
This is a repository copy of Partition-based algorithm for estimating transportation network 
reliability with dependent link failures..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/84670/

Version: Accepted Version

Article:

Sumalee, A and Watling, DP orcid.org/0000-0002-6193-9121 (2008) Partition-based 
algorithm for estimating transportation network reliability with dependent link failures. 
Journal of Advanced Transportation, 42 (3). pp. 213-238. ISSN 0197-6729 

https://doi.org/10.1002/atr.5670420303

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Partition-based Algorithm for Estimating Transportation Network Reliability with 

Dependent Link Failures 

 

Agachai Sumalee1* 

David P. Watling2 

1Department of Civil and Structural Engineering, The Hong Kong Polytechnic University 

2Institute for Transport Studies, University of Leeds 

 

Abstract 

 

Evaluating the reliability of a transportation network often involves an intensive simulation exercise to 

randomly generate and evaluate different possible network states.  This paper proposes an algorithm 

to approximate the network reliability which minimizes the use of such simulation procedure.  The 

algorithm will dissect and classify the network states into reliable, unreliable, and un-determined 

partitions.  By postulating the monotone property of the reliability function, each reliable and/or 

unreliable state can be used to determine a number of other reliable and/or unreliable states without 

evaluating all of them with an equilibrium assignment procedure.  The paper also proposes the 

cause-based failure framework for representing dependent link degradation probabilities.  The 

algorithm and framework proposed are tested with a medium size test network to illustrate the 

performance of the algorithm.  

 

1. Introduction 

In system engineering, reliability may be defined as the degree of stability of the quality of service that 

a system normally offers (Bell and Iida 1997).  In a transport system, such as a road network, there 

are two key elements contributing to the level of service: the travel demand and the system supply.  

The degree of stability of a transport network can be interpreted as the ability of the network to meet 

expected goals measured by some indicators under different circumstances (e.g. variability in flows 

and physical network capacities).  A range of different indicators have been proposed to measure this 
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degree of stability, depending on the features of variability modeled and the objectives of the analysis. 

These indicators include connectivity reliability (Asakura et al. 2003), network vulnerability (Berdica 

2002; Taylor et al. 2006), capacity reliability (Chen et al. 2002; Sumalee and Kurauchi 2006), travel 

time reliability (Asakura 1999; Du and Nicholson 1997), total travel time reliability (Clark and 

Watling 2005; Sumalee et al. 2007), and demand satisfaction (Heydecker et al. 2007).  In the present 

paper, we shall specifically focus on problems in which link capacities are variable (stochastic), and 

where the aim is to compute a travel time reliability index.    

 

The initial impetus for research in the area of stochastic capacity reliability analysis arose from the 

study of major natural events, such as earthquakes, affecting the ‘connectivity’ of the network (Bell 

and Iida 1997).  Each link is assumed to have an independent, probabilistic, binary mode of operation 

(Wakabayashi and Iida 1992); at one extreme, the link states might represent whether the link is 

‘open’ or ‘closed’, though they could represent other interpretations of the successful operation of a 

link.  The objective of connectivity reliability analysis is then to compute the probability that an 

origin-destination movement will be connected by at least one path consisting of all ‘open’ links, 

though without regard to how efficient that path may be or whether travellers may choose to use it. 

 

Travel time reliability analysis extends the concept of connectivity analysis in several ways.  Firstly, 

more generally, we view the impacts of unreliability through the change of the ‘mode’ of each link, 

where a link is assumed to have multiple modes of operation (Du and Nicholson 1997).  Specifically, 

in the context of capacity variability, the modes of each link may represent alternative, discrete 

reductions in link capacity, which can be caused by some natural or man-made incidents.  

(Alternatively we may consider a continuous distribution of link capacity, see (Lo and Tung 2003), 

though in this paper we shall adopt a discrete representation).. Secondly, for any given ‘network 

state’—that is, a given mode for each link of the network—there is a need to model how drivers will 

respond to the degraded conditions; typically this will be the result of some kind of network 

equilibrium model. The collection of driver responses leads to an experience of path travel times in 

each degraded state. The third and final element is then the formation of a travel time reliability index 

(for the path, OD or network as a whole), a common index being the probability that the degraded 

travel time will exceed some pre-defined threshold involving a safety margin. Thus while connectivity 



is concerned with the probability of any path being available, however long the travel time, travel time 

reliability is concerned with the probability of availability of a path with an acceptable travel time. 

 

We make two observations about the class of problem described above, which together motivate our 

work.  Firstly, aside from whether the link mode is assumed to be binary, multi-mode or continuous, a 

common theme to the approaches cited above is the assumption of statistical independence between 

links in the degradation model.  An exception may be found in an extension by Chen et al (2002) to 

their basic model, with capacities assumed to be correlated across links.  While the independent link 

failure assumption may be justified in some domains, it may be implausible for the study of transport 

networks since the degradation of different links may often have common underlying causes (e.g. 

flood, snowfall or earthquake).  In such cases, assuming independence will tend to provide an 

over-optimistic estimate of performance, since the common causes are likely to simultaneously affect a 

number of alternative routes.  On the other hand, the assumption of dependent link failure 

probabilities may impose more complexities on the problem and hence require more computational 

time to evaluate the network reliability performance.  The paper proposes the cause-based framework 

(as described in the next Section) in which different causes of failures are defined (e.g. flood or 

earthquake).  Under each cause, the independent link degradation probabilities can be defined 

separately.  Despite the independence of link degradation under each cause of failure (so-called 

conditional independence), the causal tree structure gives rise to an implicit specification of correlated 

(dependent) link degradations.   

 

The second observation we make is that computation of the reliability measure is also a major 

challenge, especially if realistic correlation and user-behavior models are to be adopted.  Even if we 

were to make the simplifying (unrealistic) assumption of independent link failures and binary 

operate/fail states, for example, with 50 links the number of combinations is substantially larger than 

1014, and so we cannot hope to solve the problem by enumeration of all possible states, since each 

typically requires the solution of an equilibrium problem1  To tackle this issue, early developments 

have adopted Monte Carlo simulation (MC) to generate supply and/or demand uncertainties for the 
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equilibrium-based traffic model.  Du and Nicholson (1997) simulated the network capacity 

degradation level using MC to establish the lower and upper bounds of the network reliability 

indicator.  Similarly, Chen et al (2002) and Sumalee and Kurauchi (2006) adopted MC to evaluate  

network capacity reliability.  The flexibility of MC comes with the trade-off of a potentially high 

computational burden.   

 

Based on these observations, and the appeal of using MC for representing conditional independence, 

Sumalee and Watling (2003) proposed a method for estimating travel time reliability under dependent 

link failures, which operates by identifying those network states with large probabilities in order to 

reduce the total number of considered network states.  However, this approach will be efficient only 

if some scenarios have high probabilities (and others are trivial states).  The present paper proposes a 

different approach to avoid this pitfall by dissecting the network states into a number of reliable, 

unreliable, and un-determined partitions.  The paper postulates an important monotone property of 

the reliability function, which will be clarified later in Section 3.2.  This assumption will allow us to 

determine a number of reliable and unreliable partitions by evaluating only a few network states with a 

network assignment model.  Some undefined partitions will remain after applying this algorithm in 

which the stratified MC (as described in Section 3.4) will be applied to evaluate their associated 

reliability probabilities.   

 

2. Notation and preliminaries 

2.1 Stochastic network definition under cause-based failures 

Consider a directed graph representing a transportation network, G = (A,N), where A is the set of links 

(with the size of J) and N is the set of nodes.  The framework proposed in this paper for representing 

the dependency of the link mode probabilities is the cause-based failure system following Sumalee and 

Watling (2003).  For a stochastic network, let M be the total number of possible causes of link 

failure (e.g. flooding or snowfall).  Each of these causes is associated with its probability to occur.  

Under each cause, the probabilities of each link to take different modes can be defined.  Figure 1 

illustrates the framework with four causes of network failure including a flood in the CBD area, a 

flood in the outskirts of a city, a serious earthquake, and typical random accidents.  In some cases, the 

cause-tree can be further nested to introduce some correlations between the occurrence probabilities of 



different causes. 

 

Under the cause-tree, there are several possible scenarios with different combinations of the active 

causes.  Let ( )1 , , ,m M
w w w wS R R R= K K  denote a realized scenario where w and m is the index of the 

scenario and cause respectively.  m
wR denotes the status of cause m as realized in scenario w in 

which 1m
wR = if cause m occurs in scenario w and 0m

wR = otherwise.  Let Pm be the probability of 

cause m to occur.  The probability of scenario w can be defined as ( ) ( )Pr m
w w

m

S e
"

= Õ , where 

m
w mPe = if 1m

wR = and 1m
w mPe = - otherwise.   

 

Figure 1: Example of the cause-based failure probability tree 

As shown in Figure 1, under each cause m the link is associated with a probability, ,
e
j mP , for the link j 

to be in mode e, where ,
e
j mC  denotes the % of capacity disruption of the link under this mode.  

Within each scenario many causes may occur simultaneously.  Thus, the link may be degraded by 

different causes.  Under each scenario, different combinations of the realized link degradation level 

are possible.  We denote each realized combination of the link degradation levels as 

( ) { }1

,1 , ,, , , ,m Mee ew
j j j m j Mt C C Cf º %% %K K where t is the index of a possible combination and me% is the realized 

disruption level of link j under cause m in this combination.  Note that if 0m
wR = , then , 100me

j mC =% . 
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The aggregate degradation level on a link under the realized state ( )w
j tf  is assumed to follow: 

 ( )( )
( ),

, ,
m

e wm
j m j

ew
j w j j j m

C t

C t C C
f

f
" Î

æ ö÷ç ÷ç= × ÷ç ÷÷çè ø
Õ

%

%  (1) 

where jC is the normal capacity of link j.  For instance, suppose that the original capacity of link j is 

1,000 PCU/hr and there are two active causes which degrade the link capacity to 750 (75%) and 800 

(80%) PCU/hr respectively.  The accumulated effects of these two causes on this link will result in 

the link taking the degraded capacity of 1000 0.75 0.80 600´ ´ = PCU/hr.  We remark that for each 

cause the number of possible degraded link capacities is defined a priori.  However, due to the effect 

of different causes on the same link, a number of different degraded link capacities will be created.  

The probability of link j to take each mode can be defined as: 

 ( )( )( ) ( )
( ),

, ,Pr Pr m

e wm
j m j
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j w j w j m

P t

C t S P
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f
" Î
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%
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, where ( ) { }1

,1 , ,, , , ,m Mee ew
j j j m j Mt P P Pc º %% %K K .  Different ( )( ),

w
j w jC tf  under different ( )w

j tf may have the 

same value.  Thus, ( )( ),
w

j w jC tf can be grouped into a number of possible link mode for each link.  

For each link j, let 1, , ,l L
j j jC C CK K be a set of possible link capacities (modes).  For each l

jC , we can 

define the total probability of the link to take this mode as: 

 ( )( )( ), ,Prl t w
j j w j w j

w t

p C tu f
" "

= ×å å  (3) 

where , 1t
j wu =  if ( )( ),

w l
j w j jC t Cf = , and , 0t

j wu = otherwise.   

 

Let ( )1

1, ,, , Jll
k k J kC Ck = K be a possible network state k in which lj is the mode (or finite capacity) of link 

j realized in this state, where { }1
, , , ,jl l L

j k j j jC C C CÎ K K .  For brevity, we will define the network state 

k as ( )1 , ,k k
k Jl lk = K  which is the vector of the realized link modes in this network state.  Also let 

k
k

k
"

W= U be the set of all possible network states.  The probability of the state can then be defined as: 

 ( )Pr
k
jl

k j
j

pk
"

= Õ  (4) 

, where k
jl is the realized mode of link j in the network state k and 

k
jl

jp is as defined in (3).  

 



2.2 Partial user equilibrium route choice condition  

Under the normal circumstance, the notion of Wardrop’s user equilibrium (UE) has been extensively 

used to describe how travelers choose their routes in the network.  However, the behaviors of 

travelers under degraded conditions of the network may be different.  Under severe events such as 

natural disasters, the driver’s main objective is likely to be his/her safety.  The routing may also be 

controlled by a ‘network regulator’, perhaps according to a predefined strategy (Sumalee and 

Kurauchi 2006).  In less severe or post-disaster cases, it might be expected that the drivers will 

partially adapt their travel choices (such as route/mode choices) responding to the degraded network 

conditions.  In this paper, the concept of partially adaptive behavior of travelers is assumed which is 

defined as follows.   

 

Let W be a set of origin-destination pairs in the network in which rsP is the set of paths connecting 

origin r to destination s.  Under the un-degraded network condition, the UE assignment is used to 

determine the normal flows in the network.  Let UE
pF be the path flow solution of UE assignment at 

the normal network state.  Note that the problem of non-uniqueness of the UE path flows can be dealt 

with by selecting the most-likely path flow (Larsson et al. 1993) or adopting the stochastic user 

equilibrium model instead.  Under the degraded network statekk , the travel time of each link, 

( ),, l
j j j kt v C , is a function of the realized link mode (capacity) and the link flow.  A set of affected 

paths can then be defined, namely those paths that contain at least one degraded link.  Let rsP% denote 

the set of affected paths between an O-D pair (rs) under scenariokk .  Under the partially adaptive 

behavior assumption, only those drivers on the affected paths, qF% for rsq Î P% , will consider rerouting.  

On the other hand, those drivers on the unaffected paths rs rspÎ P - P% will remain on the same routes 

followed in the un-degraded network..   

 

Thus, the equilibrium condition for the route choice for those on affected paths can be defined by the 

following complementarity condition: 
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, where rsm is the minimum travel cost for the OD pair rs and 1jqd = if link j is related to path q and 

0jqd = otherwise.  Under the symmetric condition of the link cost Jacobian (or assume a typical 

separable link cost function), the problem can be reformulated as a minimization problem: 
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ˆ

,ˆ 0
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 (6) 

where ˆ
jv is the link flow and , 1q rsD = if path q is related to OD pair rs and 0 otherwise.  The 

existence and uniqueness of the solution to this optimization problem follows the original problem of 

the UE assignment.   Note that the algorithm proposed in this paper can also be applied to other 

modeling frameworks (e.g. SUE or even micro-simulation). 

 

2.3 Reliability performance function and its monotonicity postulation 

As reviewed, various indicators have been proposed in the literature; each of which is appropriate for 

different circumstances.  In this paper, the focus is mainly on the performance of the network after a 

major disruption in coping with recovering travel demands.  During the post-disaster period, the 

activities and travel patterns in an urban area are gradually resume to the normal condition (Sumalee 

and Kurauchi 2006).  Thus, the key performance requirement adopted is based on the travel time 

reliability principle in which the network is considered reliable if after the degradation the travel times 

of all used paths in the network are under some given thresholds.   

 

Let pr denote the travel cost of path p under network state kk , i.e. ( ) ( ),
ˆ , l

p k j j j k jp
j A

t v Cr k d
" Î

= å  and 

( )kf k be the reliability function for the network.  Let ( )p kk¡ be a dummy variable in which 



( ) 1p kk¡ = if ( ) ( )0p k p pr k n r k£ × and ( ) 0p kk¡ =  otherwise.  Note that 0k  and ( )0pr k  are the 

normal network state (no degradation) and the associated path travel time of path p under the normal 

state.  Note that for the unused path under the normal condition we assume ( )0pr k  to be equal to 

the minimum OD travel time.  Let 1pn ³  be the tolerance factor for the path travel time.  The 

reliability function of the network can then be defined as: ( ) ( )1 1k p k
p

f iffk k
"

= ¡ =Õ  and 

( ) 0kf k = otherwise.  The network reliability can be defined as the probability that the network will 

function: 

 ( )( ) ( ) ( )( )Pr 1 Prk k k
k

f fk k k
"

Z = = = ×å  (7) 

In this paper the reliability performance function is assumed to be a monotone non-decreasing function.  

For any two network states, kk and vk , the monotone property of the reliability function implies that: 

 ( ){ } { } ( ), ,1  and 1j jl l

k j k j v vf C C j fk k= £ " Þ =  (8) 

 ( ){ } { } ( )1 1

, ,0  and 0l l
k j k j v vf C C j fk k= ³ " Þ =  (9) 

Noteworthy, this postulation of the monotone reliability function should be sensible and applicable to 

most cases except the network with the potential Braess paradox effect.  Nevertheless, our main 

justification for this postulation is twofold.   

 

First, we can establish a proof for the monotonicity of the reliability function in (7) by assuming that 

there exists at least one unaffected path for each OD pair.  Under the normal condition, the path travel 

costs on all used routes are equal due to the UE condition.  Due to the definition of the partial UE, 

only those flows on affected routes will reroute.  Thus, the travel cost on the unaffected route can 

only increase due to the monotone property of link cost functions, whereas the travel time on this 

unaffected route will form a bound for the new travel time on all affected routes.  The second 

justification is that our algorithm will always be pessimistic in terms of reliability, since it ignores the 

Brasses paradox effect that reducing capacity can improve reliability.  This pessimistic estimation 

should be consistent with the objective of evaluating the network against the worst-case scenario.   

 

3. Partitioning algorithm for network reliability  



This section proposes a method for efficiently evaluating the upper and lower bounds of the network 

reliability function as defined in (7).  The evaluation of the reliability function in (7) can be viewed as 

a process of identifying all possible network states k
k

k
"

W= U and then evaluating each state in turn by 

solving (6) to identify the set of reliable network states, denoted by ( ){ } where 1R
k kk fk kW = " =  

(also denote UW as the set of unreliable states).  Instead of exhaustively evaluating all possible states, 

different subsets of W containing several network states will be defined and each subset evaluated as 

to whether it is reliable (all states in the subset are reliable), unreliable (all states in the subset are 

unreliable) or undetermined.  Then, the algorithm will find a different way to dissect the remaining 

undetermined subsets so that the newly defined subsets can be categorized as either reliable or 

unreliable.  The subsets of Wwill be termed partitions as defined in the next section. 

 

3.1 Definition of the partition of network states  

A partition s is a subset of W  which contains network states, ( )1 , ,k k
k Jl lk º K , in which 

s k s
j j jla b£ £ for all links.  Let 1 , ,s s s

Ja a aé ù= ë ûK  and 1 , ,s s s
Jb b bé ù= ë ûK .  Thus, the partition s is 

denoted as ,s sa bé ù
ë û.  Figure 2 illustrates an example of a three-dimensional state space of W where 

all links have four possible link modes (capacities).  The cube in the figure indicates the states that 

constitute the partition ,s sa bé ù
ë ûwhere [ ]2,1,1sa =  and [ ]3,2,2sb = .  Based on (2) and (3), the 

probability of ,s sa bé ù
ë ûcan be defined as: 

 ( ) ( )Pr , Pr
s
j

s
j

s s s s l
j j j j

j j l

l p
b

a

a b a b
" " =

ì üï ïï ïé ù = £ £ = í ýë û ï ïï ïî þ
åÕ Õ  (10) 

where l
jp  is as defined in (3).  We denote the reliable, unreliable, and undetermined partition as 

,
Rs sa bé ù

ë û , ,
Us sa bé ù

ë û , and ,
Ds sa bé ù

ë û respectively.  Note that ,
RR s s

s

a b
"

é ùW = ë ûU , ,
UU s s

s

a b
"

é ùW = ë ûU , and 

,
DD s s

s

a b
"

é ùW = ë ûU .  Clearly, R U DW= W È W È W .  Thus, we can also redefine (7) as: 

 ( ) ( ) ( ) ( )Pr 1 Pr Pr PrR U R DW £ Z£ - W = W + W  (11) 



When all the undetermined partitions are assumed to be unreliable, we obtain the lower bound of the 

reliability function (i.e. ( )Pr R ZW £ ).  On the other hand, if all the undetermined partitions are 

assumed to be reliable, the upper bound of the reliability function can be formed (i.e. 

( ) ( ) ( )1 Pr Pr PrU R DZ£ - W = W + W ).  The gap between the lower and upper bounds is, thus, exactly 

( )Pr DW .  The algorithm proposed indeed aims to minimize this gap by dissecting those 

undetermined partitions to either reliable or unreliable partitions. 

Figure 2: Example of a partition in three link network 

 

3.2 Partition algorithm 

Initially, the set of all network states will be defined as an undetermined partition, i.e. DW = W.  

Then, the partition algorithm based on Doulliez and Jamoulle (1972) can be adopted to sequentially 

define different reliable and unreliable partitions to minimize the size of the total probability space of 

DW .  The algorithm will utilize the monotone property of the reliability function as postulated in 

Section 2.3.  Two indices of the link mode employed to dissect the undetermined partition are 

all-links reliable cut-off index and single-link reliable cut-off index.  For each undetermined partition, 

,
Ds sa bé ù

ë û ,  the all-link reliable cut-off index, denoted by sq ,can be defined as: 

 ( ) ( ){ }1min 0 where , ,s s
s k k Jfq q k k b q b q= = º - -K  (12) 

, where s
jb q- indicates the mode number of the capacity of link j, i.e. ,

s
j

j k jC Cb q-= .  sq is the 

minimum level of link mode degradation from the maximum bound of the partition for the network 



state to be evaluated as unreliable.  In practice, this can be found by setting all link modes at s
jb  and 

then gradually decreasing all link modes with a discrete step of 1,2,3,q = K until the network state 

becomes unreliable.  This all-links reliable cut-off index can be used to determine the feasible and 

infeasible partitions following (8) and (9): 

 1,  and ,s s R s s U
s sb q b a b qé ù é ù- + Î W - Î Wë û ë û  (13) 

The single-link reliable cut-off index, denoted by sjl , can determine addition unreliable partitions.  

s
jl  is defined for each link in turn for each undetermined partition: 

 ( ){ }1min , , , 0s s s s
j j Jfl l b b l b= - =K  (14) 

Note that s
j sl q³  due to the monotone property of the reliability function.  For a given ,

Ds sa bé ù
ë û and 

s
jl , an unreliable partition can be defined as: 

 ,  where  and s v U v s s v s
j j j i i i j Aa b b b l b bé ùÎ W = - = " ¹ Îë û  (15) 

The unreliable partition as defined by sq , ,s s U
sa b qé ù- Î Wë û , may overlap with the additional 

unreliable partitions defined by s
jl  causing problems for the calculation of ( )Pr UW .  Thus, a 

disjoint unreliable partition can instead be defined for each s
jl  and sq  as: 
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 (16) 

For a given ,
Ds sa bé ù

ë û , after excluding the reliable and unreliable partitions as defined in (13) and (16), 

the remaining undetermined partitions can be defined for each s
jl  and sq as: 
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 (17) 

The number of both unreliable and undetermined partitions will be equal to the number of links.  The 

total probability of each of these new undetermined partitions can then be calculated as shown in (10).  

The partition algorithm will then select the undetermined partition with the highest probability for 

further dissection in the next iteration.  The procedure of the algorithm is shown in Figure 3.  H is 



the input maximum number of iterations of the partition algorithm and J is the number of links in the 

network.   

 

Figure 3: Overall procedure of the partition algorithm 

 

In the first stage of the algorithm, the ORDER-MII method as adopted by Sumalee and Watling (2003) 

will be applied to sort the scenarios by their probabilities to choose the set of most probable scenarios. 

Initialization: Set DW = W; ,s s Da bé ù= Wë û ; 0
lower

P = ; 1
upper

P = ; and h= 1 

Iteration h: Find the all-links reliable cut-off index for ,s s

s
a b qé ù®ë û following (12) 

Find the single-link reliable cut-off index, s
j

l , for ,s sa bé ùë ûfollowing (14) 

Set j = 1 and v = 1 

j = J 

With s
q and s

j
l define ,v v Ua bé ùÎ Wë û following (16) and update ( )Pr ,v v

upper upper
P P a bé ù= + ë û ; also 

define ,v v Da bé ùÎ Wë û following (17) and calculate Pr ,v v

v
P a bé ù= ë û 

With 
s

q define the reliable and unreliable partitions 1,s s R

s
b q bé ù- + Î Wë û and ,s s U

s
a b qé ù- Î Wë û ; and 

update ( )Pr 1,s s

lower lower s
P P b q bé ù= + - +ë û  and ( )Pr ,s s

upper upper s
P P a b qé ù= + -ë û  

Set j = j+1 and v = v+ 1 NO 

Choose ,v v Da bé ùÎ Wë û with the maximum ( )Pr ,v v

v
P a bé ù= ë û ; Set s = s+ 1and , ,s s v va b a bé ù é ù=ë û ë û 

and update D D R UW = W - W - W and h = h +1 

h = H 

NO 

YES 

Terminate YES 

Apply ORDER-MII method to define the most likely scenarios, l
jC , and l

jp  following (1) - (3) 



Then, the set of link capacities (modes) can be determined using the product operator as defined in (1), 

and the probability of each link mode can be calculated following (2) and (3). 

 

3.3 Application of the stratified Monte-Carlo simulation to undetermined partitions 

After reaching the maximum number of iterations of the partition algorithm, a number of 

undetermined partitions will still remain (as shown in Figure 3) in which the gap between upper and 

lower bounds of the reliability function will be equal to ( )Pr DW .  The quality of the estimation of 

the reliability index is relative to this gap.  A strategy to further improve the quality of the estimation 

is to apply Monte-Carlo simulation (MC) to evaluate these remaining undetermined partitions.  In 

this section, an improved sampling strategy will be incorporated with MC.   

 

From the set of undetermined partitions (let V be the total number of remaining undetermined 

partitions), each partition is associated with its total probability, i.e. ( )Pr ,v v
vP a bé ù= ë û .  This 

probability signifies the importance of this partition in improving the estimation.  For a given total 

sample size N, different sample sizes will be allocated to different partitions depending on their 

probabilities, i.e.  
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 (18) 

where nv is the number of samples (draws) to be obtained from partition v.  This is the so called 

stratified sampling method.  Then, for each partition MC will draw different network states (up to nv 

samples) and evaluate them in turn.  Let vO  denote the total number of reliable states from the 

samples of partition v.  We can then update the upper and lower bound as:  

 ( )Pr ,v v v
lower lower

v

O
P P

n
a bé ù= - ë û  (19) 

 ( )Pr ,v v v v
upper upper

v

n O
P P

n
a b

-é ù= - ë û  (20) 

 

4. Numerical tests  



4.1 Test descriptions 

The test network as displayed in Figure 4 has 89 directed links with 14 zones and 182 O-D pairs 

(neglecting intra-zonal movement) where triangle nodes represent zones.   

 

Figure 4: Test network for the partition algorithm 

The tests involve evaluating the reliability measure as defined in (7) with three different demand levels 

including the base demand, 1.5  base demand, and 2 base demand, and with six different tolerance 

factors ( pn ) for travel time, i.e. 1.5, 2, 2.5, 3, 3.5, and 4.  Following the cause-based structure as 

discussed in Section 2.1, ten possible causes of failure are assumed (see Table 1).  

 

Cause Probability of cause not to occur Probability of cause to occur 

1 0.95 0.05 

2 0.92 0.08 

3 0.94 0.06 

4 0.95 0.05 

5 0.92 0.08 

6 0.90 0.10 

7 0.97 0.03 

8 0.95 0.05 

9 0.98 0.02 

10 0.90 0.10 

Table 1: List of causes of failure and their probabilities 

For each cause, four different possible link modes are assumed including (i) normal condition, (ii) 



50% of normal capacity, (iii)  80% of normal capacity, and (iv) completely closed.  For simplicity, the 

probability of each link to take one of the four modes are the same for all links under the same cause.  

Table 2 shows the probabilities for each link mode under different causes.  As mentioned earlier, the 

actual number of possible link capacities can be higher than these four pre-defined values, as a result 

of applying the product operator. 

 

Cause Link capacity 

Closed 50% 80% Normal 

1 0.010 0.020 0.020 0.950 

2 0.010 0.010 0.030 0.950 

3 0.000 0.010 0.010 0.980 

4 0.010 0.020 0.070 0.900 

5 0.020 0.030 0.100 0.850 

6 0.000 0.010 0.010 0.980 

7 0.020 0.030 0.100 0.850 

8 0.005 0.005 0.020 0.970 

9 0.010 0.000 0.00 0.990 

10 0.000 0.005 0.005 0.990 

Table 2: List capacity probability adopted in the numerical tests 

 

4.2 Test results 

As shown in Figure 3, the first stage is to apply the ORDER-MII algorithm to enumerate the set of 

most probable scenarios from the causes presented in Table 1.  In this test, ORDER-MII is requested 

to enumerate the most probable scenarios to cover 99% of the probability. After applying ORDER-MII, 

89 scenarios are generated (this covers 99% of the total probability).  Figure 5 shows the probability 

of each scenario and the cumulative probability as the number of included scenarios increases.  Note 

that the actual number of all possible scenarios is 1,024. 

 

During this process, the set of possible link modes is also obtained.  There are in total eleven possible 

link modes including the normal condition, 80% of capacity, 64% of capacity, 51.2% of capacity, 50% 

of capacity, 40% of capacity, 32% of capacity, 25% of capacity, 20% of capacity, 12.5% of capacity, 

and link closed.  The next step is then to apply the partition algorithm to generate reliable, unreliable, 

and undetermined partitions by findingsq and s
jl .  The unreliable and undetermined partitions, (16) 



and (17), can then be defined.  Figure 6 shows an example of an unreliable partition defined bysq and 

s
jl for link 30.  Figure 7 illustrates the progress of the partition algorithm in generating a number of 

unreliable partitions and reducing the gap between the upper and lower bounds by accumulating the 

probability of the unreliable partitions.   
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Figure 5: Probability and cumulative probability of scenarios generated by ORDER-MII 
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Figure 6: Unreliable partition defined with j = 30 
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Figure 7: Generated unreliable partitions and their cumulative probability 

 

In these tests, 89 undetermined partitions are left after the partition algorithm terminated, which are 

then passed to the stratified MC algorithm.  In the tests, the total number of MC samples is set to be 

200.  Practically, not all 89 undetermined partitions are sampled, since some of them have negligible 

probabilities.  In the tests, only 20 undetermined partitions are chosen for the stratified MC.  Each 

partition receives the sampling numbers according to its probability.  Figure 8 shows the allocation of 

sample sizes in the MC according to the probability of the partition. 
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Figure 8: Sample size allocation for undetermined partitions during the MC simulation 

 



Table 3 show the overall test results for three different demand levels and six different tolerance 

factors.   

Tol. 

factor 

Base demand 1.5*Base demand 2.0*base demand 

Upper 

bound 

Lower 

bound 

Gap Upper 

bound 

Lower 

bound 

Gap Upper 

bound 

Lower 

bound 

Gap 

1.5 66.74% 71.59% 4.85% 61.28% 67.53% 6.24% 60.21% 64.85% 4.64% 

2.0 67.38% 74.20% 6.82% 66.65% 71.22% 4.57% 66.08% 69.03% 2.95% 

2.5 68.07% 77.04% 8.97% 67.27% 73.75% 6.48% 66.76% 71.74% 4.98% 

3.0 68.44% 78.22% 9.78% 67.44% 74.42% 6.98% 67.01% 72.72% 5.71% 

3.5 68.61% 78.81% 10.20% 67.62% 75.11% 7.49% 67.20% 73.53% 6.33% 

4.0 78.92% 79.11% 0.19% 67.93% 76.33% 8.40% 67.33% 73.98% 6.65% 

Table 3: Upper and lower bounds and gap between the bounds of reliability index (in percentage) with 

three demands and six tolerance factors 

 

From the results, with the base demand condition the reliability index of the network is about 66.74% - 

71.59%.  As the level of the demand increases, it is obvious that the reliability index gradually drops. 

As expected, the reliability index increases as the tolerance factor increases.  However, it is found 

that the tolerance factor has less effect on the reliability index under the higher demand condition (at 

least within the given range of the tests).  

 

5. Conclusions  

The paper discussed the problem of evaluating the network reliability performance under possible link 

degradations.  The framework of cause-based failure was introduced to capture the correlation of the 

link failure probabilities.  Under the cause-based framework, several causes of failure can be defined.  

Each link can be degraded at different levels with certain probabilities under each cause.  The 

framework allows the generation of different scenarios and associated network states (with different 

realized link modes).  This paper proposed the partition algorithm approach for evaluating the 

network reliability index.  In particular, the paper has focused on the travel time reliability index in 

which the network is considered as reliable if the travel times on all routes after the disruption are not 

greater than some tolerance levels.  The partition algorithm will dissect the network state space into a 

number of reliable, unreliable, and undetermined partitions.  This is made possible by the postulation 

of the monotonicity of the reliability index discussed in the paper.  This condition may not be realized 



in some theoretical study but should be a sensible assumption in practice.  In addition, with the 

assumption of the partial user equilibrium assignment (PUE) which was also proposed in this paper 

this condition can be satisfied under some condition.  The partition algorithm requires only the small 

number of network state evaluations to determine a set of reliable and unreliable partitions.  The 

remaining states are grouped into different undetermined partitions.  The algorithm will iteratively 

dissect the undetermined partitions from the previous iteration into a number of reliable and unreliable 

partitions and update the upper and lower bounds of the reliability function.  After reaching the 

maximum iteration number, the remaining unreliable partitions will be evaluated by the MC with the 

stratified sampling technique.  The algorithm proposed can actually be applied to a wide range of 

traffic models (e.g. SUE or micro-simulation) and reliability indices provided that the monotone 

property of the reliability function under different modeling assumptions are justified.  
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