

This is a repository copy of Core-shell Grain Structures and Dielectric Properties of Na0.5K0.5NbO3-LiTaO3-BiScO3 Piezoelectric Ceramics...

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/84653/

Version: Accepted Version

Article:

Zhu, FY, Ward, MB, Li, JF et al. (1 more author) (2015) Core-shell Grain Structures and Dielectric Properties of Na0.5K0.5NbO3-LiTaO3-BiScO3 Piezoelectric Ceramics. Acta Materialia, 90. 204 - 212. ISSN 1359-6454

https://doi.org/10.1016/j.actamat.2015.02.034

(c) 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Compositional Formulation	Abbreviations	Symbol of composition in Fig. 1
$0.98[0.99(Na_{0.5}K_{0.5}NbO_{3}) - 0.01(LiTaO_{3})] - \\ 0.02[BiScO_{3}]$	NKN-1LT-2BS	
$0.98[0.98(Na_{0.5}K_{0.5}NbO_{3})-0.02(LiTaO_{3})] - \\ 0.02[BiScO_{3}]$	NKN-2LT-2BS	
$0.98[0.96(Na_{0.5}K_{0.5}NbO_{3})-0.04(LiTaO_{3})] - \\ 0.02[BiScO_{3}]$	NKN-4LT-2BS	A
$0.98[0.95(Na_{0.5}K_{0.5}NbO_{3})-0.05(LiTaO_{3})] - \\ 0.02[BiScO_{3}]$	NKN-5LT-2BS	В
$\begin{array}{c} 0.98[0.94(Na_{0.5}K_{0.5}NbO_{3})\text{-}0.06(LiTaO_{3})] - \\ 0.02[BiScO_{3}] \end{array}$	NKN-6LT-2BS (Standard)	C
$\begin{array}{c} 0.98[0.94(Na_{0.5}K_{0.5}NbO_3)\text{-}0.06(LiTaO_3)] - \\ 0.02[BiScO_3] \ with \ 3 \ wt\% \ excess \ alkali \\ carbonates \ as \ starting \ powder \end{array}$	Excess NKN-6LT-2BS	D

 $\textbf{Table. 1} \ Solid \ solution \ target \ compositions \ as \ plotted \ in \ \textbf{Fig.1} \ and \ their \ abbreviations.$

Abbr.		NKN-4LT-2BS	NKN-5LT-2BS		NKN-6LT-2BS		
Nominal Formula		$(\text{Li}) \ (\text{Na}_{0.240}\text{K}_{0.240})(\text{Ta}_{0.020}\text{Nb}_{0.480})\text{O}_3 \\ - (\text{Bi}_{0.010}\text{Sc}_{0.010})\text{O}_3$	(Li) $(Na_{0.239}K_{0.239})(Ta_{0.025}Nb_{0.477})O_3 - (Bi_{0.010}Sc_{0.010})O_3$		$(\text{Li}) \ (\text{Na}_{0.237}\text{K}_{0.237})(\text{Ta}_{0.030}\text{Nb}_{0.475})\text{O}_{3} \\ - (\text{Bi}_{0.010}\text{Sc}_{0.010})\text{O}_{3}$		
Local Region			Core	Shell	Core	Shell 1	Shell 2
Element	Na	27.8	28.7	27.8	26.1	23.1	25
	K	21.3	21.8	20.9	20.3	22.3	19.6
	Та	3.1	1.4	4.1	1.6	4.4	4.9
	Bi	1.3	0.4	1.8	0.4	0.8	1.4
	Sc	0.7	0.3	1.0	0.2	0.7	1.2
	Nb	45.8	47.4	44.4	51.3	48.6	47.9
Calculated Formula*		(Li) $(Na_{0.278}K_{0.213})(Ta_{0.031}Nb_{0.4581})O_3 - (Bi_{0.013}Sc_{0.007})O_3$	Core: $ (\text{Li}) \ (\text{Na}_{0.287} \text{K}_{0.218}) (\text{Ta}_{0.014} \text{Nb}_{0.474}) \text{O}_3 \\ - (\text{Bi}_{0.004} \text{Sc}_{0.003}) \text{O}_3 \\ \textbf{Shell:} \\ (\text{Li}) \ (\text{Na}_{0.278} \text{K}_{0.209}) (\text{Ta}_{0.041} \text{Nb}_{0.444}) \text{O}_3 \\ - (\text{Bi}_{0.018} \text{Sc}_{0.010}) \text{O}_3 $		$\begin{array}{c} \textbf{Core:} \\ (\text{Li}) \ (\text{Na}_{0.261} \text{K}_{0.203}) (\text{Ta}_{0.016} \text{Nb}_{0.513}) \text{O}_3 \\ \\ - (\text{Bi}_{0.004} \text{Sc}_{0.002}) \text{O}_3 \\ \\ \textbf{Shell 1:} \\ (\text{Li}) \ (\text{Na}_{0.231} \text{K}_{0.223}) (\text{Ta}_{0.044} \text{Nb}_{0.486}) \text{O}_3 \\ \\ - (\text{Bi}_{0.008} \text{Sc}_{0.007}) \text{O}_3 \\ \\ \textbf{Shell 2:} \\ (\text{Li}) (\ \text{Na}_{0.250} \text{K}_{0.196}) (\text{Ta}_{0.049} \text{Nb}_{0.479}) \text{O}_3 \\ \\ - (\text{Bi}_{0.014} \text{Sc}_{0.012}) \text{O}_3 \end{array}$		

Table. 2 TEM-EDX data (atomic%) for NKN-xLT-2BS specimens, x= 4-6 mol%. The nominal target chemical formula of the solid solution (upper row) and formula calculated