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Abstract

This empirical inquiry explores the behaviour of a particular class of evolutionary algorithms
as the number of conflicting objectives to be simultaneously optimised is increased.
Population-based optimisers that perform selection according to Pareto dominance and
density estimation are considered. The performances of abstracted algorithms, based on
decompositions of the fundamental components of a modern optimiser, are considered across
a wide range of mutation and recombination operating conditions. Configuration sweet-spots
for these algorithms are identified and contrasted. The classical mutation settings are shown to
be a robust choice, even when the total sweet-spot is seen to contract as the number of
objectives is increased. Classical settings for recombination, by contrast, are shown to work
well for small numbers of objectives but lead to very poor performance as the number of
objectives is increased. Mutation performance is demonstrated to be largely invariant of
population size across the standard range of values. The performance of recombination can be
somewhat improved by using larger population sizes. Explanations are offered for the
observed behaviour of the evolutionary optimisers.

1 Introduction

1.1 Background

Much of the research into evolutionary multi-objective optimisation algorithms (MOEAs)
concentrates on optimisation tasks with two conflicting objectives. However, the real-world
challenges to which these algorithms are applied often feature many more objectives (Coello
et al, 2002). Hence, there is a clear need to extend evolutionary multi-objective optimisation

(EMO) research into the realm of many-objectives’.

Interactions often arise between objectives. These can be classified as conflicting or
harmonious, and both interactions may co-exist between two objectives in the context of a
single optimisation problem (Purshouse and Fleming, 2003). In the case of conflict, a solution
modification that will improve performance in one objective is seen to cause deterioration in a
second objective. In the case of harmony, the modification causes simultaneous improvement
to both objectives. The conflict that exists in a many-objective task has been identified as a
serious challenge for contemporary EMO researchers, and it is this relationship that is
explored in this paper.

If the only assumption concerning decision-maker (DM) preferences is that a unidirectional
line of preference (Edgeworth, 1932) exists for each objective then performance comparisons
between solutions can be based on the notion of Pareto dominance (Coello et al, 2002). In
these conditions, the optimal solution to an M-objective task, in which all objectives conflict,
is an (M-1)-dimensional hypersurface. The number of samples required to represent the.... .
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' To the best of the authors' knowledge, this terminology was first introduced by Farina and Amato (2002).




surface at a fixed resolution is exponential in M. Even if such an approximation set (Zitzler er
al, 2003) could be achieved, the quantity of information contained within the set may
overwhelm the DM, who must ultimately select a single solution.

The inherent difficulties in solving many-objective problems have lead EMO researchers to
incorporate preference-based schemes into their algorithms, as comprehensively reviewed by
Coello et al (2002). The fundamental aim of these methods is to limit the search requirements
of the optimiser to a sub-region of overall objective-space. However, as argued by Knowles
(2002), the potential for an exclusively Pareto-based solution to the many-objective
optimisation problem remains a matter of some interest. Indeed, if the resolution of the
obtained approximation set is regarded as a function of some maximum limit imposed on the
size of the set (such as the population size of an MOEA), then there is no reason per se Why
the achieved set should not be globally non-dominated and optimally distributed across the
trade-off surface. But is it possible to design an evolutionary algorithm that is capable of
generating such results, given finite resources, when faced with many conflicting objectives?

A family of tractable, real-parameter optimisation tasks that are scalable to any number of
conflicting objectives was proposed by Deb et al (2002b) to stimulate research into many-
objective optimisation. In the first known study of its kind, this test suite was used by Khare
et al (2003), to investigate the scalability of some contemporary MOEAs. The results
suggested that PESA (Corne et al, 2000) could produce approximation sets with good
proximity but with poor distribution as problem size increased, whilst SPEA2 (Zitzler er al,
2001) and NSGA-II (Deb et al, 2002a) produced the converse result. However, since single
configuration instances of each algorithm were used, and each algorithm is itself a
complicated structure of basic EMO components, it is difficult to identify the exact
mechanisms and rationale that underpin the observed behaviour.

In this paper, abstracted algorithms derived from the NSGA-II class are used to understand
the changing behaviour of isolated EMO mechanisms, and combinations of such mechanisms,
as the number of objectives is varied. Results are generated for a map of configuration
settings for each algorithm. This permits analysis to be made in terms of the exploration-
exploitation trade-offs in EMO (Bosman and Thierens, 2003) and for performance sweet-
spots to be identified (Goldberg, 1998).

1.2 Document roadmap

The remainder of the paper is organised as follows. In Section 2, the class of evolutionary
multi-objective optimisers explored in the inquiry is introduced. The NSGA-II algorithm
established by Deb et al (2002a) is described, together with three related algorithms based on
decompositions of the NSGA-II selection mechanisms. The single-parent (mutation) and
multi-parent (recombination) variation operators that are combined with selection to form the
complete evolutionary method are also introduced.

Preliminary analysis of the class of optimisation algorithms described in Section 2 is
undertaken in Section 3. Analysis is documented for selection-for-variation and selection-for-
survival mechanisms, together with insights into the behaviour of the variation operators
under special selection conditions. This analysis is helpful in attempting to explain and
understand the observed empirical results of Sections 3, 6, and 7.

The components of the empirical inquiry are detailed in Section 4. The scalable optimisation
task used in simulations is described and discussed, together with performance indicators for
measuring the quality, in terms of proximity and spread, of the generated approximation sets.
An experimental framework, based on components from studies by Laumanns et al (2001)
and Purshouse and Fleming (2002b), is introduced and contrasted to the methodology adopted
in a recent study into many-objective optimisation by Khare et al (2003).
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Experiments in Section 5 and Section 6 are conducted for a fixed population size of 100
individuals. The number of objectives in the optimisation task is varied between 3 and 12.
Section 5 details the results obtained for the optimisation algorithms when combined with the
mutation operator, whilst Section 6 describes results for the algorithms in combination with
the recombination operator. In each section, a synopsis of the fundamental results and
analysis is given, followed by more detailed observations and discussions. Section 7
documents the results for both mutation and recombination when the size of the optimisation
task is fixed at 6 objectives and the population size is allowed to vary between 10 and 1000
individuals.

Section 8 concludes the inquiry with a summary of important findings and suggestions for
essential future work into evolutionary many-objective optimisation.

2 Optimisation algorithms

2.1 Introduction

The evolutionary search mechanism, often described in terms of exploration and exploitation,
employed by the optimisers considered in this inquiry can be summarised by Equation 2.1.

Ple+1]=s, (v[ s, (P[e]) |.PL7]) @.1)
where Pl[¢]is the population at iteration z,

s, is the selection-for-variation operator,

v is the variation operator, and

sy is the selection-for-survival operator.

The selection-for-variation operator, usually known simply as the selection operator, selects
candidate solutions from the current population to form the mating pool. Variation operators
are applied to the solutions in the mating pool to create a set of new candidate solutions.
These new solutions then compete with the population of current solutions in the selection-
for-survival stage to determine the composition of the subsequent population. The selection-
for-survival operator is also known as the population management or reinsertion operator.

The different multi-objective evolutionary optimisers proposed in the literature are generally
categorised by the manner in which selection is performed. One particular broad category of
selection scheme can be represented by the elitist non-dominated sorting genetic algorithm
(NSGA-II) developed by Deb et al (2002a). In the inquiry, NSGA-II is considered at an
abstracted, or component, level to improve the clarity with which underlying algorithm
mechanisms can be identified as being responsible for observed performance. Four algorithms
based on NSGA-fype components are investigated. These deconstructed algorithms are
described in Section 2.2.

Abstracted versions of the NSGA-II algorithm have been chosen to represent a class of
optimisers that use the dominance concept as a primary, relative discriminator between
candidate solutions in the population. Some algorithms within the class also use population
density estimates as a secondary discriminator in cases where the primary comparison fails to
distinguish relative worth. The preservation of previously discovered solutions within the EA
population can also feature in this class.
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The NSGA family has been specifically chosen because it is heavily studied in the literature
and is conceptually very simple. NSGA-II is often regarded as parameter-free, and is used in
such a format in the inquiry, although this is not strictly accurate. This is explained further in
the algorithm discussions below. The family has strong similarities with other algorithms of
its class, such as the multi-objective genetic algorithm (MOGA) family introduced by Fonseca
and Fleming (1993), the strength Pareto evolutionary algorithm (SPEA) family first
described by Zitzler and Thiele (1999), and others. It is strongly argued that generalised
evidence collected for the abstracted NSGA algorithms will be widely applicable across other
algorithms that use similar selection mechanisms.

The different selection schemes considered in the inquiry are described in Section 2.2, and are
related back to the fundamental search mechanism given in Equation 2.1. The variation
operators used in the study are introduced in Section 2.3.

2.2 Selection mechanisms

2.2.1 emol: non-dominated sorting

The fundamental step in the construction of an EMO optimiser is to translate a vector
performance measure (where each element represents a particular objective) into a unary
indicator of absolute or relative worth. All methods in the studied class use the notion of
comparison across a population of solutions to perform this mapping. The original method for
EAs, non-dominated sorting, was suggested by Goldberg (1989). In this layer-based
procedure, the locally non-dominated solutions in the population are identified, are assigned
best rank, and are temporarily removed. The new locally non-dominated solutions in the
remaining population are then identified, assigned next-best rank, and are removed. This
process continues until the population is empty, by which time all solutions have received a
rank (a series of equivalence classes has been defined). A computationally efficient method of
performing the operation was implemented in NSGA-II (Deb ez al, 2002a).

Non-dominated sorting is a common feature across the NSGA family and is used in all
algorithms in the inquiry. Other dominance-based procedures have been suggested, such as
Fonseca and Fleming’s (1993) Pareto-based ranking and Zitzler and Thiele’s (1999)
strength-based approach. Pareto-based ranking assigns the rank of a solution to be the number
of solutions in the population by which it is dominated. This is a more fine-grained approach
than non-dominated sorting. The strength system uses the number of solutions that a
particular solution dominates in addition to the Pareto-based rank to determine a fitness value
for a solution. The granularity of this approach is greater still than Pareto-based ranking.
There is little evidence available to argue that any one of these techniques is superior to any
other under any optimisation conditions. This is because most EMO performance studies,
with the notable exception of the inquiry by Laumanns et al (2001), consider complete
algorithms rather than concentrate on specific components. Studies by Purshouse and Fleming
(2002a) and Bosman and Thirens (2003) found no significant difference in performance
between non-dominated sorting and Pareto-based ranking when solving tasks from the so-
called ZDT test suite (Ziztler et al, 2000).

The selection-for-variation mechanism for emol is a binary tournament. From two solutions
selected at random from the population (with replacement), the solution that is accepted into
the mating pool (the winner) is the one with the lowest non-dominated rank in the partial
ordering defined by the above sorting procedure. In the case of a tie, selection is performed at
random. In the selection-for-survival stage of emo1, the new population is composed entirely
of the post-variation (child) solutions.
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2.2.2 emo2: non-dominated sorting and crowding comparison

Some optimisers use population density estimates to discriminate between solutions of the
same dominance-based equivalence class in order to promote diversity of solutions. Diversity
is commonly required in objective-space, although sometimes the explicit promotion of
diversity in decision-space is also appropriate. Deb et al (2002a) proposed a crowding
distance estimator, which computes the average side length of the hypercube formed using
nearest neighbour (NN) values in each objective as the vertices. This operator is described as
parameter-less, but is actually a specific case of k&th NN with k =1.

Boundary conditions for the estimator are handled slightly differently in the inquiry than to
the original specification of Deb et al (2002a). All boundary distances are set to the maximum
distance found rather than infinity to ensure that all estimates are equal for the equilibrium
condition of a perfectly distributed (in the sense defined by the general form of the estimator)
Pareto front.

Various density estimators have been proposed in the context of EMO, all with the aim of
providing sufficient information to bias selection probabilities in favour of solutions from
less-dense areas of objective-space. It is argued that the behaviour of emo2 when compared
to emol will be generally indicative of the effect of introducing any type of explicit diversity-
promoting mechanism. However, it should be noted that the relative effectiveness of the
crowding distance estimator when compared to other estimators has been questioned by some
researchers (Laumanns et al, 2001; Deb ef al, 2003).

A two-step tournament process, formally defined by Deb er al (2002a) as the crowded-
comparison operator, is used at the selection-for-variation stage of emo2. As for emol, the
winner is the solution with the lowest non-dominated rank. In the case of tied rank, the
solution with the lowest density estimate is chosen. If the density estimates are also tied, the
winner is selected at random.

This selection-for-variation mechanism is very similar in spirit to the fine-grained ranking
procedure described by Purshouse and Fleming (2002b) and the modified strength measure in
Zitzler et al’s (2001) SPEA2. These latter schemes also permit the use of proportional
selection since they map the complete partial-ordering to actual fitness values.

At the selection-for-survival stage, the current population is replaced in its entirety by the
child population.

2.2.3 emo3: elitist non-dominated sorting

Elitism refers to the policy of preserving previously-found good solutions in the population of
the EA from one generation to the next. Selection-for-survival techniques of this nature can
offer improved (faster) convergence to near-optimal regions and are also used to develop
asymptotic convergence proofs for MOEAs (Rudolph, 2001; Laumanns et al, 2002).

In emo3 the so-called (u+/) strategy is implemented for selection-for-survival, in which the
new EA population is taken as the best half of the elements from the combined parent (p) and
offspring (A) populations. Best is defined according to the partial ordering obtained from a
non-dominated sorting of the combined (p+A) population. If the cut-off point for the new
population occurs within an equivalence class then solutions are selected at random from this
class.

Given settings for [u| and [A], the (u+A) method is sometimes then regarded as parameter-free,
but the elitism intensity (a form of selective pressure, defined as the probability of selecting a
member of the new population from p) can in fact be varied to control the oft-cited
exploration — exploitation (EE) trade-off (Laumanns et al, 2001). One particular method of




varying the elitism intensity in the context of NSGA-II is known as conirolled elitism (Deb
and Goel, 2001). In this scheme, the number of solutions that can be selected to occupy each
dominance-based equivalence class in the new population is constrained according to some
pre-specified plan. Controlled elitism has been shown to overcome some of the convergence
problems encountered by the standard NSGA-II on multimodal task landscapes, in cases
where variation operators have insufficient exploratory power. In this study, in order to limit
the complexity of the forthcoming analysis, it is assumed that the EE trade-off can be
adequately controlled with fixed elitism intensity. Also, multimodal task landscapes are not
considered.

For emo3, the selection-for-variation method is identical to that described above for emo1.

2.2.4 emo4: elitist non-dominated sorting and crowding
comparison -~ NSGA-II

This algorithm combines non-dominated sorting, secondary density-dependent selection-for-
variation via the crowding distance estimator, and an enhanced form of (u+\) elitism to form
the complete NSGA-II algorithm described by Deb er al (2002a). The enhanced (u+\)
selection-for-survival mechanism discriminates based on new density estimates from the
combined (u+4) population in cases where the cut-off point for the new population lies within
an equivalence class obtained from non-dominated sorting. If the cut-off point still resides
within the finer hierarchy, then selection-for-survival is made at random from this sub-set of
solutions.

2.3 Variation operators

2.3.1 Introduction to variation

Variation refers to the process of making new solutions from current solutions. When
combined with selection, it forms a compelling Darwinian search mechanism that is at the
very heart of the EA heuristic.

In general, within a single variation operation, m current solutions (known as parents) are
used to produce n new solutions (known as children). m = n for most variation operators,
including those considered in the inquiry. An operator is usually classified based on whether
it is single-parent (m = 1) or multi-parent (m > 1).2 Single-parent variations are also known as
mutations, whilst multi-parent variations are called recombination or crossover operators.
Other distinctions between the natures of recombination and mutation can be made, being
often representation-dependent. A discussion of these is beyond the scope of this inquiry.

In the context of the multi-objective performance of a child compared to its parents, a
variation will have one of the following mutually exclusive outcomes:

The child dominates at least one of its parents.
e The child is non-dominated with respect to all of its parents.

e The child is equal to at least one of its parents and does not dominate any of its
parents.

®  The child is dominated by at least one of its parents and is non-dominated with
respect to all of its other parents.

? The special case of m = 0 could be regarded as an operator that creates a new solution from a distribution rather than a set of
exemplars. This is the common method for initialising the EA population.
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In a single-parent setting, from the perspective of evolutionary progress, these outcomes can
be interpreted as success, incomparability, equality, and failure respectively. The multi-parent
situation is more complex (there are 4" distinct outcomes in terms of comparison across all m
parents) and is clouded further by the possible relationships between parents. In the two-
parent case, the above classification of outcomes is sufficient but cannot be strictly interpreted
in the same way as the one-parent situation.

2.3.2 Mutation

Deb and Goyal’s (1996) polynomial mutation operator is used in the inquiry. This variation
operator is popular in real-parameter multi-objective optimisation tasks, and has previously
been used to solve the example problem used in this paper (Deb et al, 2002b; Khare et al,
2003). Variable-wise mutation is performed according to a probability distribution function
centred over the parent value. The operator is defined by Equations 2.2 and 2.3.

c = i+ (P —1)4 lf’?“/-O.-S 22
" \p;+(u—p;)d, otherwise
(2’})]/{7?'"H) -1 if r <0.5
%= 2.3)

1- [2(1 -7 ):Il!(rme) otherwise

where p; is the parent value for the ith decision variable,
u; and [; are the upper and lower bounds on the ith decision variable,
. 18 a distribution parameter,
r; is a number generated uniformly at random from [0 1], and
c; is the resulting child value for the ith decision variable.

Polynomial mutation has two controllable parameters: (i) the probability of applying mutation
to a chromosome element, p,, and (ii) a mutation distribution parameter, 7,,. The latter
parameter controls the magnitude of the expected mutation of the candidate solution variable.
The normalised variation is likely to be of O(1/#,,). Thus, relatively speaking, small values of
1 should produce large mutations whilst large values of #,, should produce small mutations.

Mutation is applied independently to each element of each candidate solution with probability
Pm- Thus, the probability of mutating a candidate solution of n decision variables is defined as
shown in Equation 2.4.

p(mutate) =1-(1-p, )’ (2.4)

2.3.3 Recombination

Deb and Agrawal’s (1995) simulated binary crossover (SBX) operator is also considered in
the inquiry as an alternative to polynomial mutation. Unlike the latter operator, SBX is a two-
parent variation operator that produces two new solutions. SBX has been considered
extensively in previous EMO studies using real-parameter representations (Deb et al, 2002b;
Khare et al, 2003), and is defined in Equations 2.5, 2.6, and 2.7.

¢, =05[(1+8) P+ (1-8) P, | (2.5)

Cai 20-5[(1"'131‘)101.:' +(1+/6i)p2.i] (2.6)
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where p;; and ps; are the parent values for the ith decision variable,
A is a distribution parameter,
r; is a number generated uniformly at random from [0 1], and
c1,; and ¢; are the the resulting child values for the ith decision variable.

SBX generates child values from a probability distribution, with standard deviation derived
from the distance between parent values and a distribution parameter 7.. Distance is the
primary factor in determining the magnitude of the distribution, with larger distances leading
to larger standard deviations. %, determines the shape of the distribution. To generate child
values for a decision variable, the distribution is centred over each parent and a random value
is generated from the distribution to create one child. The second child is generated
symmetrically to the first child about the mid-point between the parents. The child values for
a decision variable are then exchanged between the complete child solutions with probability
p.. Variation may be introverted (the child values are within the range defined by the parents)
or extroverted (the child values are outside the range defined by the parents). Child values
outside the range of a decision variable are cropped to the nearest feasible value.

SBX is applied to a pair of parent solutions with probability p.. If a uniform recombination
scheme is chosen, in which each individual decision variable is selected for variation
independently of any other (given the fact that variation is to be zpplied to the selected
parents), then the probability of applying recombination to a pair of candidate solutions (each
comprised of n decision variables) can be expressed as shown in Equation 2.8.

p(recombine) = p, [1 b Py )u] (2.8)

Dic is the probability of applying variation to a decision variable, given that recombination is
to be applied in general to the complete solution pair. In standard uniform recombination
schemes in the literature, p,. is usually set to 0.5. However, by allowing this probability to
vary and setting p. to unity, the probability of applying two-parent SBX to a solution can be
viewed as equivalent to that expressed for polynomial mutation in Equation 2.4.

3 Preliminary analysis

3.1 Introduction

Preliminary analysis of the selection and variation mechanisms described in Equation 2.1 will
prove helpful when attempting to explain the forthcoming experimental results of Sections 3,
6, and 7. In Section 3.2.1, the conditions when various aspects of the selection-for-variation
(s,) mechanisms of the emo algorithms are likely to be active (or deactive) are described, and
the expected effect of these mechanisms on overall search performance is discussed. Similar
analysis is undertaken in Section 3.2.2 for the selection-for-survival mechanism (s,). Section
3.3 studies the behaviour of a population under the variation operators (v) in the absence of
selective bias. This analysis provides useful information because some settings for variation
configurations can substantially reduce the influence of selection mechanisms over the
population evolution.




3.2 Selection mechanisms

3.2.1 Selection-for-variation

The binary tournament selection process in the emo algorithms makes comparisons of the
following forms between solutions:

A. primary dominance-based comparison (all emo algorithms),
B. secondary density-based comparison (emo2 and emo4).

Considering stage A alone, if the dominance-based equivalence classes are small in relation to
the population size then s, will direct the application of variation operators towards high
quality (from the perspective of the current population) regions of the search space. Actual
progress then depends on the ability of v, given this genetic material, to find superior
solutions. If the equivalence classes are large in relation to the population size (generally
meaning that a single equivalence class has a large membership in the population, which in
practice implies that most of the solutions are locally non-dominated) then s, will tend to
select solutions on a more uniform basis from P[z]. This does not necessarily mean that search
progress will be attenuated, since this still depends on the ability of v to find improved
solutions under these conditions. The rate of improvement (and hence convergence towards
the globally optimal surface) depends on (i) the probability of improvement and (ii) the
expected magnitude of improvement. Note that, in the absence of diversity-promoting
mechanisms, random sampling errors are likely to progressively focus the population on to a
small region of objective-space. This phenomenon is known as genetic drift.

EMO algorithms also seek to obtain a good distribution of solutions to present to the decision-
maker. Stage B of the selection-for-variation operator is one method designed to take account
of this aim. Stage B only has a real impact on the results of s, when many population
members share the same dominance-based equivalence class. Assuming that the locally non-
dominated solutions comprise the largest class, then the probability of stage B being the key
arbiter in a selection decision is approximately equal to the proportion of non-dominated
solutions in the population. When B is active, s, is biased in favour of solutions with low
density estimates. For the crowding distance estimator illustrated in Figure 3.1, noting that
density is the inverse of distance, these solutions are likely to be

e boundary solutions (which are assigned the largest distance found for that
objective in the boundary direction),
other remote solutions, and

e immediate neighbours to remote solutions.

The volume of objective-space increases exponentially as the number of conflicting
objectives is increased linearly. For a finite population in these higher-dimensional spaces
there is more opportunity for a solution to be remote from others, be distant from the global
trade-off surface, and yet still be locally non-dominated. Thus, s, can bias in favour of
solutions that are locally non-dominated but are actually poor in relation to others from the
perspective of the off-line proximity indicator. This could ultimately affect the ability of an
MOEA to discover an approximation set that is of value to the decision-maker, since the set
may be far from Pareto-optimal and lacking in compromise solutions.

If the variation operators have difficulties in producing children that dominate badly
performing parents then MOEA performance can be adversely affected. This problem of
dominance resistant solutions was first identified by Ikeda ez al (2001), in the context of real
number representations and particular real parameter variation operators, for a specific class
of multi-objective functions. Deb er al (2002b) have also encountered this behaviour for the
scalable, real parameter, constraint surface tasks. The authors also identified that, in this




instance, the problem of dominance resistance increased with the dimension of objective-
space.
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Figure 3.1: Crowding distance density estimator

3.2.2 Selection-for-survival

In the non-elitist algorithms (emol and emo2) the children produced by the variation
operators are certain to be included in the new population. Members of the current population
are entirely supplanted by these new solutions. Thus, the only way for the genetic material of
any member of the current population to survive into the next iteration is via selection-for-
variation. In the elitist algorithms (emo3 and emo4) by contrast, members of the current
population have a non-zero probability of being included at the next iteration.

In the elitist schemes, reinsertion into the new population is based on a deterministic
hierarchy formed from comparisons between candidate solutions:

A. primary dominance-based hierarchy (emo3),
B. secondary density-based hierarchy (emo4).

Considering stage A alone, this approach will conserve all locally non-dominated solutions
discovered during the search until the number of such solutions exceeds the population size.
In this latter case, non-dominated solutions will be rejected on a random basis. It is thus
conceivable that this approach can suffer from oscillatory behaviour, in which previously
rejected solutions are rediscovered, due to the absence of an asymptotic convergence
property. This issue has been identified and addressed by Everson et al (2002), Knowles and
Corne (2003b), and Laumanns et al (2002).

Elitism is known to increase the convergence rate of evolutionary algorithms, with a
corresponding increased risk of premature convergence in multimodal cost environments if
mutation search power is insufficient. Increased convergence can also quickly limit the
variability within the genetic material available to the search operators. For multi-parent
operators that make use of the differences between parents to adapt the search magnitude, this
can cause EA search stagnation.
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With the implementation of stage A alone, the algorithm would be predicted to suffer from
genetic drift. Since EMO algorithms aim for good diversity in optimal areas of objective-
space, stage B was proposed by Deb er al (2002a) to bias selection-for-survival towards
solutions with low density estimates. Stage B will only be properly operational when many
population members share the same dominance-based equivalence class in the hierarchy. In
the context of the multi-objective search, this usually corresponds to a large number of locally
non-dominated solutions in the combined P[t] and child solution pools. Stage B will preserve
solutions with low density estimates. As demonstrated previously for selection-for-variation,
these will be boundary solutions, other remote solutions, and neighbours of remote solutions.
As the dimension of objective-space increases, the opportunity for a solution to be remote and
non-dominated, and yet poor in terms of relative location to the optimal hypersurface
increases. §; inclusive of stage B can also suffer from oscillatory behaviour, as described
earlier for stage A.

Note that stage A of s, does not have any in-built copy rejection mechanism. Thus, it is
possible for a particular solution to be present in the post-s, population several times.
However, since the crowded distance density estimator is an example of first-nearest-
neighbour, solutions with copies will have the maximum possible density estimate
(corresponding to a crowding distance of zero). Non-dominated solutions of this nature will
be biased against in stage B when the number of non-dominated solutions in the combined
pool exceeds the population size. Indeed, if the number of non-dominated solutions without
copies exceeds or equals the population size then the solutions with copies are certain not to
be preserved. If there is sufficient space in the new population for non-dominated solutions
with zero crowding distance then these will be subject to purely random inclusion.

3.3 Variation mechanisms

Variation operator analysis is a challenging task for anything but the most simple of test
problems. This is because of the generally complicated relationship between decision-space
and objective-space (complicated further in the presence of many objectives), and the
population-based nature of the search. However, one key variation operator result that affects
s, can immediately be suggested: if the variation operator has the conceptual maximum
exploratory power, meaning that there is an equal probability of generating a child at each
point in the search space (regardless of parent location), then the effect of s, is completely
eliminated. The best solutions may be chosen but none of their genetic information is passed
on to their children. The total variation is equivalent to simply generating the child solution at
random from a uniform distribution (equivalent to the classical method of initialising a
population). Hence, the behaviour of the population over the optimisation process would be
neutral (subject to random noise) in the absence of biased selection-for-survival mechanisms
(elitism).

The behaviour of the population under the mutation and recombination operators described in
Section 2.3, with settings chosen to provide high exploratory power, is studied in the
remainder of this section.

3.3.1 Polynomial mutation

For the mutation operator configuration of [p, = 1.0, 7., = 0.0] every element of every
candidate solution in the selection pool is certain to be mutated, with a mutation distribution
that is piece-wise uniform about the parent value. This is the maximum possible expected
perturbation for this operator. The distribution is piece-wise uniform rather than globally
uniform because there exists an equal probability of mutating in either direction along the
feasible range of the decision variable regardless of parent position. By contrast, for a
properly uniform distribution, the probability of movement in each direction would be
dependent on the parent position. However, once a direction has been chosen, the distribution
in that sub-region is locally uniform for n,, = 0.
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The special piece-wise uniformity of the polynomial mutation operator changes the
distribution of the population in the absence of any selective bias. Since the direction of
mutation is always decided with probability 0.5, this internal bias causes a uniform random
sample of decision values to be perturbed towards the boundaries of the feasible decision-
space with greater probability than that resulting from a globally uniform distribution. This is
simulated in Figure 3.2 for a single decision variable with feasible range [0 1]. A population
of 100,000 is used (the large population reduces the noise on the histogram, but the results are
equally applicable to standard EMO population sizes). The movement of the population
distribution translates into movement through the cost landscape that is independent of
fitness-based selection.
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Figure 3.2: Population distribution change via polynomial mutation [p, = 0.5, N, = 2.5] for
x € [0 1] in the absence of fitness-biased selection.

3.3.2 SBX recombination

It is instructive to consider the effects of repeated application of the SBX variation operator to
a population in the absence of fitness-based selection schemes. If parents are selected
randomly from the population, and the variance on the SBX distribution is large
(corresponding to low values of 1), then the population distribution evolves as shown for a
single decision variable, x € [0 1], in Figure 3.3. A large distributional bias to the decision-
variable boundary values is established. The observed distribution will ultimately be
generated for any initial population distribution, except for the case where the entire
population is generated at a single point.

The observed bias towards remoter values occurs because SBX is likely to generate children
outside of the feasible bounds of the decision variable, requiring the child values to be
cropped to the nearest feasible equivalent. If the SBX variance is low, then this behaviour is
not observed. Instead, no long-term adjustments are seen to the initial population distribution.
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Figure 3.3: Population distribution change via SBX [p;. = 0.5, 1. = 0.25] for x € [0 1] in the
absence of fitness-based selection.
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If SBX is repeatedly applied to the same pair of evolving solutions in the population, then the
long-term behaviour is to converge to the mid-point between the original parent values. This
requires successive introspective variations or (and possibly combined with) a single large
introspection. The self-adaptive nature of the search magnitude then makes it increasingly less
likely that distant children will be produced. The symmetric form of the SBX distribution
ensures that convergence will be to the mid-point.

If the scale of the distribution (relative to the decision variable range) is likely to cause
cropping of infeasible child values to the feasible bounds then the symmetry property is lost.
For a decision variable with feasible range [/ u], if the search power is strong enough to cause
one child value to be set to u and the other child to be set to [, then the new centre becomes
(u + [)/2 and convergence is ultimately achieved on this value. The first few applications of
SBX to a population under these conditions, with / = 0 and u = 1, are shown in Figure 3.4 for
[pi. = 1.0, n. = 0.0].

4 Inquiry design

4.1 Introduction

The inquiry into the effect of increasing numbers of conflicting objectives in EMO combines
process analysis with simulations of algorithm performance. The optimisation task used in the
simulations is described in Section 4.2. The performance indicators chosen to reduce an
approximation set to a more tractable number of summary statistics are presented in Section
4.3. The experimental framework that has been developed to facilitate understanding of
many-objective optimiser behaviour is introduced in Section 4.4, and contrasted to a recent
study in this research field. In Section 4.5, an introduction is made to the empirical results
detailed in the remainder of the paper.

4.2 Scalable optimisation task

This inquiry considers a real-parameter function optimisation task known as DTLZ2, which is
defined in Equation 4.1. The task is taken from a highly tractable set of problems developed
by Deb et al (2002b) specifically for studies into many-objective optimisation. The global
Pareto front is continuous and non-convex. Distance from the front is determined by a single,
unimodal cost function, g.

minimise  z, (X) [1+g X ]cos (x,72/2)cos (x, 7/2)...cos(xy,_, /2)cos(xy,_, 7/2),
minimise  z, (x) |:1+g o ]cos (x,72/2)cos(x, 7/2)...cos(xy,_, [2)sin(xy,_, 7/2),

minimise  z,(X) l:1+g Xy ) :[cos (x,72/2)cos(x, 7[2)...sin(x,,_, 7/2),

minimise z,, (X)= [1 +g(xy )}cos(x1 7[2)sin(x, 7/2),
minimise  z,, (x)= [1+ g (xy )jsm (x,7/2),

where g(xM):Z_ % (xz.—-O.S)z, with X, =[xy, %, |,
xeXy :
and 0<x, <1 fori=12,...,n, withn=M +k-1.

(4.1)

M is the number of objectives, n=M+k-1 is the number of decision variables, and k is a
difficulty parameter (k = 10 in this study). DTLZ2 is comprised of decision variables of two
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distinct functional types: those that control convergence towards the globally optimal surface
(x1,...,%p1) and those that control distribution in objective-space (xy,....x,). The convergence-
variables define the distance of the solution vector from the true front via a k-dimensional
position on the positive quadrant of the unit h)lf.-;.)’ersphere. An M-objective instance of DTLZ2
is denoted by DTLZ2(M).

The DTLZ test suite encompasses many problem characteristics, such as multimodality,
discontinuity, and distributional bias. For small numbers of objectives, such as three, it is a
straightforward task to obtain a good sample-based approximation to the global Pareto front
of DTLZ2 using an EMO optimiser (Deb et al, 2002b). This is not necessarily true for some
of the other functions in the test suite, such as DTLZ4. However, as will be demonstrated in
Sections 5 and 6, the generation of a good quality approximation set becomes significantly
more challenging as the number of objectives is increased. Thus, the DTLZ2 function in
isolation is a sufficiently interesting example of real-parameter, many-objective optimisation
problems for the purposes of this study. The effect of more complex real-parameter cost
features remains a matter for future research. There is also a clear need to investigate other
optimisation tasks of a different underlying theme, such as the multi-objective quadratic
assignment problem class recently developed by Knowles and Corne (2003a).

The proportion of a population that is locally non-dominated is thought to be one of the key
factors in determining EMO algorithm success (Deb, 2001). Empirical values, averaged
across 1000 random samples sets from DTLZ2, for various population sizes and numbers of
conflicting objectives are shown in Figure 4.1.

% non-dominated

5000000 " "3 crteria

random sample size

Figure 4.1: Estimated non-dominated proportions of random samples of DTLZ2(M) solutions.

4.3 Performance indicators

In the context of this inquiry, performance relates to the quality of the trade-off surface
discovered by an optimiser, given a finite number of candidate solution evaluations. Quality is
generally expressed in terms of (i) the proximity of the obtained locally non-dominated
vectors to the true Pareto surface and (ii) the distribution of those vectors across the surface
(Bosman and Thierens, 2003). Ideally, the optimiser should obtain solutions that are Pareto
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optimal (are of distance zero from the global front), that extend across the full range of
optimal objective values, and that are as near uniformly distributed as the true surface permits.

Various performance indicators have been proposed to measure these aspects of quality (Deb,
2001). The indicators used in the inquiry are described in this section. They can typically be
classified according to function (which part of overall performance they measure) and provide
a scalar value that represents the quality of a locally non-dominated set. Many indicators are
unary (they describe the absolute performance of one approximation set), although a few are
binary (they describe the relative performance of two sets). Zitzler et al (2003) have shown
that no finite combination of unary measures can indicate whether one approximation set is
superior to the other (from the perspective of the dominance relation). Thus, care must be
taken when making statements about global performance.

This study adopts the functional approach described by Deb and Jain (2002). Specific unary
indicators are used to evaluate specific aspects of performance. There is no attempt to
describe global performance using a unary indicator or indeed a combination of such
indicators. Thus the failure of an indicator to respect the dominance operator is not of
immediate concern.

4.3.1 Proximity indicator

The proximity indicator measures a median level of proximity of the approximation set, Z,,
to the global surface. In terms of attainment across the objectives, a objective vector for
DTLZ2 will respect Equation 4.2. The equality condition will only hold for a globally optimal
vector. Thus, a specialised proximity indicator, Ip, for DTLZ2 can naturally be described by
Equation 4.3. This is essentially the same as Veldhuizen’s (1999) generational distance
metric, for the case of a continuous globally optimal reference set, Z.

[i(zi )zr >1 4.2)

M . 1/2
Ip = median, _, I:Z(ZM)—} -1 4.3)

i=1

4.3.2 Distribution indicators

A multi-objective optimiser is required to find a good distribution of candidate solutions
across the trade-off surface to present to the decision-maker. Good means that the identified
non-dominated vectors should span the complete surface, with appropriate distances between
each. Given limited preference information and a continuous surface, the vectors should be
equal distances apart.

To achieve high quantization of the non-dominated set, it would be advantageous to express
both aspects of distribution within a single indicator. This approach has been implemented in
Deb et al’s (2002a) 4 metric. Unfortunately, it can become unclear which aspect of the
distribution is responsible for the observed indicator value. For example, errors on the spread
of the distribution can potentially mask difficulties with uniformity. To manage the
complexity of the inquiry, only the spread of solutions is considered further.

Spread indicator
The study uses a variant of Zitzler’s (1999) maximum spread indicafor. This metric measures

the length of the diagonal of the hypercube with vertices set to the extreme objective values
observed in the achieved approximation set, as defined in Equation 4 4.
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It is possible to achieve too much or too little spread. In the former case, the vectors span
regions that are not part of the global trade-off surface, (highlighting a relationship between
spread and proximity). In the latter case, the optimiser has converged to a sub-region (that
may be globally optimal). To highlight the requirement for an intermediate spread value, the
indicator, I5, is normalised with respect to the optimal spread, as indicated in Equation 4.5.
Indicator values decreasing from unity to zero now represent increasing levels of population
convergence to a sub-region. Thus, globally optimal regions of the surface are missing.
Indicator values increasing from unity demonstrate widespread dispersal of vectors
throughout non-optimal objective-space.

, 22
Mz 2| )
=D z Max z.,, ~Minz., J 4.5)

i=1

4.4 Investigative framework

Very little of the documented EMO research has considered the issue of scalability. Indeed,
with the advent of a scalable test suite, results of the first such study have only recently been
published (Khare er al, 2003). A description and critique of the methodology used in that
work is described below. This is followed by a reasoned account of the framework pursued in
this inquiry.

4.4.1 Published framework: Khare et al (2003)

Khare ef al (2003) investigated the scalability of three well-known functionally complete EA
optimisers: Corne ez al’s (2000) Pareto-envelope based selection algorithm (PESA), Zitzler et
al’s (2001) SPEA?2, and a controlled elitism version of emo4 (Deb and Goel, 2001). The 2, 3,
4, 6, and 8-objective instances of tasks DTLZ2, DTLZ3, DTLZ4, and DTLZ6 were
undertaken. These extra tests feature multimodality and reduced dimensionality behaviour’.
Population size was increased with the number of objectives.

The main conclusions of the study were that the algorithms of the class considered in this
inquiry — SPEA2 and NSGA-II - increasingly encountered difficulties converging to the
global surface as the number of objectives was enlarged. However, the distribution of the
identified front remained satisfactory. The hypergrid-based PESA, which is arguably not
directly linked to the emo class of algorithms, displayed the opposite behaviour.

Khare et al (2003) have shown that conclusions drawn from tasks with small numbers of
objectives cannot be generalised to higher numbers of objectives. This is an important result.
However, because complete algorithms were considered in the study, the specific mechanisms
and reasons behind the observed behaviours remains unclear. An approach based on
abstracted algorithms, with consideration of the dynamic processes under which they operate,
may prove more appropriate in this context and is described below.

* Deb et al (2002b) claim that for the curve problem (of which DTLZ6 is an example) only one independent variable describes
the global front, regardless of the number of objectives considered. This behaviour is obtained by creating a dependency between
the convergence-variables and the distribution-variables. This invalidates the assumption of independence upon which the
equation describing the global front can be obtained, and this result must thus be treated with care.
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4.4.2 Proposed framework

The changing behaviour of evolutionary multi-objective optimisers in environments of
increasing conflict remains largely unclear. Multi-objective operations, such as dominance
checks and density estimates, are exponential in the number of objectives and are thus time-
consuming. Advanced techniques are required for visualising relationships between more than
three objectives. Increased dimensionality, and the corresponding reduction in tractability,
poses a significant challenge to the analyst. Hence, the selected framework is aimed more
towards exploratory data analysis than rigorous statistical methodology. With this in mind,
each run of each algorithm configuration is executed once only. Whilst repeated runs are still
preferable, this is infeasible within the context of this inquiry because of the vast processing
and data storage requirements. The aim is to expose broad relationships within and between
algorithms as scale demands vary. There will be no attempt to draw statistically significant
performance comparisons between one optimiser and another.

It is a well-known fact that the configuration of the variation operators can have a substantial
effect on the performance of evolutionary algorithms. Thus, it is unsurprising that different
variation operator configurations can lead to very different performance for the emo class of
algorithms, and that behaviour for a single configuration can vary considerably with the
number of conflicting objectives. Rather than attempting to tune the variation operators to
obtain best performance, a broad set of configurations are considered in the inquiry with the
aim of uncovering regional behaviour for a range of exploration-exploitation choices.

Variation operators have two key controllable parameters: the probability of applying
variation and the expected magnitude of such a variation, as described in Section 2.3. The
inquiry uses a sample set of probabilities and magnitudes, with pseudo-logarithmic scales that
have been heuristically chosen to show relativity within and between different maps.
Algorithm runs are conducted for all pair-wise permutations of magnitude and probability
samples, with all other parameters held constant, to yield a set of optimiser responses. Each
response is the population evolution of an EA over 1000 generations. Summary statistics for
performance indicators and other observable variables can be calculated and displayed in a
response map. This is a two-dimensional grid with operator magnitude and probability as
horizontal and vertical axes respectively. Note that the spatial relationships that arise through
the use of multiple configuration instances offer improved confidence in the one-replication
results.

The response map provides the basis for developing an understanding of optimiser
performance. Laumanns et al (2001) took this approach and also fitted a response surface
(Myers and Montgomery, 2002) to the raw samples to obtain a good description of the data.
For the purposes of this inquiry, the raw data itself proves sufficient to expose the underlying
spatial relationships.

As described in Section 2.3, two types of variation operator are considered for all algorithms
in the study. The first is a one-parent mutation with controllable parameters p,, and 1,,, whilst
the second is a two-parent recombination with parameters p;. and 1.. Thus maps are generated
for each algorithm, for each variation type, and for each objective-value instance of DTLZ2.
Population size is held constant (at 100) in these studies. Deb (2001) argues that a main
method for coping with increased conflict is to increase the population size. However, this
may not be practical in the context of many real-world applications (where evaluation of a
single candidate solution can be a time-consuming process). Furthermore, Deb’s results
indicate that the benefit of increased population sizes decreases rapidly with the number of
conflicting objectives to be considered. However, a population scaling study is undertaken as
part of the inquiry for a fixed 6-objective instance of DTLZ2.
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4.5 Introduction to Results

Experiments were conducted to generate response maps for the emol, emo2, emo3, and
emo4 algorithms on the DTLZ2 optimisation task. Maps were generated for the 3, 4, 5, 6, 7,
9, and 12-objective instances of the function. In the analysis of the mutation and
recombination operators that follows, only the results for the 3, 6, and 12 objective instances
are presented. These prove sufficient for demonstrating behaviours and identifiable potential
causes both within and between algorithm configurations. The next two sub-sections explain
what types of results are considered and how the results are presented. In Section 5 results and
analysis for the mutation operator are discussed, followed by those for recombination (both
with and without exchange) in Section 6. A population-sizing study in Section 7 completes
the inquiry.

4.5.1 Types of response map
Performance measures

Proximity is measured by subtracting the initial proximity indicator value, computed as
described in Section 4.3.1, from the median of the values obtained from the final 100
iterations of the optimisation process. Thus, a value of zero indicates no progress from the
initial population, a negative value indicates convergence towards the global trade-off surface,
and a positive value indicates divergence away from the true surface. Increasing magnitudes
indicate increasing levels of convergence or divergence. Improved proximity indicator values
of at least 0.5 are identified by highlighted map squares.

Spread is measured as the median value of the spread indicator, described in Section 4.3.2,
taken over the final 100 iterations of the optimiser. The optimal value of spread is unity.
Values less than unity indicate approximation set convergence to a region of objective-space
that is smaller than the true trade-off surface. Values larger than unity indicate that the
approximation set extends over a greater region than that described by the optimal surface. A
spread measure in the range [0.75 1.25] is identified by a highlighted grid square.

Other measurements

Optimiser behaviour, in terms of the above performance indicators, can be explained by
observing other measurable process variables. The proportion of the population that is locally
non-dominated, the proportion of children that dominate their parent(s), and the Euclidean
distance in objective-space between parent and child are all considered in the analysis. In all
these cases, the observed value was taken as the median across the first ten iterations of the
optimiser. Early measurements were taken because, whilst these process variables may be
partially responsible for the observed behaviour, they are also affected by the behaviour due
to the iterative, feedback-like, nature of the optimisation process. Early measurements limit
the impact of feedback on the results.

4.5.2 Viewing the response maps

Sections 5, 6, and 7 include many figures that show algorithm response maps. A set of
example response maps for the proximity indicator, /p, are shown in Figure 4.2. The maps in
the first row of the figure relate to the non-elitist algorithms (emol and emo2) whereas the
maps in the second row relate to the elitist algorithms (emo3 and emo4). Column-wise,
functionality is distinguished by the inclusion, or otherwise, of the crowding diversity-
promotion mechanism. In the first column, the responses relate to algorithms without such a
mechanism (emol and emo3), whereas the second column corresponds to diversity-
promoting algorithms (emo2 and emo4).

Performance for each probability-magnitude setting is indicated by a grey-scale square at the
appropriate location. Lighter shades of grey indicate better proximity, as shown by the colour-
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bars of indicator values to the right of the maps. Thus, for the example emo4 shown, a region
of good proximity is evident for . values in the range [0 5] together with variation
probabilities in the order of [0.01 0.1]. Conversely, algorithm divergence is exhibited for
intermediate 7., around [1 10], and high p;. [0.5 1.0].

Some grid squares in the response maps are highlighted by means of a solid boundary: [ps =
0.005, 1, = 5] being one such example in Figure 4.2a. Variation operator configurations
identified in this way are those that lie within a certain threshold for whichever measure of the
optimisation process is considered for that map. In Figure 4.2, the highlighted grid points
correspond to configurations that attain a proximity measure of -0.5 or under.
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Figure 4.2: Example emo response maps

5 Resulis and Analysis: Mutation

5.1 Mutation: Synopsis

The fundamental results to be drawn from the mutation inquiry are summarised in this
section. For the interested reader, more details and explanations are provided in the
observation and discussion sections that follow.

® A suitable trade-off between exploration and exploitation is required for good many-
objective performance, and this can be specified via mutation operator configuration
settings.

e  The mutation operator has a large proximity sweet-spot but good spread values are more

difficult to obtain. The sweet-spots contract as the number of conflicting objectives to be
optimised increases.
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o For large numbers of objectives, it is difficult to obtain an approximation set with both
good proximity and good spread since the combined sweet-spot is very small. Classical
settings in the literature appear suitable when combined with NSGA-II (emo4) selection
mechanisms.

e Whilst NSGA-II can provide the best performance, inappropriate variation operator
settings can lead to poor performance when large numbers of objectives are considered.
The abstracted algorithms offer more robust performance in these situations, but the best
results for these do not match the best results for NSGA-IL

e If convergence towards the true front is difficult to achieve because of low mutation
success rates, then active diversity-promoting mechanisms can lead to an approximation
set with many poor-proximity solutions. The level of activity is indirectly controllable via
mutation operator configuration settings.

5.2 Observations®

5.2.1 6 objectives

The proximity maps obtained for the six-objective instance of DTLZ2 are shown in Figure
5.1. A band of good proximity is seen to stretch from configurations of low mutation
probabilities coupled with large expected mutation perturbations, such as [pn = 0.005, m =
0.25], to configurations of high probabilities coupled with small perturbations, for example
[Pm = 0.5, N = 250]. This region is identifiable across all four algorithms but is noticeably
thinner for the crowding algorithms emo2 and emo4. The elitist algorithms seem to offer
better proximity in areas of intermediate py and high 1/mn, where the band thickens in
Figures 5.1c and 5.1d.

Poor proximity is evident across the four algorithms for regions of high mutation probability
combined with large mutation perturbation. Divergence appears particularly strong for the
crowding algorithms as shown in Figures 5.1b and 5.1d. Proximity is also quite poor for very
low mutation probabilities and very small perturbations, especially when these two settings
occur together.

DTLZ2(6) response maps for the spread indicator are given in Figure 5.2. Good spread is
found to lie in a band close to the lower-left boundary of the good proximity region identified
in Figure 5.1. Spread is too small in regions when py, is low and 1y, is high. This means that
the optimiser has produced approximation sets that reside in a small sub-region of objective-
space. As py and 1/n, are increased, spread values increase in magnitude until they become
larger than optimal. Spread values become very large for [py = 1.0, N = 0.0]. In regions such
as this, the members of the approximation set are spread widely throughout objective-space.
Many of these locations will be far from the true trade-off surface.

The non-crowding algorithms, emol and emo3, have very similar spread response maps, as
shown in Figures 5.2a and 5.2c. The main difference between the non-crowding maps and the
crowding versions of Figures 5.2b and 5.2d is that spread values are generally larger on the
latter maps, except in the region with exemplar [pn = 0.0025, 1, = 250]. Spread values
become particularly large in the lower-left map area for the elitist, crowding emo4. Note that
the classical choice of variation operator settings for this problem, namely [pn = |x|” = 0.07 to
1 sf, Nm = 20] (Deb er al, 2002b), is located in a region that appears to produce

4 For details on the types of response map presented in this section, and for details of how to view the maps, refer to Section 4.5.
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Figure 5.1: Mutation proximity maps for DTLZ2(6).
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Figure 5.2: Mutation spread maps for DTLZ2(6).
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approximation sets with both good proximity and good spread for the NSGA-II algorithm
(Figure 5.1d and Figure 5.2d).

5.2.2 Varying the number of conflicting objectives

Figure 5.3 shows proximity maps for the 3-objective instance of DTLZ2. Maps for the 12-
objective instance are shown in Figure 5.4. Considering these maps together with Figure 5.1,
it can be seen that the highlighted region of good proximity remains largely invariant as the
number of conflicting objectives, M, changes for the baseline emol. The added benefit of
elitism for improved proximity is evident across all instances (compare Figure 5.1a to 5.1c,
5.3a to 5.3c, and 5.4a to 5.4c) but the magnitude of that benefit appears to decrease with
increasing M. The band of good proximity becomes increasingly thin for the non-elitist
crowding emo2 as the number of conflicting objectives increases, as shown by Figures 5.3b,
5.1b, and 5.4b. The addition of elitism becomes increasingly incapable of compensating for
these losses and can make matters worse, especially in regions of high mutation probability
and small mutation perturbation (Figures 5.3d, 5.1d, and 5.4d).

Interesting variation in behaviour is observed in the map region of high mutation probabilities
coupled with large mutation perturbations. In the non-crowding algorithms, emo1 and emo3,
few changes are evident as M increases. However, levels of divergence are seen to increase
with M for the diversity-promoting emo2 and emo4. The incorporation of elitism would
appear to lead to further deterioration in this region (compare Figure 5.4d to Figure 5.4b) for
12 objectives, but makes little difference for 6 objectives (Figure 5.1b and 5.1d) and provides
slightly improved proximity for the 3-objective task, as shown in Figure 5.3b and 5.3d.

The bands of good spread identified in Figure 5.2 are seen to broaden for smaller numbers of
conflicting objectives, as demonstrated by the results for the 3-objective instance of DTLZ2 in
Figure 5.5. In particular, the large values of spread in the lower-left corner of the map for
emo4 are eliminated. As M increases, the bands of proximity become slightly thinner but do
not disappear. Response maps for the 12-objective instance are shown in Figure 5.6.
Performance in the region to the lower-left of the band is seen to become increasingly
uniform except for the case of emo4 in Figure 5.6d where spread continues to increase.

As M increases, the number of occasions on the configuration grid where good proximity is
matched by good spread becomes increasingly few, with the elitist algorithms appearing to
offer the greatest opportunities. The classical configuration of [py, = [X|”, N, = 20] can be seen
to be one of the more likely locations for this occurrence for emo4. The evidence in Figures
5.4 and 5.6 suggests that this will not be the case for any of the decomposed versions of
NSGA-IL

5.3 Discussion

Explanations for the observed behaviour described in Section 5.2 can be sought by
considering the processes (outlined in Section 3) that drive an EMO algorithm towards a good
approximation of the global trade-off surface, and by monitoring the variables that impact on
these processes. EMO search can be described as a trade-off between exploration and
exploitation (Bosman and Thierens, 2003). In this section, particular focus is applied to three
areas of configuration-space that relate to three different EE trade-off alternatives.

5.3.1 Highly exploratory configurations

The bottom-left map region is an area of high exploration and low exploitation. For all four
emo algorithms the proximity cost is seen to increase beyond the initial measured value. The
large standard deviation on the mutation distribution (corresponding to a near piece-wise
uniform mutation) leads to a bias towards boundary values for decision variables
independently from selection, as detailed in Section 3.3.1. Since proximity to the global trade-
off surface is determined for DTLZ2 by a quadratic function g(x) with minimum at x = 0.5
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(Equation 4.1), and x € [0 1], a selection-free bias exists towards poor convergence-variable
values. Also, as argued in Section 3.1, if the relationship between child location and parent
location is weak then the effect of any selection-for-variation mechanism (diversity-
promoting or otherwise) will be largely attenuated. Thus, performance of the non-elitist emo1
and emo2 algorithms is seen to be largely similar in this region of configuration-space. This
result is evident from the associated map areas in Figures 5.1 through 5.6.

Non-random selection-for-survival mechanisms do impact on search performance under
highly exploratory variation. The elitism in emo3 provides a reference to compare new
solutions to. Thus, if the largely directionless v{s,(P[#])} search produces dominated children
these will be eliminated. In the non-elitist emol and emo?2 this would not be the case.
However, since the probability of producing a non-dominated child relative to its parent
increases with M, the improvements that arise from emo3 reduce in turn. The diversity-
promoting s, mechanism will be active in emo4 because the proportion of the population that
is non-dominated is high, as shown in Figure 5.7. This bias towards remote solutions
(explained in Section 3.2) leads to further deterioration in proximity values for high M. From
Figure 5.6, it is clear that the corresponding spread values are also too large.
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Figure 5.7: Proportion of the population that is non-dominated for DTLZ2(6).

5.3.2 Highly exploitative configurations

In the upper-most map regions of configuration-space, exploration levels are very low and
exploitation is the dominant process. Proximity indicator profiles, generated over the course
of the evolution, show very slow convergence towards the global Pareto front. As evident
from the spread response maps of Figures 5.2, 5.5, and 5.6, the achieved spread values are
very small in this region, indicating that the approximation set represents a diminutive area of
objective-space.
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Mutation success rates are very low in this region of configuration-space as shown in
Figure 5.8, but they are not zero across all generations. Thus, long-term progress can be
achieved on a small number of superior solutions. There is no observable bias towards remote
solutions for two key reasons: (i) in the initial population s, and s; comparisons tend not to be
based on density because the proportion of locally non-dominated solutions in the population
is low (at the natural proportion for DTLZ2, depicted in Figure 4.1 for a random sample of
1000 decision vectors), and (ii) as the evolution progresses, non-dominated solutions become
present in the population multiple times because of the mainly copying nature of variation. As
explained in Section 3.2, since the density estimator is a version of first-nearest-neighbour,
the densities of all solutions will be at a maximum. This renders the density comparison
stages of s, and s, redundant, even when implemented.

5.3.3 Intermediate trade-offs between exploration and exploitation

In the region of high mutation probabilities coupled with small mutation perturbations,
mutation operates effectively on the DTLZ2 problem structure to provide high success rates
(see Figure 5.8). In these conditions good convergence towards the global front can be
achieved. Also, since the diversity-promoting parts of s, and s, will be operative in emo2 and
emod because of the high proportion of the population that is non-dominated, reasonable
spread can also be obtained without risk of progressive movement towards poor-proximity
areas. As M is increased, the success rates decrease (see Figure 5.9), thus making convergence
more difficult and preservation of remote areas with poor proximity more likely for diversity-
promoting schemes.

Good convergence to the true front is also achieved in regions of intermediate mutation
probability coupled with large mutation perturbations. The nature of the variation is different
to that previously described. In the above case, small-scale perturbations were applied to
many elements of a candidate solution, whereas in the current situation large-scale
perturbations are applied to few elements. Success probabilities are lower for this latter type
of variation, as indicated by the associated region of Figure 5.8, but the magnitude of success
will be higher leading to a similar overall convergence rate. Preservation and exploitation of
remote, poor proximity, solutions is also mitigated in this area by the large number of copied
non-dominated solutions.
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6 Results and Analysis: Recombination

6.1 Recombination: Synopsis

The fundamental results to be drawn from the recombination inquiry are summarised in this
section. The interested reader can find further details and explanations in the observation-
based Section 6.2 and the discussion-based Section 6.3 that follow this synopsis.

e A suitable trade-off between exploration and exploitation for good many-objective
performance can be specified via recombination operator configuration settings.

e For a large set of configuration options, recombination is very good at fulfilling the aim
of good proximity for small numbers of objectives. A large sweet-spot for the spread
property can be achieved by incorporating explicit diversity-promoting mechanisms.

e Proximity and spread sweet-spots deteriorate rapidly across all algorithms as the number
of conflicting objectives to be optimised is increased. Approximation sets with a large
spread of solutions but very poor proximity are produced for an increasingly large choice
of SBX configurations.

e The classical choice of SBX operator settings for NSGA-II relate to good performance
for small numbers of conflicting objectives, but become increasingly inappropriate as the
number of objectives is increased. For large numbers of objectives, the proximity of the
evolved approximation set is demonstrated to be almost as poor as can be generated
anywhere in objective-space. This behaviour occurs when recombination success rates
are low and the density-promoting selection components are active, and is linked to the
self-adaptive nature of the SBX exploratory power.

e The inclusion of decision-variable exchange in the SBX procedure amplifies and extends
the behaviour observed in the absence of exchange.

6.2 Observations®

6.2.1 6 objectives

DTLZ2(6) proximity response maps for the four selection schemes, when combined with
SBX variation, are shown in Figure 6.1. As shown in part (a) of the figure, a small region of
good proximity for emol is observed for intermediate internal crossover rates, such as p; =
0.05, coupled with high recombination perturbations (which correspond to low values of 1.
such as 0.5). A broken band of good proximity is visible, stretching from this region towards
the area of high p;. and intermediate 1. This band is seen to strengthen and thicken in all
directions for the elitist emo3 (Figure 6.1c). The region of good proximity for the diversity-
promoting emo2 is of a similar size to emol but is shifted towards values of lower p; in
configuration-space, as shown in Figure 6.1b. This region expands for emo4 to include both
higher and lower probabilities of internal crossover for larger variation operator perturbations.

Poor proximity is evident across all four algorithms in regions of high internal crossover
probability coupled with large variation perturbations. In Figure 6.1b, especially poor
proximity is observed for the diversity-promoting emo2 in regions of high crossover
probability and intermediate variation perturbation, such as [p;. = 0.5, 1 = 5]. This behaviour
is further exacerbated in this region for the elitist, diversity-promoting emo4 as indicated in

5 For details on the types of response map presented in this section, and for details of how to view the maps, refer to Section 4.5.
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Figure 6.1d. The algorithm suffers from severe divergence in this area of configuration-
space. In other regions of configuration-space, across all four selection schemes, the level of
convergence appears subject to random noise.

Spread response maps obtained for the six-objective instance of DTLZ2 are shown in Figure
6.2. Very small spread values (coloured white) are widespread in all map areas, except for the
bottom-left region, for the algorithms without a diversity promotion mechanism: emol
(Figure 6.2a) and emo3 (Figure 6.2c). In these regions, the approximation set has reduced to a
single candidate solution. A thin band of good spread is apparent for emol and emo3,
stretching from regions of intermediate p;. coupled with large recombination perturbations to
regions of intermediate 1. coupled with high pi.. This band is coincident with a portion of the
good proximity area shown in Figures 6.1a and 6.1c. Spread indicator values are seen to
become increasingly large in the direction of increasing p;. and 1/v.. The approximation sets
span large regions of (non-optimal) objective-space in these cases.

Spread response maps for the diversity-promoting algorithms, emo2 and emo4, are shown in
Figures 6.2b and 6.2d respectively. In the upper-half of both maps (corresponding to low to
intermediate values of p;.) spread values are very small, again indicating convergence to a
highly limited area of objective-space such as a single candidate solution. Good spread values
are seen in a mainly horizontal band of intermediate internal crossover probability. This band
is more established in regions of high recombination perturbation [p;. = 0.05, n. = 0.25] for
the elitist emo4, and in areas of low perturbation [p;. = 0.025, n. = 50] for the non-elitist
emo?2.

Spread indicator values that are too large are witnessed across all four selection schemes in
the region of high p; coupled with large expected variation perturbation. The region is
noticeably larger for the diversity-promoting algorithms, where it extends to cover all values
of recombination magnitude. Spread values are particularly high for the elitist emo4,
especially in areas of intermediate 7 such as [p;. = 1.0, . = 5].

The classical choice of [pi. = 0.5, 0. = 15], with p. = 1.0, from the EMO literature only
corresponds to near-optimal proximity in the elitist emo3. Rather poor proximity is witnessed
for the other schemes, especially emo4 (NSGA-II). In the optimisers without an explicit
diversity-promotion scheme, the approximation set spans only a very small area of objective-
space with respect to the true trade-off surface. By contrast, spread values are too large for the
diversity-promoting algorithms.

6.2.2 Varying the number of conflicting objectives

The proximity response maps achieved for the three-objective instance of DTLZ2 are shown
in Figure 6.3, whilst maps for the twelve-objective instance are provided in Figure 6.4.
Overall, there is clear evidence to show that the proportion of configuration-space that is
associated with good proximity performance decreases substantially as the scale of the
optimisation task increases. The strong band of good proximity obtained by emol for three
conflicting objectives (shown in Figure 6.3a) contracts as the number of objectives is
increased. For the twelve-objective instance of DTLZ2, it is almost non-existent (Figure 6.4a).
For small numbers of conflicting objectives, emo2 provides better proximity in the direction
of increasing 7. than emol, but this benefit is overwhelmed by the general convergence
problems encountered by all algorithms in this region, as task size increases. These
difficulties would seem to be enhanced for the diversity-promoting algorithms as shown by
the strong divergence behaviour experienced in the region with exemplar [p;. = 0.25, 1. = 2.5]
in Figures 6.3b, 6.3d, 6.4b, and 6.4d.
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Figure 6.4: Recombination proximity response maps for DTLZ2(12).
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Interesting behaviour is demonstrated by the elitist algorithms, emo3 and emod4, as the
number of conflicting objectives is increased. For three objectives, as illustrated by comparing
Figure 6.3c to Figure 6.3a and Figure 6.3d to Figure 6.3b, the elitist algorithms offer
significantly improved proximity over their non-elitist equivalents for regions of high p;. and
large recombination perturbation, even including [pi. = 1.0, 1. = 0.0]. The proximity sweet-
spot for emo4 (NSGA-II) covers approximately half of the total configuration-space
considered, as shown in Figure 6.3d. However as the number of conflicting objectives is
increased beyond the levels normally considered by EMO designers, as shown in Figures 6.1
and 6.4, the ability of the elitist algorithms to offer improved proximity over their non-elitist
counterparts is limited to regions of intermediate p;,. and high 1/1.. Performance in areas of
high p;. (rates considered standard for a recombination operator) becomes increasingly worse
than the non-elitist equivalent. Indeed for emo4 solving DTLZ2(12) with configuration [p; =
1.0, . = 0.25], the achieved proximity value is close to the worst possible value obtainable
for this optimisation task (Figure 6.4d). Note that performance in map regions of low internal
crossover probability together with low recombination magnitude is largely invariant
regardless of selection scheme and task size.

The spread response maps generated for the three-objective and twelve-objective instances of
DTLZ2 are shown in Figures 6.5 and 6.6 respectively. The region in configuration-space in
which the approximation set represents only a small proportion of the global trade-off surface
(often the spread is zero because the set contains only a single, unique, candidate solution) is
seen to be largely independent of M for each optimiser. It should be noted, though, that there
is some evidence of improved spread in regions with exemplar [p;. = 0.05, 1. = 250] for small
M for the non-diversity-promoting emol and emo3. In the case of these latter algorithms,
good spread (evident in the bottom-left map region of high p;. and high 1/1.) tends to decrease
with increasing M (compares Figure 6.5, 6.2, and 6.6) and the benefit of elitism over non-
elitism in this area also tends to decrease in these conditions (compare the difference between
Figure 6.5a and 6.5c¢ to the difference between Figure 6.2a and 6.2¢ to the difference between
Figure 6.6a and 6.6¢).

For small numbers of conflicting objectives, as shown in Figure 6.5, good spread values are
more widely distributed in configuration-space for algorithms that incorporate an explicit
diversity-promotion mechanism. The results in Figure 6.5d suggest that the NSGA-II sweet-
spot for good spread on DTLZ2(3) covers approximately half of all configuration-space
considered. As the number of conflicting objectives is increased, the region of good spread
reduces to intermediate internal crossover probabilities and the complete range of expected
recombination perturbation magnitude. This can be seen by comparing Figure 6.5 to Figure
6.2, and then Figure 6.2 to Figure 6.6. Values of spread that are much too large are
particularly evident for emo4. This behaviour is linked to the previously discussed proximity
results and is seen to become exaggerated as M increases. Note that the rate of deterioration in
spread performance, in terms of the number of sampled configurations that give reasonable
performance, would appear to reduce as M increases.

From considering Figure 6.3 together with Figure 6.5 it is clear that there are many
recombination operator configurations for which good proximity values can be married with
good values for spread for small numbers of conflicting criteria. This is particularly true of the
elitist, diversity-promoting, emo4 (NSGA-II). As M is increased, the number of such
configurations becomes increasingly few. For the twelve-objective instance of DTLZ2, on the
evidence of a single replication, none of the configurations considered can provide good
proximity together with good spread for emol (see Figures 6.4 and 6.6). One configuration,
[pic = 0.25, ne = 2.5], offers this benefit for emo3. For the remaining diversity-promoting
selection schemes, appropriate configurations can be found in the region of high 1/n. and
intermediate p;. such as [p;. = 0.025, . = 0.0].
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Figure 6.5: Recombination spread response maps for DTLZ2(3).
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The standard SBX parameter settings in the literature for real parameter optimisation tasks
such as DTLZ2 are [p;i = 0.5, . = 15] with p. = 1.0 (Deb et al, 2002b). The response maps
generated in this study indicate that these settings are appropriate for small M instances of
DTLZ2 (for any of the selection schemes considered), but would appear increasingly unlikely
to provide acceptable approximation sets in terms of proximity and distribution as the scale of
the task increases. As indicated by Figure 6.1d and Figure 6.2d, even for the six-objective
instance of DTLZ2 the standard parameter settings would be expected to produce an
approximation set with a worse proximity indicator value than that obtained from a random
sample of decision-space, spread widely over non-optimal regions of objective-space.® As M
increases, the quality of the solution set is demonstrated to deteriorate still further.

6.2.3 SBX with exchange

In the implementation of the SBX recombination operator described above, child values are
obtained directly from the self-adaptive probability distributions. In some studies in the
literature that consider this operator, the child values for a decision variable are then
exchanged with non-zero probability p. (usually set to 0.5). Researchers have reported that
this extra mechanism, labelled herein as SBXe, leads to improved performance. DTLZ2(6)
proximity response maps for SBXe are shown in Figure 6.7. The corresponding spread
response maps are shown in Figure 6.8.

In terms of good proximity, the key difference between the response maps for SBX (Figure
6.1) and SBXe (Figure 6.7) is that the behaviour observed for regions of large expected
perturbation magnitudes (defined strictly in terms of the SBX distribution) for SBX continues
into areas with smaller .. Map regions where proximity was discovered to be particularly
poor for SBX remain so after the addition of exchange, and divergent behaviour is seen to
increase still further in the diversity-promoting algorithms (Figure 6.7b and Figure 6.7d).

Locations in SBX configuration-space that were found to offer good performance in terms of
the spread indicator remain largely unchanged after the incorporation of exchange, as can be
seen by comparing Figure 6.8 to Figure 6.2. The main discrepancy between the two sets of
maps is that spread values are considerably larger in the region of high p, combined with
intermediate T for the diversity-promoting algorithms in the case of SBXe.

As the number of conflicting objectives is varied, the maps for SBXe change (in a relative
fashion) in the same manner as for SBX without exchange. Visual results are not presented to
help constrain the size of the paper. In summary, the classic parameter settings are found to be
again adequate for only small numbers of objectives.

6.3 Discussion

In terms of the trade-off between exploration and exploitation, and its relationship to the
configuration map, the general fype of behaviour exhibited by the algorithms under
recombination is similar to that under mutation. However, the magnitude of the behaviour is
observed to be much larger in the case or recombination (as is evident from comparing Figure
5.4 to Figure 6.4 for example). In Section 6.3.1, reasons are offered for this difference
between the variation operators. The incorporation of exchange also affects optimiser
responses. An explanation for this difference is proposed in Section 6.3.2.

¢ The boundary between overall good and poor performance for the classical operator settings has been found to lie between 4
and 5 objectives for DTLZ2.
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6.3.1 Comparative analysis of mutation and recombination results
Highly exploratory configurations

For recombination, as was previously demonstrated for mutation in Section 5, good proximity
cannot be obtained in configurations of high variation probability and large variation
magnitude. Divergence has been shown to be more severe in the recombinatorial case (for
example, compare Figure 5.4 to Figure 6.4). In the case of mutation, it was argued that this
behaviour arose because of (i) a bias in the variation operator (independent of selection)
towards poor convergence-variable values and (ii) active selection of remote non-dominated
solutions with poor proximity values (via diversity-promoting mechanisms). In the case of
SBX, cause (i) is exaggerated because of the practice of cropping infeasible decision values to
the nearest feasible equivalent, as discussed in Section 3.3.2. For DTLZ2, the repaired values
correspond to the worst case settings for proximity (Equation 3.1). Many repairs will be
required for exploratory configurations, when the expected perturbation (controlled by 1. and
the distance between parents) is large relative to the range of the decision variables.

In addition to the increased bias towards poor proximity values under random selection, the
self-adaptive nature of the SBX operator is also argued to contribute heavily to the divergence
behaviour. As explained in Section 2.3.3, if the parent values are close together then the
expected perturbation magnitude is smaller than if the parents were far apart. Thus, given a
large proportion of poor convergence-variable values in a population, the search can become
increasingly limited to regions that are remote from the global trade-off surface. However, for
the distribution-variables, the diversity-promoting mechanisms will maintain a good variety
of solutions and so the search will remain of a larger scale for these variables. Thus, new
remote solutions will be readily generated via sufficient perturbation to the distribution-
variables, whilst convergence-variables remain at poor values.

The dynamic rescaling of expected variation magnitudes is the fundamental difference
between SBX recombination and polynomial mutation. The ability of SBX to focus on a
particular sub-region of decision-space enables the mechanisms of selection-for-variation
even for very large 1/m.. For mutation, effective selective bias can only be achieved for
selection-for-survival in highly exploratory environments.

Highly exploitative configurations

For configurations that involve low variation probability or low variation perturbation, the
approximation set tends to converge to a very small region of objective-space (corresponding
to small spread indicator values) if diversity-promoting mechanisms are not active. Spread
values are particularly small when recombination is used, as shown by the examples in Figure
6.6. This behaviour arises because of the tendency of SBX to converge to the mid-point
between parent solutions, given a limited variety of parent material. By comparison,
polynomial mutation is a variation operator that will respect the multi-point characteristics of
the search regardless of the diversity in the parent population.

Intermediate trade-off between exploration and expioitation

Good optimiser performance can be achieved using either mutation or recombination for
intermediate variation probabilities and perturbations. Configurations have been identified for
which recombination results are very good, and outperform anything that can be achieved
using mutation. [pi = 0.025, n = 0.5] is one such example for emo4 solving DTLZ2(6) as
shown in Figures 6.1d and 6.2d. As described in the highly exploratory analysis above, this
behavioural discrepancy is due to the self-adaptive nature of the SBX search. If good
convergence-variable values can be identified then SBX can focus the search on these regions
regardless of the initial distribution parameter setting. By contrast, for mutation the expected
perturbation is largely fixed for a particular setting of 1, (it only depends on the distance to
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Figure 6.9: Median objective-space perturbations induced by SBX for DTLZ2(6).
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Figure 6.10: Median objective-space perturbations induced by SBXe for DTLZ2(6).
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the feasible boundary in decision-space relative to 1),). Thus, SBX can retain reasonable
variation success probabilities over a wide range of required search resolutions. It is more
difficult to achieve good success rates under increasing search localisation for the non-
adaptive (fixed 1) polynomial mutation distribution.

6.3.2 Analysis of the incorporation of exchange

As demonstrated in Section 6.2.3, algorithm responses from the left-hand side of the
configuration map for SBX without exchange are (approximately) reproduced on the right-
hand side of the map for SBX with exchange. The maps of median magnitudes of the
empirical variation perturbation for SBX are given in Figure 6.9. The corresponding maps for
SBXe are shown in Figure 6.10. It is clear that the incorporation of exchange eliminates much
of the effect of the SBX distribution parameter, 1, on the expected magnitude of perturbation.
Thus, response behaviour becomes largely invariant of . for SBXe.

7 Population sizing study

7.1 Introduction

Deb (2001) proposes the use of large population sizes as a potential method for achieving
good evolutionary many-objective optimisation results. The rationale behind this is that the
proportion of the population that is non-dominated in a given sample reduces as the size of the
sample increases, allowing improved discrimination based on Pareto dominance. This was
verified in Figure 3.1 for the DTLZ2 task. In general, large samples wil! provide better quality
representations of whichever sectors of objective-space are currently the foci.

Unfortunately, in practice, the use of large population sizes is prohibitive because of the
computational resources required to evaluate potential solutions and process them during an
iteration of the optimiser. The first of these issues compels many real-world EMO
applications, such as that documented by Thompson et al (1999), to limit the population size
to fewer than 50 individuals. This is such a serious issue for computational search and
optimisation techniques in general that a research field known as meta-modelling has arisen
that is devoted to the development and deployment of approximation models in solution
evaluation (Bull, 1999). A related topic in evolutionary algorithms, known as fitness
inheritance, also considers how to reduce evaluation requirements (Smith et al, 1995).

At present, population sizes for generational MOEAs tend to lie between approximately 10
and 1000 (Coello ef al, 2002). Thus, in this section of the inquiry, the six-objective DTLZ2
task from the previous sections is re-solved for the same emo algorithms with population
sizes of 10 and 1000. Note that more noise would generally be expected for small population
sizes because of the small sample sizes considered. The results for mutation are presented in
Section 7.2, followed by the results for recombination in Section 7.3. The population sizing
study concludes with the key EMO design issues to be drawn from the analysis.

7.2 Mutation”

The DTLZ2(6) proximity response maps for the emo algorithms with a population size of 10
(P10) are shown in Figure 7.1. The maps for a population size of 1000 (P1000) are provided
in Figure 7.2, whilst the maps for P100 were previously given in Figure 5.1. The proximity
results in general, and the sweet-spots in particular, are seen to be largely invariant over the

” For details on the types of response map presented in this section, and for details of how to view the maps, refer to Section 4.5.
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population sizes considered. This lack of effect can arguably be attributed to the fact that the
mutation operator success rate (in terms of the child dominating the parent) is independent of
the other population members, given that the parent has been selected for variation.

The associated spread response maps are provided in Figure 7.3 for P10 and in Figure 7.4 for
P1000. The maps for P100 were previously shown in Figure 5.2. The spread values are
generally seen to become larger with increasing population size. Also, the sweet-spot for
spread becomes considerably larger in the diversity-promoting emo2 and emo4 algorithms
for large population sizes. These results are likely to be reflective of the better quality
sampling of objective-space (especially in terms of diversity) due to the large sample sizes
used.

7.3 Recombination

The proximity response maps for the recombination-based emo algorithms with a population
size of 10 solving the six-objective DTLZ2 task are shown in Figure 7.5. The corresponding
maps for P1000 are shown in Figure 7.6, whilst the P100 maps were previously given in
Figure 6.1. The proximity results are very poor for small population sizes and are seen to
improve with increasing population size. Since the SBX operator relies on the dissimilarity
between parents to drive variation, sufficient diversity in the mating pool is required for an
effective search. The level of diversity will increase with increased population size. For small
sample sizes, too little genetic material is available and the optimisation process will quickly
stagnate. Note that the general location of the proximity sweet-spot in configuration-space
remains similar as population size is increased. The sweet-spot is seen to swell in the direction
of smaller variation magnitude.

DTLZ2(6) spread response maps for P10 and P1000 are provided in Figures 7.7 and 7.8
respectively. The maps for P100 are shown in Figure 6.2. As with the mutation results of the
previous section, spread values are seen to increase from very low values to larger values
across configuration-space. Spread values are very small for the small population size shown
in Figure 7.7. This indicates convergence of the population on to a very small region of
decision-space, in many cases a single point. Large regions of spread within 25% of the
optimal value of unity are evident for the large population size shown in Figure 7.8. Again the
good sample diversity provided by larger populations, that is required for exploration via the
SBX operator, is argued to be responsible for the discrepancy in this aspect of performance.

7.4 Summary

Single-parent variation operators such as polynomial mutation do not require population
diversity to advance the search. A multi-point parallel search is undertaken, where individual
solutions compete with others to promote their genetic material into the next generation.
Thus, configurations for an approximation set with good proximity to the global trade-off
surface are largely independent of population size. However, since the number of search
points is limited for small population sizes, it can prove difficult to achieve the desired spread.
Note that there is some evidence to suggest that the classical polynomial mutation operator
settings for NSGA-II (emo4), [pn =1{x[", 0, = 20], will be a good choice for achieving both
good proximity and good spread for small population sizes.

Multi-parent variation operators, of which SBX recombination is an example, do require
sufficient population diversity to advance the search. Since this diversity is unlikely to be
available for small sample sizes, evolutionary optimisers using SBX require a larger
population that the equivalent algorithm equipped with mutation to achieve good proximity
values. Large population sizes are also required for good spread values. Under a fixed
population size of 100 individuals, the classical settings for SBX, [p, = 1.0, P = 0.5, 1, =15],
were shown in Section 6 to become an inappropriate choice for optimisation problems with
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more than a small number of conflicting objectives. This remains the case, even for a
population size of 1000.

8 Conclusion

8.1 Outcomes of the inquiry

The development of a comprehensive understanding of the many-objective optimisation
process, where conflict is experienced between the objectives, is critical to both assessment of
the suitability of modern evolutionary algorithms in these conditions and the development of
new EMO methods.

This inquiry has considered a decomposition of the NSGA-II selection mechanisms in order
to identify the algorithm components, and combinations of components, that are responsible
for the observed behaviour. Optimiser responses have been generated for many locations in
operator configuration-space. This has allowed regions of good performance (sweet-spots),
and other levels of performance, to be identified for each optimiser. These results were
obtained for the DTLZ2 optimisation task using an exploratory (rather than statistically
robust) experimental method, and thus any extrapolation of the conclusions must be done
with care.

Simulation results have been obtained for a set of selection mechanisms that are frequently
used in the EMO domain, and for two popular variation operators for real-parameter
optimisation. The analysis of these results, in the context of the selection and variation
mechanisms that drive the evolutionary optimisation process, has produced the following key
observations, hypotheses, and recommendations:

e All algorithms have reasonably large proximity sweet-spots for small numbers of
conflicting objectives. Algorithms with diversity-promoting mechanisms produce larger
spread sweet-spots. For both proximity and spread, superior performance is associated
with the related elitist mechanisms.

¢ Configuration sweet-spots generally reduce in size as the number of conflicting
objectives is increased. Configurations that can simultaneously achieve an approximation
set with good proximity and good spread become increasingly limited. Note that optimal
proximity, spread, and uniformity should be achievable regardless of population size. The
limit on the size of the approximation set should merely affect the resolution of the
obtained trade-off surface.

e  Approximation sets with very poor proximity values (considerably worse than would be
expected from a random sample of decision-space) can be generated by algorithms with
diversity-promoting mechanisms when attempting to optimise many conflicting
objectives. This behaviour is due to low variation operator success probabilities (in terms
of children dominating their parents) coupled with a high percentage of unique non-
dominated solutions in the population. This latter factor activates the mechanisms that
bias towards remote solutions. In high-dimensional space, these solutions are likely to be
poor in terms of proximity to the global surface. The SBX recombination operator
exhibits extreme cases of this behaviour because the self-adaptive exploratory power can
focus on poor DTLZ2 convergence-variable values, whilst retaining large expected
perturbations of the distribution-variables.

e Classical mutation operator configuration settings remain a suitable choice for large
numbers of conflicting objectives. The classical settings for recombination are found to
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be unsuitable in these conditions. A low probability of application, such as that generally
used for mutation, is recommended instead. This should be combined with a large
expected magnitude of perturbation.

e  The proximity sweet-spots obtained for mutation are largely invariant of population size,
within the range of values usually considered for EMO. However, spread results can be
improved by using a larger population size. Both aspects of performance for
recombination can be achieved through adoption of a larger population.

The results of this inquiry suggest that the most predictable behaviour of an NSGA-type
evolutionary optimiser solving a many-objective task can be obtained by deploying only a
mutation operator. Further improvements to performance are possible through the use of
recombination, but this operator also exhibits the more extreme poor performance if operator
settings are chosen incorrectly. The regions of poor performance in configuration-space
become more expansive as the number of conflicting objectives is increased.

If diversity-promoting mechanisms are not included in the optimiser then the risk of poor
proximity in the approximation set can be avoided, but this is often at the expense of
convergence to only a very small portion of the trade-off surface. Thus, it would be prudent to
retain these mechanisms but also to monitor the operator success rates and activity of the
diversity-based selection on-line. This feedback of the conditions that lead to optimiser
difficulties can be used to adjust the search mechanisms during the optimisation process.

In summary, an evolutionary many-objective optimiser is required to produce an
approximation to the global trade-off surface with good diversity in areas of good proximity.
For this reason, diversity promotion is generally regarded as a secondary selection operator
(Bosman and Thierens, 2003). However, since the primary convergence-based operator uses
the relative concept of Pareto dominance, if the proportion of non-dominated — and
dominance resistant — solutions is large then selection is based solely on diversity. As
mentioned by Bosman and Thierens (2003), obtaining a good diversity is not a difficult task
in itself, especially in many-objective space. Furthermore, the best diversity is often
associated with very poor proximity values. Thus, a many-objective search based on the
standard two-objective evolutionary components may actually evolve away from the global
trade-off surface unless care is taken.

8.2 Proposals for future work

Research into the critical area of EMO scalability to optimisation tasks with large numbers of
conflicting objectives is still in its infancy. Similar studies to this inquiry need to be
conducted for other test problems, for other classes of evolutionary optimiser (such as
hypergrid-based methods), and for other variation operators. The framework proposed in the
inquiry could be extended to include multiple simulation replications for each optimiser
configuration and advanced data-mining techniques to explore the massive amounts of
generated information.

Deb and Goldberg (1989) discovered that the recombination of spatially-dissimilar parent
solutions often produced low-performance children, known as lethals. The authors were able
to improve EA performance by only allowing recombination to occur between parents located
within the same local neighbourhood. This process is known as mating restriction. In the
context of many-objective optimisation, lethals could be considered to be non-dominated,
remote solutions with a highly substandard component in one or more objectives. An
exploration of the effect of mating restriction schemes in the context of diversity-promoting
mechanisms for many-objective optimisation may prove rewarding.
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