic network loading model from the literature. 

DYNAMIC NETWORK LOADING: IMPLEMENTATION AND 

COMPUTATION OF JACOBIAN  

The key remaining element to determine for the approximation presented is the Jacobian B of 

the route cost flow function )(fc , which in turn is equivalent (under the stated assumptions) to 

the Jacobian of the route travel time function (or dynamic network loading map) )(~ fc . In this 

section, a method for computing this Jacobian is presented based on a form of whole-link 

travel time model popular in the dynamic traffic assignment literature.  
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Link travel time model and notation 

Specifically, following Friesz et al (1993), we assume that the travel time )t(aτ  for vehicles 

entering any link a (with links indexed a = 1,2,…, A) at any continuous time t is related to the 

number of vehicles xa(t) on the link at that entry time, given by the relationship 

)0t())t(x()t( aaa ≥ψ=τ          (15) 

for some non-negative, differentiable function (.)aψ  with derivative aψ′ (.). Several 

researchers including Astarita (1996) and Xu et al (1999) also investigated the properties of 

(15) either in linear or non-linear form. Astarita (1996) proves that the linear form of (15) 

limits the outflows to a maximum of the capacity of the link without additional constraints, 

while Xu et al (1999) show that it satisfies FIFO if the inflows are bounded from above in the 

linear case, or if the gradient of )t(x( aaψ ) is bounded from above in the non-linear case. 

However, as (15) assumes that the travel time is independent of the relative position of the 

vehicles on the link, it would be in general more appropriate to use on congested links.  

 

In order to implement the given model, a fine discretisation is performed, yet we shall be 

careful in mapping this to the underlying continuous time axis, and ultimately in aggregating 

to the typically coarser departure time periods over which route choices are made (for the 

application of the theory in the previous section). In practice, our method makes no premise 

about the level of discretisation involved, this is under the control of the modeller. 

 

We denote by δ the time increment of this discretisation, and denote the complete analysis 

period by (0, Nδ] for some positive integer N. The time increments are thus the intervals (t-δ, 

t] for t = δ, 2δ, …, Nδ, which are referred to as minor time steps. Below, when we refer to a 

time step (or interval) t, it is to be understood that we are referring to the period (t-δ, t]. We 

assume that δ  is chosen so as to be smaller than the free flow time to traverse any link, i.e. 

)0(aψ<δ  for all A,...,2,1a = . This is an assumption we shall use implicitly on a number of 

occasions – implying that a vehicle could not enter and exit a link in the same increment of 

time. Quite separately to the issue of how to discretise the travel time model, a coarser time-

discretisation is assumed for specifying the origin-destination demand rates. In practice, the 

level of time-discretisation for the OD demands will be controlled by data availability; in 

order to get a sensible approximation to the underlying continuous time dynamic network 

loading model, it is then sensible that the modeller chooses a somewhat finer discretisation for 

implementing the travel time model. The OD demand rates are assumed (for notational 

convenience) to be specified over a common discretisation of the whole analysis period 

(0,Nδ], divided it into L major time periods, also referred to as departure periods (wi-1, wi] 

(for i = 1,2,,..L) such that ]N,0(]w,w(.......]w,w(]w,w( L1L2110 δ=∪∪∪ − . These match 

exactly the departure periods defined in the previous section, and for convenience are 

assumed to be of the same duration, i.e. κ=− −1ii ww  for all L,...,2,1i =  and some given κ .  

 

Now, unlike conventional network equilibrium theory, a distinction arises here in the flow 

variables we will consider. In the stochastic process approach, the commodity route flow 
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vector f is an absolute flow (measured in units of number of vehicles or drivers). In order to 

translate to the flow units more conventionally used for dynamic network loading models, we 

shall consider the flow rates u, given by a simple scaling of f as fu
1κ −= . Thus, we shall 

compute the route commodity travel time Jacobian as a function of u, namely ),~(Jac ucJ = , 

but then it is simple to recover the required route travel time Jacobian (of c~  with respect to f) 

as 1−κ J . Then finally the route cost Jacobian is given by 1−= γκB J . 

 

In the previous section it turned out to be convenient to merge the notion of an origin-

destination movement and departure period into a single entity, referred to as a commodity. In 

the present section, on the other hand, a slight change of notation will considerably ease the 

presentation. In particular, we now suppose that all R routes across all origin-destination 

movements (but neglecting departure periods) are indexed r = 1,2,…,R, making the origin-

destination movements implicit in the routes. We then write our commodity route flow rate 

vector u with the route and departure period explicit: thus, for each route and time period 

referred to in u we identify the corresponding route label r (in our new route labelling system) 

and departure time period label i, and will thus henceforth refer to the departure time specific 

route flow rates as iru~  for R,...,2,1r =  and i = 1,2,…,L. It will also be convenient to move 

between time defined on a continuous axis and time defined in terms of the discrete departure 

intervals. Thus we introduce the indicator function )Nt0()t(I δ≤≤  which takes the value i 

if continuous time t refers to departure interval i (for i = 1,2,…,L). 

Preliminaries for computation of derivatives 

A key element of the description below is the consideration of the cumulative outflows from 

each link. In particular, we define Va(t) to be the cumulative outflow from link a (a = 

1,2,…,A) at any time t )0t( ≥  which is natural to associate with the end of each simulation 

time increment (t-δ, t] since it is a cumulative flow. In particular, we write Va(t) as the sum of 

its constituent outflows corresponding to each (minor) inflow period, t = δ, 2δ, …, Nδ, as: 

∑∑
= =

=
R

1r

N

1s

asra )t(V)t(V   )N,...,2,t;A,...,2,1a( δδδ==      (16) 

where Vasr(t) denotes the cumulative outflow from link a at time t arising from flows on route 

r entering the network before the end of the minor time increment δs  (i.e., before the end of 

the interval (sδ - δ, sδ]). An important point to note is that we are disaggregating by the minor 

time increments, not by the major time increments at which the OD demands are defined. 

 

Before considering the outflows further, let us turn attention to the cumulative inflows to each 

link. There are two kinds of contribution, those from vehicles starting their journey on this 

link (contribution )t(U1

a ) and those entering from incident links (contribution )t(U 2

a ), thus 

we write the cumulative in-flow to any link a in the form: 

)N,...,2,t;A,...,2,1a()t(U)t(U)t(U 2

a

1

aa δδδ==+= .     (17) 
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If arε  is a 0/1 indicator variable, equal to 1 only if link a is the first link on route r  

)R,...,2,1r;A,...,2,1a( == , then based on the notation introduced above, the contribution to 

the cumulative in-flow to any link a from vehicles starting their journey is: 

)N,...,2,t()ww(u~)wt(u~)t(U
R

1r

1)t(I

1i

1iiir1)t(Ir),t(Iar

1

a δδδ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−ε=∑ ∑

=

−

=
−− .  (18)  

Then, if we define the 0/1 indicator variable abrE  to be 1 only if link a follows link b on path 

r, then the contribution from flows incident to link a is: 

∑∑
= =

δδδ===
R

1r

A

1b

babr

2

a )N,...,2,t;A,...,2,1a()t(VE)t(U .     (19) 

Note that this notation automatically deals with traffic reaching its destination at the end of a 

link b that is incident to link a (for a particular route r), since the corresponding abrE  would 

then be zero. 

 

We then have, by conservation of flow, the number of vehicles on the link at time t as the 

difference between the cumulative inflow and cumulative outflow:  

xa(t) = Ua(t) – Va(t)  )N,...,2,t;A,...,2,1a( δδδ== .     (20) 

Combining equations (16)-(20), we may then express the number of vehicles on the link at 

any minor time increment as a linear combination of the route in-flow rates starting on that 

link in the current time period, and the exit flows from incident links which are decomposed 

according to (16). 

 

Relationships between route and link travel time derivatives 

 

Now, let us turn attention to the travel times. Recall that the travel time on any link a for 

vehicles entering at time t is denoted )t(aτ . Now, our ultimate interest is in the path travel 

times from the dynamic network loading model. Supposing that we already knew the link 

travel times at any continuous time t, then we would simply trace along the links of the route 

in the relevant time trajectory, following the notion of a nested cost operator introduced by 

Friesz (1993). Thus if the n(r) links used in sequence by any route r have the link indices 

r),r(nr2r1 a...aa →→→ , then we shall define krjg  as the time that drivers departing on route r 

exit link kra  if they begin their journey at time δj  for j= 1,2,...,N. These intermediate link exit 

times are built up recursively according to: 

)j(jg
r1arj1 δτ+δ= ; )r(n,...,3,2kfor)g(gg rj,1karj,1kkrj kr

=τ+= −−     (21) 

with the desired route travel time for the complete journey given by the difference between 

the departure time jδ  and the final exit time at the end of recursion (21), namely a travel time 

of δ− jg rj),r(n .  

 

However, there is a difficulty with (21) in that practical implementation of the dynamic 

network loading model requires a time discretisation, and therefore we will not generally 

know link travel times at any continuous time. Therefore some interpolation is required; in 
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fact, we shall aim to differentiate this interpolation directly (rather than its underlying 

continuous time system) and so there is a need to specify this more precisely in the notation. 

Specifically, if we suppose now that )t(aτ  as previously defined refers to any continuous 

entry time 0t ≥ , and )t(ˆ
aτ  denotes the travel times known only at the discrete entry periods 

δδδ= N,...,2,,0t , then if for any real number x, the notation <x> denotes the integer part of x, 

a linear interpolation yields: 

[ ] )A,...,2,1a;0t().(ˆ)).1((ˆ
.t

).(ˆ)t( t
a

t
a

t
t

aa =≥δ><τ−δ+><τ
δ

δ><−
+δ><τ≈τ δδ

δ
δ  (22) 

 

Combining (21) and (22) thus allows the intermediate link exit times on any route (and the 

complete route travel time) to be calculated for any departure time, based on knowledge of 

link travel times at the minor time increments. Clearly, )t(ˆ
aτ  can be related to the number of 

vehicles on the link for discrete time intervals through (15), in just the same way as )t(aτ  

would be in continuous time. Our ultimate interest is in the mean route travel time during 

each of the L major entry time periods (each of which consists of κ
δ  minor time increments, 

in terms of the notation already defined), namely: 

 
N

ir n(r),rj

j 1

c (g j ) I( j )
=

δ
= − δ δ
κ∑%  .         (23) 

 

Having now built up an expression for the route travel time by departure period, from (23) 

and earlier expressions, we may now start with the differentiation (with respect to the route 

flow rates by departure time). It is trivial to see from (23) that: 

i-1 i

N
n(r),rjir

hs hsj 1
s.t. w j w

gc

u u=
< δ≤

∂∂ δ
=

∂ κ ∂∑%

% %
 .         (24) 

Now, some care is needed in differentiating the path travel times above derived from the 

nested cost operator (21). To understand this point, consider a network consisting of a single 

path (path r = 1) made up of two links in series (n(1) = 2), the path using first link 1 then link 

2 (i.e. 2a,1a 2111 == ), and suppose that 1=δ . For a vehicle departing at minor time step j, 

the nested operator (21) would give a complete path travel time of  

))j(j()j(j))j(j()j(jjg 121121j21 τ+τ+τ=−τ+τ+τ+=− .     (25) 

Now suppose that we made an infinitesimal perturbation to the flow rate 1hu~  on route 1 for 

some major time period h that is before or includes our current minor time step j (i.e. 

)j(Ih ≤ ). Then the time-profile of the number of vehicles on each link will be perturbed, and 

clearly through (15), there will be a direct impact on the time-profile of travel times on each 

link. However, since the argument of (.)2τ  in (25) is itself a function of (.)1τ  there will also 

be an impact on the ‘census time’ at which we pick out the relevant travel time on link 2 that 

contributes to this path travel time. 

 

Returning to the general case, the interpolation (22) in fact allows us to decompose these two 

effects. Since the case k = 1 in (21) is straightforward (the first link on a path does not have 
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the ‘census time’ problem), we restrict attention to the cases )r(n,...,3,2k = , substituting (22) 

into (21): 

[ ]).(ˆ)).1((ˆ
.g

).(ˆgg rj,1k

kr

rj,1k

kr

rj,1k

rj,1k

kr

g

a

g

a

g

rj,1kg

arj,1kkrj δ><τ−δ+><τ
δ

δ><−
+δ><τ+= δδ

δ−
δ−

−−

−

−  (26) 

Now an infinitesimal perturbation to any of the (earlier) route flow rates will directly impact 

on the two travel time terms involved, but they are now evaluated at discretised census times 

that will not be affected by a small perturbation. The impact on the census times is captured, 

on the other hand, through the interpolation term, which is a function of the continuous exit 

time rj,1kg −  from the previous link. Thus differentiating (26) yields: 

[ ]

[ ] )).r(n,...,3,2k(      ).(ˆ)).1((ˆ
u~

g1
                                             

u~

).(ˆ

u~

)).1((ˆ.g

u~

).(ˆ

u~

g

u~

g

rj,1k

kr

rj,1k

kr

rj,1k

kr

rj,1k

kr

rj,1krj,1k

kr

g

a

g

a

hs

rj,1k

hs

g

a

hs

g

a

g

rj,1k

hs

g

a

hs

rj,1k

hs

krj

=δ><τ−δ+><τ
∂

∂

δ
+

∂

δ><τ∂
−

∂

δ+><τ∂

δ

δ><−
+

∂

δ><τ∂
+

∂

∂
=

∂

∂

δδ
−

δδδ−δ−

−−

−−−−

   

(27) 

Expression (27) therefore defines a recursive method for computing the link exit time 

derivatives along any path, with the recursion initiated by the first link on the path (k = 1) for 

which: 

hs

a

hs

rj1

u~

)j(ˆ

u~

g
r1

∂

δτ∂
=

∂

∂
 .          (28) 

Thus the required derivatives on the right hand side of (24) may be obtained as the limit of the 

recursive process (27)/(28), as the link exit times are traced through to the path’s destination. 

It may be seen that (27) assumes prior knowledge of the link travel time profile derivatives at 

any given discrete entry to a link. An important point that we will exploit later is that these 

link travel time derivatives (at given entry times) can be independently derived link-to-link, 

without the concern for the ‘census time’ impacts, since the latter impacts are subsequently 

captured by tracing recursion (27) along the relevant paths. We turn attention, then, to the 

process by which the link travel time derivatives may be computed. 

 

Now, combining equations (15), (17), (19) and (20), and then differentiating by the chain rule, 

yields for any given :N,...,2,t δδδ=  

.
u~

)t(V

u~
)t(V

E
u~

)t(U
.)t(V)t(VE)t(U

u~
)t(ˆ

hs

a
R

1m

A

1b hs

b
abm

hs

1

a
a

R

1m

A

1b

babm

1

aa

hs

a

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

+
∂
∂

⎟
⎠

⎞
⎜
⎝

⎛
−+ψ′=

∂
τ∂ ∑∑∑∑

= == =

 (29) 

 

It is straightforward to deduce from (18) that:    

⎪
⎩

⎪
⎨

⎧
<=ε−
==ε−

=
∂
∂

−

−

otherwise                                      0

I(t)h  and  1 if      ww

I(t)h  and  1 if       wt

u~
)t(U

as1hh

as1)t(I

hs

1

a    .      (30) 

Then the only unknowns in (29) are the link exit flow derivatives, which by differentiating 

(16) are decomposed according to: 
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∑∑
= = ∂

∂
=

∂
∂ R

1r

N

1i hs

air

hs

a

u~
)t(V

u~
)t(V

 )R,...,2,1s;L,...,2,1h;N,...,2,t;A,...,2,1a( ==δδδ== . (31) 

Computational process for determining decomposed link exit flow derivatives 

The process to determine all the relevant 
hs

a

hs

air
aair u~

)t(ˆ
and

u~
)t(V

),t(ˆ),t(V ∂
τ∂

∂
∂τ terms in 

(29) and (31) operates chronologically, advancing all links/paths across the network by one 

(minor) time increment (t-δ, t] before moving on to the next time increment. At the same time, 

the link exit times krjg  for each path and departure increment are computed from (21) and (22) 

as they become available. Importantly, the fact that all these terms (exit flows and travel 

times, their derivatives, and the link exit times) are calculated in time order means that there 

values are all known for all links at all time increments earlier than the current one. The steps 

followed for time increment (t-δ, t] (for each δδδ= N,...,2,t ) are as follows: 

 

For each link a = 1,2,…,A, each major period L,...,2,1h = , and each route N,...,2,1r =  that 

uses link a (for routes not using link a the flows and derivatives are clearly all zero):  

 

Step 1:  In this step we project the path flows entering the network in earlier time increments 

into outflows exiting link a in the current increment (t-δ, t] (recall the assumption made 

earlier, that δ  is sufficiently small that any vehicles exiting a link in one time increment could 

not have entered the link in the same time increment). Suppose that our current link a is the k
th

 

link of route r. For each such earlier minor time increment δi  for 1,...,2,1i t −= δ , we first 

determine the entry time to link a, the k
th

 link along route r, which will simply be the exit time 

from the (k–1)
th

 link, namely ri,1kg −  (extending the definition (21) so that δ= ig ri0 ). These 

link exit times will be known from the application of this procedure in previous iterations. For 

each 1,...,2,1i t −= δ  there are then three possible cases (assuming FIFO to hold): 

 

Case A: No flow on route r entering the network in period ]i,)1i(( δδ−  exits link a before the 

end of the current increment (t-δ, t]. This occurs if the first vehicle from the entry interval 

arrives after the end of the current increment, i.e. if t)g(g 1i,r,1ka1i,r,1k >τ+ −−−− , and then:  

0
u~

)t(V
and0)t(V

hs

air
air =∂

∂=   (for s = 1,2,...,N) . 

 

Case B: All the flow on route r entering the network in period ]i,)1i(( δδ−  exits link a before 

the end of the current increment (t-δ, t]. This occurs if the last vehicle from the entry interval 

arrives before the end of the current increment, i.e. if t)g(g i,r,1kai,r,1k ≤τ+ −− , and then:  

δ=∂
∂δ=

hs

air
r)i(Iair u~

)t(V
andu~)t(V  if srand)i(Ih == , and is 0 otherwise (s = 1,2,...,N). 

 

Case C: Some of the flow on route r entering the network in period ]i,)1i(( δδ−  exits link a 

before the end of the current increment (t-δ, t], but not all. This occurs if the first vehicle from 
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the entry interval arrives before the end of the current increment, and if the last entering 

vehicle arrives after the end of the current increment, i.e. if t)g(g 1i,r,1ka1i,r,1k ≤τ+ −−−−  and 

t)g(g i,r,1kai,r,1k >τ+ −− . In this case, the path r inflow r)i(Iu~δ  over the entry period ]i,)1i(( δδ−  

is translated to an outflow from link a spread (uniformly, it is assumed) over a period from the 

earliest to the latest exit from this link, namely )]g(g),g(g( i,r,1kai,r,1k1i,r,1ka1i,r,1k −−−−−− τ+τ+ .  

 

However, the end of this interval is after the end-time t of our current interval, and so only a 

proportion of this translated flow actually exits by the end of the current increment, namely: 

( )
))g(g()g(g

u~))g(g(t
)t(V

1i,r,1ka1i,r,1ki,r,1kai,r,1k

r)i(I1i,r,1ka1i,r,1k

air

−−−−−−

−−−−

τ+−τ+

δτ+−
= .     (32) 

Now, when differentiating the expression above, we treat the exit times from the previous 

link, the g terms, as constants (recall the discussion following equation (28)). Thus for s = 

1,2,...,N, it follows that: 

 

=
∂

∂

hs

air

u~
)t(V

  ( ) ×τ+−τ+ −
−−−−−−

2

1i,r,1ka1i,r,1ki,r,1kai,r,1k ))g(g()g(g  
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⎩
⎨
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       ( ) ⎥
⎦

⎤
⎢
⎣

⎡
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∂
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∂

∂
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−−−− r)i(I
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1i,r,1ka
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r)i(I

1i,r,1ka1i,r,1k u~

u~
)g(

u~

u~

))g(g(t  

( )
⎭
⎬
⎫

⎥
⎦

⎤
⎢
⎣

⎡
∂

τ∂
−

∂

τ∂
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1i,r,1ka
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r)i(I1i,r,1ka1i,r,1k
u~

)g(

u~

)g(
u~))g(g(t    (33) 

where 
⎩
⎨
⎧ ==

=
∂

∂

otherwise0

srand)i(Ihif1

u~

u~

hs

r)i(I
 .       (34) 

             

Note, however, that the link travel time derivatives in the expression above are evaluated at a 

continuous time instant that may not match with the time discretisation chosen, and so they 

must be interpolated: differentiating (22) at a given continuous time g yields 

hs

g
a

g

hs

g
a

hs

a

u~
)).1((ˆ.g

u~
).(ˆ

u~
)g(

∂
δ+><τ∂

δ
δ><−

+
∂

δ><τ∂
≈

∂
τ∂ δδδ

.     (35) 

and the discrete time derivatives above are known from the application of this procedure to 

earlier time increments. 

 

Step 2: Using equations (15)-(20) and )t(Vair  computed in Step 1, hence compute the travel 

times )t(ˆ
aτ  on all links A,...,2,1a =  for the current time step t. Using the derivatives 

hs

air

u~
)t(V
∂

∂
 for the current time increment t, for all links a, all routes r and s, and all entry 
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periods h, calculate the derivatives 
hs

a

u~
)t(ˆ

∂
τ∂

 by (29) for all a, s and h at the current time 

increment t. Calculate link exit times from (21) and (22) as they become available from the 

information computed so far. 

 

Having carried out the computations above for the all time increments, the path travel time 

derivatives are then computed from recursion (27)/(28), and the results substituted into (24) to 

give the required Jacobian of the dynamic network loading model.  

NUMERICAL EXAMPLES 

Example 1: In this simple numerical example, we demonstrate the theory described in the 

previous sections by considering a two-link parallel route network servicing one O-D pair. 

Travel time functions are assumed to be linear functions of the number of vehicles on the link, 

of the form )t(x)t( aaaa β+α=τ , with parameters αa = 12 minutes and βa = 0.025 

minutes/vehicle for route 1 and αa = 9 minutes and βa = 0.035 minutes/vehicle for route 2. A 

minor time increment of δ = 1 minute was used for implementing the travel time model over a 

15 minute period (N = 15 minor time increments). A single demand period is modelled (L = 1 

major time intervals) with a demand of 400 drivers over the single within-day time period of 

15=κ  minutes (so the OD demand matrices q and Q reduce to the scalar 400). 

 

Drivers’ dispersion in travel cost perceptions in choosing their routes on one day, 

conditionally on past experience, are assumed to be explained by a logit model: 
1

s

CC

r
sr ee)(p

−
θ−θ−

⎭
⎬
⎫

⎩
⎨
⎧

= ∑C where θ>0 is the logit choice scaling parameter. The value of time 

is assumed to be 1γ = , with travel time the only component of travel cost. Within-day 

dynamic Stochastic User Equilibrium flows are obtained using the Method of Successive 

Averages based on 25000 iterations. This module is run iteratively, feeding the dynamic link 

loading model with the flows and receiving the updated travel times, until the equilibrium 

criteria are met. In the drivers’ learning model, we assumed m = 5 days and λ = 0.5. We 

compare here the means and variances by three methods viz., simulation, naïve and the 

approximation, as explained below. 

 

Simulation: The assignment process was simulated over a period of 40000 days and a period 

of 4000 days initial period was discarded as burn-in time to allow the network to reach 

sufficient levels of loading (i.e. discarding the transient states of the process). Summary 

statistics are computed from the non-discarded days. The results of this long simulation are 

treated as a benchmark against which to compare our approximation method. 

 

Naïve Method: In this method we assume that the conditional covariance matrix (13) is 

sufficient to explain the variance in flows, thus ignoring day-to-day variability in choice 

probabilities and travel costs. 
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Approximation: The stochastic process approximation method is applied, giving an estimate 

of variance using the expression (14). 

 

In each case, when applying the approximation method, appropriate Jacobian matrices of 

choice probability and travel times during the single major time period must be computed; for 

example, in the case of θ=0.1, these are given by:  

⎥⎦
⎤

⎢⎣
⎡

−
−

=
0248.00248.0   

0248.0   0248.0
D       ⎥⎦

⎤
⎢⎣
⎡

=
0172.00

00129.0
B  . 

Table 1 compares the means and variances for Route 1 by the above three methods for various 

values of the logit choice parameter θ. In this two-link case, computing the mean and variance 

of flows on the other route is trivial, and so is not shown here. 

 

Table 1 Comparison of Estimates of Means and Variances on Route 1 

Method θ = 0.005 θ = 0.1 θ = 1 

Mean Variance Mean Variance Mean Variance 

Simulation 198.88   99.66 182.49 102.84 170.13 26964 

Naïve 198.88 100.00 182.52   99.24 143.71   92.08 

Approximation 198.88 100.00 182.52 101.89 143.71 451.70 

 

When the logit choice parameter is relatively low (θ=0.005), the random dispersion element in 

drivers’ travel costs is very high making them choose routes almost at random regardless of 

the measured (mean) cost, thus approximately equal numbers of drivers are expected to select 

each route, and our variation is approximately binomial. In this case as would be expected, the 

naïve approximation is sufficient to explain the variance in traffic flows. As expected, the 

approximation method adds little to the conditional covariance matrix in this case. It is noted 

also that the mean flows by all the three methods are identical to two digits. 

 

In case of θ=0.1, the mean flows by all the three methods are again very close. However, the 

naïve variance underestimates the benchmark (simulation) variance. This underestimation of 

the variance is expected because the naïve method assumes fixed multinomial choice 

probabilities as opposed to the real case of day-to-day varying choice probabilities, i.e. it 

neglects one source of variability. Our approximation successfully corrects this 

underestimation by inflating the variance towards the benchmark simulation variance. While 

the magnitude of the correction required is not large, we cannot attach any significance to this 

as this is intended purely as an artificial, illustrative example. 

 

When the logit parameter is relatively large such as θ = 1, the dispersion in perceived costs is 

very small and hence on any one day all drivers tend to behave in a similar manner. In this 

case, the statistics presented in the table are produced by a rather different trajectory of the 

process, in which a large number of drivers choose one route on any given day and the 

following day they almost all shift their choice towards the other route, having experienced 

congestion on the first route. This en masse behaviour causes a large variance in the system 

and the probability mass becomes concentrated towards the two extremes (all-or-nothing 
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solutions), resulting in a bimodal distribution. Thus, the variance is measuring some kind of 

system instability (in the same sense that one could calculate a variance for a deterministic 

periodic system) rather than random variation of a stationary variable. The naïve variance is 

not expected to explain such behaviour and hence is too small. Indeed, neither is the 

approximation method designed to explain such variation, and the corrected variance is seen 

to be far lower than the simulation variance. This is not surprising as we are estimating the 

variance of a bimodal distribution with an approximate Normal distribution, which is clearly 

not an ideal choice; nevertheless, it is partially successful in correcting the variance in the 

appropriate direction. 

 

Example 2: This numerical example illustrates an application of the theory formulated in the 

earlier section to the case of a network with multi-link routes. Consider a five link network 

with links numbered as shown in Figure 1. It is worth noting that links 2 and 4 are shared by 

two paths hence require the flows to diverge and merge in space and time which is a common 

requirement in dynamic traffic assignment over networks serving multiple O-D pairs.  Thus, 

even though this example deals with a single O-D pair, the principles described here can 

easily be extended to networks serving multiple O-D pairs.  

 

 
Figure 1: Test Network Topology 

 

On each of the five links whole-link type dynamic travel time functions of the general form 

)t(x)t( a

aaaa

γβ+α=τ are defined with parameter values as shown in Table 2. 

 

Table 2 Network Parameters 

Link  αa (minutes) βa (minutes/vehicle) γa Functional Form 

1 12 0.025 1 Linear 

2 9 0.035 1 Linear 

3 10 0.00015 2 Quadratic 

4 12 0.025 1 Linear 

5 9 0.035 1 Linear 

 

We note here that FIFO compliance is one of the important features of any dynamic traffic 

assignment model, as well as being an assumption of our approximation method, and so we 

confirm that FIFO has been monitored closely during the execution of the program and has 

Destination Origin 

Node 1 

Node 2 

3 

2 

1 4 

5 



 

 

 

 18 Insert book title here 

 

 

been found satisfactory. On the demand side, we have modelled the demand spread over 

4L =  departure periods each of 15=κ  minutes duration with a varying profile thus indicated 

by, qk = [400  700  100  100]. 

 

For the dynamic network loading purposes, we assumed a minor time step of δ = 1 minute. In 

addition, we also retained a memory length of 5m =  days with a memory weighting of 

=λ 0.5. The route choice is assumed to be based on a logit principle, and dynamic Stochastic 

User Equilibrium (SUE) flows are solved for using the Method of Successive Averages 

together with the dynamic network loading method as before. Figure 2 indicates the SUE 

profiles of inflow, travel time and outflow from various links on the network. We compare 

here the variance of the route flows by a similar set of alternative methods, viz., simulation, 

naïve and the method of approximation run to similar specifications as indicated previously.     

 

 
 

Figure 2: Dynamic Network Loading Results ( 1.0=θ ) 

 

Figures 3 and 4 compare the variance of route flows obtained by the simulation method with 

that obtained by the method of approximation. In the case of θ = 0.01, the drivers are quite 

insensitive to the costs and choose routes almost completely at random. In this case, the naïve 

variance is sufficient to explain the simulation variance (Figure 3), and hence the 

approximation method leaves them almost unaltered. In contrast, in the case of θ = 0.1 (Figure 

4), we notice that the naïve variance is insufficient to explain the simulation variance and the 



 

 

Equilibrium distribution approximation model  19 

 

 

approximation method adds a correction term and lifts the flow variances close to the 

simulation variance.  

 

CONCLUSIONS 

In the present paper we have successfully made a first step at linking together the fields of 

network equilibrium theory, whole-link dynamic travel time models, and stochastic process 

models of the within- and between-day evolution of traffic flows over a network. In making 

this link, we have devised a computational procedure for estimating the equilibrium 

distribution of such a doubly dynamic stochastic process model, utilising information from a 

conventional stochastic user equilibrium model. A key element of the approximation is the 

computation of the Jacobian of the whole-link travel time mapping, which may have many 

applications beyond that discussed here. This research opens up many avenues for further 

research, including analysis of the stability of the dynamical process, application of the 

method to alternative forms of whole-link travel time model, and travel behaviour research 

investigating the impact of the various learning and decision parameters on the network flows. 
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