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Abstract

A novel fast cellular automata orthogonal least squares (FCA-OLS) identification method is
introduced by extending and developing the CA-OLS identification method presented in [2]. As a
simulation example, cellular automata rule 110 is analysed and identified. The simulation results
show that the new method significantly reduces the computational time compared to existing
methods.
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1. Introduction

Cellular Automata (CA) were originally introduced by von Neumann and Ulam as a possible
idealization of biological systems [1], with the particular purpose of modelling biological self-
reproduction. Cellular automata have been applied to model spatio-temporal systems in a wide
variety of fields, including physics, biology, computer science, image processing, etc. Recently the
new book by Wolfram [7], which includes many new research results, has stimulated further interest
in CA. In most cases studies of CA involve showing how incredible complexity can be produced by
seemingly simple CA rules, or using CA models to make discrete simulations of complex natural
processes. Many such rule sets have been investigated, simulated and studied. But all these studies
rely on the apriori knowledge of the rule or the non-linear underlying model, and only a few results
have been reported on CA identification [3, 5, 9, 14]. That is given the CA pattern how do we find
the CA rule. The main reason why this problem has been ignored is probably because of the
complexity induced by both the spatial and temporal interactions but this is one of the core problems
of spatio-temporal systems.

At present, there are only a few methods for identifying cellular automata rules from data and most of
these assume a known structure. Andre et. al [9] used genetic programming with automatically
defined functions to evolve a rule for the majority classification task for one-dimensional cellular
automata, and Yang and Billings [2] introduced a method using Genetic Algorithms. However, no
clear structure of the related neighbourhoods was obtained and the detection process was complicated
and very time consuming. Billings and Yang 2003a proposed a Cellular Automata Orthogonal Least
Squares algorithm (CA-OLS). These authors mapped the binary rules into simple polynomial forms,
and then developed the CA-OLS to determine the neighbourhood and the unknown model
parameters. The identified polynomial model was then mapped back to a logical expression. The CA-
OLS method produced for the first time a powerful method for determining the rules of high-
dimensional CA in the form of a parsimonious model. This was achieved based only on the
observations of the data or CA patterns and behaviours.




The core orthogonal least squares method, which was adapted to CA identification in [2], was
improved in [12] [13]. It was pointed out that the orthogonalisation could be carried out using
simplified iterations instead of time expensive computations at every step [12]. The modified
algorithm is computationally less expensive. Another faster algorithm was derived on the basis of
computing the estimates using correlation computations instead of the orthogonal terms [13]. In the
present study, these two improvements will be combined and extended to produce a new fast CA-
OLS algorithm which is tailored to CA identification. This new algorithm significantly reduces the
computation time compared to the original CA-OLS method in [2].

The paper is organized as follows. In section 2, background results on cellular automata are
introduced. The CA-OLS method presented in [2] is reviewed in section 3. In section 4 the new fast
CA-OLS method is introduced. Simulation results are listed in section 5, and conclusions are given in
section 6. :

2. Cellular Automata

Cellular automata which were first introduced by von Neumann as a “cellular space” for modelling
biological self-reproduction, were later studied extensively by Wolfram at the beginning of the 1980s
[6]. The CA structure investigated by Wolfram [11] can be viewed as a discrete lattice of sites (cells)
where each cell can take the value O or 1, called binary CA. Attention in this study will be restricted
to binary CA. The next state of a cell in a cellular automaton is assumed to depend on its
neighbourhood and the transition rule.

A cellular automaton consists of three parts: a neighbourhood, a local transition rule and a discrete
lattice structure consisting of a large number of cells which are occupied by states from a finite set of
discrete values. The neighbourhood of a cell is the set of all the cells capable of directly influencing
the evolution of that cell, which sometimes includes the cell itself. The local transition rule updates
all cells synchronously, at a given time step, by assigning to each cell a value according to the cell’s
neighbourhood.

Consider a d-dimensional lattice L which consists of a set of all integer coordinate
vectors j = (j,,+++, j,) € Z°. Defined over lattice L, the rule of the n-cell CA can be expressed as
follows

x,@0) = FV(x; (1)) M

where x;(t)e Bis the updated state of the jth cell in the lattice L at time step ¢, f is the transition
function describing the local transition rule, and N(x ;(2)) 1s the neighbourhood of the jth cell in L at
time step ¢, which is defined as below
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where ¢/ (z), standing for x,,, , (t=k), (1Sk<7, 1<i<m(k),and Y m(k)=n) is the state of
k=l

the lth ([ =i+ Zm(k’) ) entry in the neighbourhood region of the jth cell at time step t, p, (k) is the
I<k'<k

nteger coordinate difference vector between the jth cell and the /th entry in the corresponding

neighbourhood region, which specifies the spatial location of the neighbourhood cell, and k gives the

temporal location of the corresponding neighbourhood cells.

The function f in function (1) is usually represented as a Boolean function of the cells within the
neighbourhood. Billings et. al. [2] showed that this transition function can also be expressed as an
exact integer parameter polynomial, which is linearly combined with neighbourhood product terms.
Eqgn (1) can therefore be reformed as the following polynomial form:

X, () =9(1)0 3)

where @(r)is 1xN matrix with each entry composed of the product of the subset of the

neighbourhood at evolution time step ¢, ¢,(1) = Hc;’ (), L, < {1,2,--- ,n} is the neighbourhood
Lel;

indices subset (L, # L, for all i#j, 1<i<N, 1Sj<N), N<2" is the number of model

regressors, and ® =[, 6,... 8, 1" is an N x1 integer parameter vector.

3. The CA-OLS Identification Method

Because binary CA rules can be reformulated into a polynomial form, the identification of CA rules
is equivalent to estimating the parameter vector ® in equation (3). The candidate model size N can
be excessively large. Therefore subset model selection is necessary, and an efficient method is the
Cellular Automata Orthogonal Least Squares (CA-OLS) algorithm proposed in [2] which is briefly
reviewed below.

Consider M evolution steps, the transition model can then be written in the following form

x; =90 )
where x; =[x;(1) x; (2)---x;(M )]" is the measurement vector including values of the jth cell

updated at M different time steps, and @ =[g(1) ¢(2)---@(M)]" are the corresponding
neighbourhood products at the different time steps.

Consider the orthogonal decomposition of ® = EQ based on the Gram-Schmidt transformation
method, where E=[e, ...e, ... e, ] is an orthogonal matrix, e, are the columns of E

e =0~ a.e, )

r=0
and Q is an upper triangular matrix with unity diagonal elements, with entries

g.=¢l ¢, [eTe, (i<k, 1< iLLjsN) ©)




Equation (4) can then be represented as x ;=EQO= E®
where
0=00=[f .. 6, .. 6,] (7

n

with each entry given as

b.=eix, [ele, ®)
The contribution of each candidate term can be assessed using Error Reduction Ratio (ERR). The
contribution due to e, (d=1,..., N) [2] is given by

a2,T T
[ct], = Bele, [x] x, ©)

The ERR provides a criterion for forward subset selection, where the regressors can be ranked
according to the contribution they make to the model. The selection is terminated at the N;th step

N,
either when 1= Jedl; < Cor where G, 18 preset tolerance, N;< N or when N,=N.
d=1

Once N; significant regressors have been selected, the corresponding parameters ® can be
calculated

=
00=6pn~ > Guablem=N, -1....1. (10)
k=t

4. A New Fast CA-OLS Algorithm

The above CA-OLS algorithm is built upon the orthogonal least squares algorithm [16] that was
subsequently used to select wavelet regressors in [12]. In [12] it was shown that the sum in equation
(7) need not be calculated at every time step but can be replaced by

Pf (n)= P:—z () = Gy vdel,
with pi()=¢,() Vdel, aDn

The modified orthogonalisation algorithm that results is mathematically equivalent to the original
algorithm but it is computationally less expensive.

Zhu and Billings [13] suggested another improvement to the original orthogonalisation algorithm.
They demonstrated that the calculation in (5) can be substituted by the products pfx_ ; and p!/p,and

that further calculations (6), (8), and (9) can be derived on the basis of computing the estimates using
correlation computations instead of the orthogonal terms.

In this study, based on [13], the algorithm presented in [16] and [12] is further improved by
substituting the products pf"x ; and p/p, into eqn (11) and introducing the correlation




.computations into the estimates as well. Adapting these results to the CA case produces the new fast
FCA-OLS algorithm which is derived below.

Define
R(k)(d) p(k)T‘ (12)
R =p T (13)

Multiplying by x ; from both sides and Substituting (6), (12) and (13) into (11) yields

(RE™(d, L NR (1))
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Similarly, the iterative equation regarding to R (z J) can also be obtained as
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Then equations (6), (8) and (9) can be replaced by
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Based on the above improvements, a new fast CA-OLS algorithm is obtained. This new algorithm is
summarised below:

1) Set the initial regressor indices as I, ={1,2,...,N}, and compute

R (d.d)= Z (PP () Vdel, (19)

RY(d)= Z (PP (0)x, (@) vdel, (20)

Select the regressors using

(RS (@)
- @ |_ px
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2) Update the regressor indices 7, =1,  \{I,_,}, and compute

R4 (d,1,,))°

R®(d,d)=R*V(d,d)-—2Z Ydel, (23)
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RESGLr 3
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Prepare for the next selection step and compute
M
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3) The procedure is terminated at the N;th step either when 1=2Jelly < G, , where Caf is a desired
d=1

tolerance, N;< N, or when N.=N.

4) Calculate the corresponding N, parameter estimates using

N
ng =9Ns’ 9m=9m— qukﬁk,m=Ns "L,].
k=l

5. Simulation Studies

Simulation examples will be used to demonstrate that the new FCA-OLS estimator produces exactly
the same results as the old CA-OLS, and to compare the computation speed of both methods.
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5.1 Identification Of CA Rule 110

The one dimensional three cell (neighbourhood radius r=1) cellular automata rule 110 has been
extensively studied by many authors in the cellular automata community [6, 7, 15], rule 110 is one of
the simplest ‘complex’ or ‘class-4’ rules as defined by the phenomenological classification scheme
for cellular automata introduced by Wolfram in [6]. The rule number label 110, follows the

; v convention introduced in [11], and is the decimal representation of the string (01101110) which
encodes the three-inputs, one-output rule.

Table 1. CA rule 110
111 110 101 100 011 010 001 000
0 1 1 0 1 i 1 0

Fig. 1(a) shows an example of the complex spatio-temporal pattern generated by rule 110 with a
random initial condition. Periodic boundary conditions were used, which means the first cell and the
last one in the lattice are identical. The particle-like structure of gliders can be distinguished from the
background, which is periodic with spatial periodicity 14 and temporal periodicity 7. A list of gliders
for rule 110 is given in Tablel5 in the appendix of [6]. The identification data were extracted from
the patterns shown as Fig. 1(a) to identify a CA model using the above new FCA-OLS method. The
identification data consisted of 100 data points of input/output data (x, (r-1),x,(-1), x,,(-1)) and

x;(¢) from the spatial location ( x,, x,, x;). The identified polynomial equation corresponding to the

output x,(f) is listed in Table 2.

Table 2. Estimated result of CA rule 110

Cell to be updated Terms Estimates ERRs STDs
o x; (1) x;(t=1) 0.10000E+01  0.49831E+00  0.26667E-16
X,,(=Dx;(t-Dx,,(-1) -0.10000E+01  0.21356E+00  0.42936E-16
x,0-1) 0.10000E+01  0.17812E+00  0.17778E-16
x;(t=Dx,, (-1 -0.10000E+01  0.11002E+00  0.34097E-16
2 (t=D -1 0.17462E-30  0.21888E-62  0.25915E-16

“This term was not selected because of the extremely small ERR value for this term.

The identified polynomial equation was used as the CA rule to implement a one-dimensional CA
model with the same initial configuration on a one dimensional 400-cell lattice. The periodic
boundary conditions were used. This produced the model predicted pattern, which is shown in Fig.
1(b). From this model predicted pattern it can be seen that the particle-like structure of gliders and
background which appear in the pattern shown in Fig. 1(a) is replicated in the CA model produced
output in Fig. 1 (b). This shows an excellent agreement with the original pattern produced from the
original data based on CA rule 110.
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Fig. 1 A comparison of the patterns. The lattice size is 400, and the number of time steps is 400.
(a)The spatio-temporal pattern produced by CA rule 110; (b)The predicted from the identified
model.

(2) (b)

Fig. 2 Comparison of the density p, of sites with value 1
(a) Density of the pattern shown in Fig. 1(a); (b) Density of the pattern shown in Fig. 1((b).




To quantitatively assess the performance of the identified CA rule, the statistical fraction (density)
method was analysed [11] and used to compare the identified CA rule predicted output to the original
CA pattern. In this study the fraction, denoted by p, , was defined by

Pi =#, (1, 1) (g (ry, )+, (77,1)) (30)

where #,(r,¢) denotes the number of cells with digit 4 in the region » configuration at time step z.

i

For example, if the configuration of a region r,, which is [1 20], in a lattice at time step z, is
(00001110101010100000), #, (r,,2,) =7, #,(r,,t,) =13. In this study, the region r, of cell i was
set as [i-10 i+10], in which 21 cells are included, and the periodic boundary conditions were
applied for the edge cells. The densities p, illustrated in Fig. 2 were obtained from the identified

model predicted pattern and the original pattern produced with CA rule 110 shown in Fig. 1. The
result shows that the both densities are in very good agreement.

5.2 Computation Time Comparison

Several other examples of CA patterns produced with different rules were also simulated. All the
results showed this new fast algorithm produces exactly the same estimates as the old CA-OLS
algorithm. To investigate the computational effort of the new fast FCA-OLS method, a program was
designed to compare the new algorithm to the routine presented in [2]. Both methods were run on a
Sun workstation under the same conditions. Table 3 shows that the new fast FCA-OLS routine results
in a significant reduction in the computational time.

Table 3 Comparison result of computational cost
Data points Dimension  Neighbourhood Time(CA-OLS) Time(New FCA-OLS)

500 1 3 100% 47.61%
1000 2 5 100% 46.87%
5000 3 7 100% 46.01%

6. Conclusions

It has been demonstrated that simple CA models can produce complex spatio-temporal patterns, and
that these models can be identified in a polynomial form using the CA-OLS estimator presented in
[2]. A new fast FCA-OLS estimator has been introduced in this study. Simulation results show the
efficiency of the new fast CA-OLS estimator which produces exactly the same estimates as the CA-
OLS in [2]. The advantage of the new method is that the computational time is significantly reduced.
Additionally, this advantage does not result in a greater memory requirement.
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