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State space reconstruction and spatio-temporal
prediction of lattice dynamical systems

L. Z. Guo and S.A. Billings

Department of Automatic Control and Systems Engineering
University of Sheffield
Sheffield S1 3JD, UK

Abstract

This paper addresses the problems of state space reconstruction and spatio-temporal
prediction for lattice dynamical systems. It is shown that the state space of any finite
lattice dynamical system can be embedded into a reconstruction space for almost every,
in the sense of prevalence, smooth measurement mapping as long as the dimension of the
reconstruction space is larger than twice the size of the lattice. Based on this result, a
spatio-temporal dynamical relation for each site within the lattice is derived and used for
sptaio-temporal prediction of the system. In the case of infinite lattice dynamical systems,
an approach based on constructing local lattice dynamical systems is proposed. It is shown
that the finite dimensional results can be directly applied to the local modelling and spatio-
temporal prediction for infinite lattice dynamical systems. Two numerical examples are
provided to demonstrate the proposed theory and approach.

1 Introduction

Lattice dynamical systems (LDS) are spatially extended dynamical systems composed of a finite
or infinite number of interacting dynamical systems modelled on an underlying spatial lattice
with some regular structure, for example, the integer lattice in the plane. Such systems arise as
models in many applications, including chemical reactions (Erneux and Nicolis, 1993), material
sciences (Cahn, 1960), image processing and pattern recognition (Chua 1998), biology (Keener
1987, 1991), and ecology (Séle, Valls and Bascompte 1992). A fundamental characteristic of
LDS’s is the fact that the local state-space variables associated to each lattice node or spatial
site are the same over the given lattice, that is, represent the same set of physical quantities such
as pressure, temperature, velocity etc., which makes the global states of LDS’s distributions on
the lattice. This feature distinguishes LDS’s from conventional dynamical systems.




As a class of spatially extended dynamical systems, LDS’s are able to reproduce complex
spatio-temporal patterns and to exhibit surprisingly rich dynamical behaviours, including spatio-
temporal chaos, intermittency, traveling waves and pattern formation (Kaneko 1989b, Chua 1998,
Hsu 2000, and Bates, Lu, and Wang 2001). Most of the early work relating to the identification
and prediction of spatially extended dynamical systems involved time series analysis charac-
terised by correlation dimensions, Lyapunov characteristic exponents and Kolmogorov entropies,
but these provide little information about the spatial structure or the underlying spatio-temporal
relationships.

Various methods for the identification of local LDS models, in particular Coupled Map Lattice
(CML) models, from spatio-temporal observations have already been proposed (Coca and Billings
2001, Mandelj, Grabec and Govekar 2001, Marcos-Nikolaus, Martin-Gonzalez and Séle 2002,
Grabec and Mandeji 1997, Parlitz and Merkwirth 2000). An important step in all of these
modelling methods is the proper reconstruction of the local state vectors at some specified site
in the lattice from the measured data, that is determining the spatio-temporal region which
influences the dynamics of that site. In all previous studies, this spatio-temporal relationship
was determined by various heuristic or pre-specified approaches. Then the following question
naturally arises, 'does such a reconstruction of the state space exist for any generic observation
functions?’

A positive answer to this question is that it is closely related to the embedding problem. The time-
series embedding theory for k-dimensional dynamical systems has been established by Packard,
Crutchfield, Farmer, and Shaw (1980), Takens (1981), and Sauer, Yorke and Casdagli (1991).
These results are dedicated to time-series embedding and prediction of k-dimensional autonomous
dynamical systems. Sauer, Yorke and Casdagli (1991) have shown that the delay-coordinate
embedding theorem for single-variable measures could be extended to the case of multi-variable
measures (cf. Remark 2.9 in Sauer, Yorke, and Casdagli (1991)). The result of Sauer, Yorke and
Casdagli (1991) can be directly applied to autonomous LDS’s with a finite lattice. For instance,
consider a LDS defined on a finite lattice with n sites, then such a spatially extended system
can be regarded as a n-dimensional dynamical system when using distributions on the lattice
as global states. The result of Sauer, et al. (1991) says that for any spatial region Q of ¢ sites
of the lattice, there generally exists a one-to-one correspondence between the global states and
the mixed delay coordinate vectors as long as the dimension of the reconstruction space is larger
than 2n. Then a spatio-temporal dynamical relationship within £ can be derived which can be
used to predict the dynamics in one spatial site knowing the others.

The time-series embedding problem for dynamical systems with external inputs has also been
studied by Casdagli (1992). However, Casdagli only gave a heuristic argument for single variable
systems. In this paper, the embedding result is extended to the case of finite lattice LDS’s with
external inputs in a rigorous mathematical manner. It is shown that under similar conditions,
for almost every, in the sense of prevalence. set of smooth functions there exists a one-to-one
correspondence between the states and the mixed delay coordinate vectors as long as the input
sequence is bounded. In the case of an infinite lattice, approaches to local state space recon-
struction and spatio-temporal prediction are discussed.

The paper is organised as follows. Section 2 introduces the state space representation of finite
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lattice LDS’s with external inputs and presents the construction of mixed spatio-temporal delay
coordinate vectors for such systems. Section 3 provides some fundamental concepts on ”preva-
lence” and “almost every” and then gives the main results about spatio-temporal embedding
problems. In section 4 some estimation techniques for the identification and spatio-temporal
prediction of LDS’s for both finite and infinite lattices are introduced. Section 5 illustrates the
proposed approach using two numerical examples. Finally conclusions are given in section 6.

2 Lattice dynamical systems and spatio-temporal delay
coordinate vectors

This paper involves a study of a class of LDS’s which can be described as follows. Let d > 1 be
an integer and I be the d-dimensional integer lattice or a subset of it. That is, I C Z¢ C R
The LDS considered herein is a system with discrete time where the spatial variable takes values
in the discrete lattice I. The state of the system is represented by the vector {z; }ic; with z; € R
for each 7 € I. In the case I = Z%, the phase space X is an infinite-dimensional Banach space as
follows

X={z={z}:iel|lz|| < oo} (1)

where z; € R and the norm || - || could be the [ or [? norm.

The LDS with discrete time can be expressed by

2(t) = {z:(t) }ier = fla(t = 1), ult — 1)) = {fi(z(t — 1), u(t = 1)) bier (2)

where u(t) = {u;(t)} € U is the input of the system, and U = {u = {u;} : u; € R,i € I, ||u]| <
oo} is the input space. Generally, if f = {f;}icr is a diffeomorphism from X x U to X, and
locally Lipschitz in X, then the existence and uniqueness of the initial value problem for LDS
holds (Afraimovich and Chow 1994).

In this and the following section, it is assumed that I € Z¢ is a finite subset. That is LDS’s with
a finite number of interacting dynamical systems are investigated. Let I = {i = (41, -,14),1 <
ij < Lg,j = 1,---,d}. In this case the state space representation (2) is actually a system of
ordinary differential equations (ODEs) on a k-dimensional phase space X = {z = {z;} : i €
I,||z]| < 00} C R, k = card(I) is the cardinal number of set I

2(t) = f(z(t = 1),ut - 1)) (3)

where f: X x U — X is a diffeomorphism, and U = {u = {w;} : u; € R,i € I, ||u]| < cc} C R*
is the input space. The existence and uniqueness of the solutions of (3) follows from the regular
fundamental theorems of ODE’s.




In general, the direct measurement of the state vector z is not possible and only some observable
variable ¥ which depends on the state and the input can be measured. Therefore, the state-space
model (3) of the LDS is usually complemented with a measurement equation

y(t) = h(z(t)) = {hi(z(t)) }ier . (4)

where h = {h; }ic; is a map from X to R*. For any given measurement map h = {h; }:c1, a spatio-
temporal delay coordinate vector can be constructed in the following manner. Consider any
subregion .J C I, and any spatial site ¢ € J. iterating state space equation (3) and measurement
equation (4) yields

=

—
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+
—
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hi(z(t + 1))
w(t+2) = ha(z(t+2)

Il

ha(f (z(t), u(2)))
ha(f(f(2(), u(?)), u(t + 1))

I

vt +m—1) = hi(z(t +ni— 1) = h(F(--- FE), ult), ult +1)), -, ult +n; — 2))

then a 3, ; n;-tuple spatio-temporal delay coordinate vector can be arranged as

F(h, )(@(@), w(@), - ult+n —2)) = {u(t), -, it + 1 — ey (5)

where n = max;en;.

In the following section, it will be shown that under some conditions on map f and n;,1 €
J, for almost every smooth map h and any given input sequence u(t),---,u(t +n — 2), the
map F' is an immersion with respect to z(f), which means z(¢) can be expressed in terms of
{wi(t), -+ w:(t + n; — 1) }sey and u(2), -+, u(t + n — 2). The implicit function theorem implies
that for any given subset J of the spatial region I a spatio-temporal relationship between inputs
and observations at different spatial sites within this spatial region .J exits, that is, for any i € J

yi(t +1) = hi(z(t+1)) = b (f(-- F(f(z(t —nj +1),u(t)). -, ult —n; + 1))
= Qi({yj(t)z t ':yj(-'t -1y + 1)}3‘6]: u(t): S ,’U,('.t — N+ 1))
= gl{y;(®). vt —ny + Dier, {ws@ Yier, - {us(E—n+1D}jer)  (6)

With the establishment of this spatio-temporal relationship, the spatial evolution of the under-
lying spatio-temporal dynamical systems can be predicted as long as the underlying systems are
deterministic.




3 Spatio-temporal embeddings for LDS’s

3.1 The finite lattice case

Let V' be a complete metric space. Here a measure on V' means a nonnegative measure that is
defined on the Borel sets of V' and is not identically zero. For a subset S C V, S + v means the
translate of S by a vector v € V.

Definition 1 (Hunt, Sauer, and Yorke 1992) Let V' be a complete metric linear space. A
measure L is said to be transverse to a Borel set S C V' if it has a compact support and u(S+v) =
0 for anyv e V.

A set §" C V' is said to be shy if there exists a Borel set S such that S' € S C V and a Borel
measure [ on V which is transverse to S.

A set 8" C V is said to be prevalent if V '\ S’ is shy.

The motivation of shyness and prevalence comes from the Fubini theorem. Note that any preva-
lent set S’ C V is dense in V' and that for Euclidean spaces V any S’ C V is shy if and only if
the Lebesque measure of 5’ vanishes. Therefore for subsets of finite dimensional spaces the term
prevalent is synonomous with "almost every”, in the sense of outside a set of measure zero.

Definition 2 (Hunt, Sauer, and Yorke 1992) A finite-dimensional subspace P C V is a
probe for a set T C V if the Lebesque measure supported on P is transverse to a Borel set which
contains the complement of T.

Then if T has a probe, it is prevalent. The detailed theory about prevalence can be found in
Hunt, Sauer, and Yorke 1992.

The box-counting dimension of a compact set A in R* is defined as follows.

Definition 3 Let A be a compact set in R*. For a positive number €, let A, be the set of all
points within & of A, that is A, = {z € R* : ||z — a|| < ¢ for some a € A}. Let N(e) be the
number of bozes that intersect A. Then the boz-counting dimension of A is defined as

1 €
bozdim(A) = lim M
=0 — IOg c

(7)

if the limit ezists. If not, the upper or lower boz-counting dimension can be defined by replacing
the limit by the liminf or lim sup.




Definition 4 For a compact differential manifold M, let T(M) = {(m,v) :m € M,v € T, M}
be the tangent bundle of M, and let S(M) = {(m,v) € T(M) : [v| = 1} denote the unit tangent
bundle of M.

Definition 5 Let My, Ms and N be manifolds and f : My x My — N o C™ map. For (my,mz) €
M1 X .«Mg, dEﬁTLe 7m, g ;Mg — AMl X ﬂ’flrg and 7:1,12 : ﬁ/[] —* ﬂf‘l X A/[g b’l}

?;ml (U) = (ml B y)', imz(z) = (T mf?) (8)

and deﬁne Tl f(m'l: m?) : Tm1 M, — Tf(m1 ,mz)jv and TZ.f(m'th) : Tm2 My — Tf(ml ,mz)fv by

Tlf(m‘l: mﬁ) == Tml (f g imz)w TQ.f(mlr mi?) = Tm?(f o im}) (9)

where o denotes the composition.

Note that T f, Tof are the analogues on manifolds to partial derivatives of f on Banach spaces.

The following embedding theorem provides a basis for the spatio-temporal prediction for the
LDSs composed of a finite number of interacting dynamical systems. Let I € Z% be a finite
subset and J be any given subset of I. X = {z = {z;} : 1 € I,||z]| < 00} C RF and U =
{u={u;} : i€l <oo} CR* are open subsets of R*. For any given sequence of inputs

U = {ﬂl,i}ieh sy Up = {u;o,i}ieh let fp(-f,ui: T ';Up) = Jl- - ‘f(f(l”,ul): Us), " - '7“;3)'

Theorem 1 Let f: X x U — X be a smooth diffeomorphism, and let A be a smooth compact
subset of X with bozdim(A) = d and let ng,i € J be integers. Let uy = {u1}ier, us = {U2i}ier, -
be a given sequence of bounded inputs. Assume that for every positive integer p < n = MaTie i,
the set A, of periodic points of period p under the given input sequence satisfies boxdim(A,) <
p/2, and that the Ty fP(x,u1. - - -, Up) for any such periodic point = has distinct eigenvalues.

Then for any smooth map h from X to R* and mized spatio-temporal delay coordinate vector
F:XxU! o RZiEJ”i, TF(z,u, -y Uny) » T(X) — RXies™ 43 gn isomorphism on A
provided 3 ;c;n; > 2k.

Proof. To prove the theorem, several lemmas are needed.

Lemma 1 (Sauer, Yorke, and Casdagli 1991) Let n and k be positive integers, yi,--*,¥n
distinct points in R*, and vy,---,v, in R™. Then there exists a polynomial h in k variables of
degree at most m such that fori=1,---,n, Vh(y;) = v;.

Lemma 2 (Sauer, Yorke, and Casdagli 1991) Let S be a bounded subset of R¥, bozdim (S )=d.
and let Gy, G, - -, G, be Lipschitz maps from S to R®. Assume that for each x € S, the rank of
the n x I matriz




{G1(T)),Gg(’.€)} (10)

is at least r. For each a € R', define G, = Gy + S4_, 0;Gi. Then for almost every o € R, the
set G;1(0) is the nested countable union of sets of lower boz-counting dimension at most d — .
If r > d, then set G;'(0) is empty for almost every a.

Remark 1 This lemma can be interpreted in the notations of definition 2. Let V' = Lip(S, R™)
be the space of all Lipschitz continuous R™-valued functions on S. Furthermore, let T = {G €
Lip(S, R™) : G™'(0)is empty} C V, and define the I-dimensional subspace P = span{Gy,---,G;}
of V, then the above lemma says that under the conditions of Lemma 2 P is a probe space of T
so that T is prevalent in V.

Lemma 3 Let A be a compact subset of a smooth manifold embedded in R*, and B C R™. Let
Fo, Fy,---,F;: UxV — R" be a family of smooth maps from U xV, U is an open neighbourhood
of A and V C B to R". For each positive integer v, let S, be the set of the unit tangent bundle
S(A) such that the n x | matriz

{TFy(u,v)(z),- -+, ThFi(u, v)(2)}, (u,0) €U x V (11)

has rank v and let d, = lower bozdim(S,). Define F, = Fy + 22:1 o;F; : U xV = R". Then if
d. < r for all integerst > 0, then for almost every o € R, the map T\ Fy(u, v) is an isomorphism
on A.

Proof. For ¢ = 0,---,l and for each (u,v) € U x V, define G; : S(4) — R™ by Gi(u,v,z) =
T1 F;(u,v)(z), and for each a € R, define G, = Gy + £t 0;G;. Because Gj,i = 0,---,1 are
linear maps they are Lipschitz. Then Lemma 2 applies to show that for almost every oo € R',
G'(0) N S, is the empty set. And since S(A) is the union of all S,, G;(0) is empty. O

The proof of the theorem can now be developed based on the lemmas above. It is sufficient
to prove the case when J = {1,2}, that is for two spatial sites. Consider the spatio-temporal
delay coordinate vector (5) defined on a subset J of I. For any h = {h;}icys, any z € X and
u= (U, ,%—1)T € U1, rewrite (5) in a general form as follows

F(h,f)(-'E:'U') = (hd (73): hl(f(l": ul))a s ':hl(fm_l(m:ul-. s -.Unl—z); (12)
hg(.’ﬂ): hg(f(’l', ul)): e hﬂ(.fn2_1($1 Uyy - :unz—l))T
here the superscript 7' denotes the transposition. Note that
Tl-F(h,f) ($, ’U,) (U) = (Vhl (‘T)(’U) Ty v"L"'l (fnl_l)TTlfm_l(m: Uy, -+ runl—i)(v); (13)
VhQ(T")(’U) ERTY Vh'Q(fnihl)TTl.fHE-l(mi Upy = 1un2—1)(v)))T
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Now, for ¢ = 1,2, let g;1,---, ¢, be a basis for the polynomials in & variables of degree up
to n;. Define the ny + no- dlmensmnal vector-valued function h,p = A + Z L ai(g1,,0)T +
% 1 Bj(0,92,4)7. Then it follows

I
T\ Fip, 5.5y (@, u) = TiFopy(z,u) + Y oy (Ti Fg, ) (7, w) +Zﬁg 0, T3 Flgo, 1z, u))T (14)

J=1 Jj=1
If z is not a periodic point of period less than n = max;{n;}, then allz, - - -, f* Yz, U1, Us, -+, Un_1)
are distinct points, which means all T f(z,u1)(v), -, Ty f" ' (2, w1, g, - -+, Up—1)(v) are not ze-

ros for any v # 0 because [ is a diffeomorphism. Therefore by Lemma 1, for any given vector
w € R™M*" there exist polynomials g; in k variables of degree at most n; and g, in k& variables
of degree at most n, such that Vg (f* (2, ur, ua, -, i1 )T F7H (2, U, Ug, - -+, um1) (V) = wy
for i = 1,---,m; and Vga (1 (2, u1, U, - - -, Uim)) TS (2, U, U, - -+ 4 Uim1 ) (V) = Wi, foT 4 =
1,-++,my, which implies that {T1Fs_ 5 : @ € R"',3 € R} spans R™*"2. Defining a set of
maps G; : X x Ur1 5 Rm+m2 §=1 ... |, +1, as

Gi(v) = (T Figy iy () (0),0)T  for i = 1,- -+,
B (0 TlF{QE =1y f)(a: 'U,)( )) 7f0r7'—£]+1-,“‘-,£1+£2

then the (ny + no) % (4 + o) matrix {Gq,--+, G4, } has rank n; + ny. It follows that if f
has no periodic points of period less than n = maxz{ny,ns}, then S, is empty for all r > 0
but r = n, + ny and because by hypothesis n, + ny > 2k > lowerbozdim(Sp,1n,), the proof is
completed by Lemma 3.

If z is a periodic point of period p < maz{ni,ns}, then in order to apply Lemma 3, we need
to show that the rank of {G1,Gs, -+, Gy 4, } is strictly larger than bozdim(S,). There are two
cases.

Case 1: p < min{ni,ma}.

In this case, following the discussion of Theorem 4.14 in Sauer, Yorke and Casdagli (1991), the
ni + ny-dimensional vector G;(z,u,v),i = 1,---,l; can be written as equation (4.2) of Sauer,
Yorke and Casdagli (1991) with H; there replaced by H;; =: Vg, ;(z;) and the last n, rows by
zeros, and G;(z,u,v),t = h +1,---,1; + la can be similarly written with H; there replaced by
H;; =: Vgsi(z;) and the first n; rows by zeros.

Then following the arguments of Theorem 4.14 in Sauer, Yorke and Casdagli (1991), and the
hypothesis here, Lemma 3 applies.

Case 2: n; < p < ne.

In this case, it is sufficient to consider the n; +no-dimensional vector Gi(z, u,v),i =l +1, -, L+
lo. Again this vector can be written as equation (4.2) in Sauer, Yorke and Casdagli (1991) with




Hj there replaced by H; ; =: Vgo;(z;) and the first n; rows by zeros. The conclusion then follows.
0.

Remark 2 According to Theorem 1, for a LDS defined on a finite lattice 7 = {1,---,n}, and
for any given subset J C I with m nodes, there generally exists a one-to-one correspondence
between the global states and the spatio-temporal delay coordinate vector with a lag n; for each
node 1 = 1,---,m as long as 372, n; > 2n. This means that the smaller the region J is, the
more lags are needed. In practice, this provides an indication about the determination of the
spatial neighbourhoods and time lags when identifying such a spatio-temporal dynamical system
at a given lattice site. From the system prediction point of view, this theorem implies that the
dynamics of a LDS at one site or a spatial subregion can be predicted based on the dynamics at
any other site or spatial subregion.

3.2 The infinite lattice case
In this section, the problem of local state space reconstruction for infinite lattice LDS’s will be
discussed.

Let I C Z% C R® be the d-dimensional integer lattice. A LDS defined on I has a phase space
X ={z ={a;} : i € I,||z]| < co} which is an infinite-dimensional Banach space. The systems
of interest herein are the infinite lattice LDS’s having the property of finite-range interaction.
Specifically, let G C I C Z% be a fixed finite subset of the lattice, which represents the finite-range
interaction. Then the infinite lattice LDS (2) can be written as

zi(t) = f({Ziss(t — D}ieo: {iri(t — D}jec) i € 1 (15)

where f: {{z}}jec} % {{u}}jec} = R is a smooth function.
In what follows, the local dynamics of the LDS will be constructed. To this end, let I, C I,k =
(k1, k2, -+, kq) be the following finite lattice

Ik:{(i11i21"'1id)EI:lSijSkj} (16)
Then the local finite lattice LDS defined on I, can be constructed according to (15) with some
boundary conditions. The width of the frame of boundary sites is usually equal to the neigh-

bourhood size r. For instance, if d = 2, G = (4,7),%,7 = —1,0, 1, then 7 = 1 and the boundary
sites are

The three most commonly chosen boundary conditions are: Neumann, periodic and Dirichlet
boundary conditions. The Neumann boundary condition is the zero flux boundary condition, that

9




is the states of the boundary sites are set equal to the states at the corresponding neighbourhood
sites in I;. For the example above, then 0 <i <k +1,0<j <k +1, and

Thy+1,5 = Thy g Lika+1 = LikaTo,j = T1,5, Ti,o = Tl (18)

The periodic boundary condition identifies the first and the last rows (respectively, columns) of
the array I, namely, for 0 <i <k +1,0<j <k + 1,

T1j = Thy,js T0,j = Thy—1,5: T2, = Tha41,5: Ti,l = Tikos Ti,0 = Tiko—1,Ti,2 = Tika+1: (19)

The Dirichlet boundary condition involves fixed boundary values which are prescribed on the
boundary sites.

If the finite subset I, is large enough (d > r), then with any specified boundary condition,
the LDS defined on [, forms a system of ODE’s on a k = Hf':l k;-dimensional phase space.
Therefore, Theorem 1 can be directly applied to such a finite dimensional system to obtain a
local spatio-temporal input-output relationship between the sites with [ for the measurement
functions defined on the same lattice I,. Discussions on the effects of these boundary conditions
on the global spatio-temporal patterns can be found in Shin(2000).

4 System identification and spatio-temporal prediction

The results of previous sections suggest how a good choice of time lags for the spatio-temporal
model depends on the underlying global state space dimension for any given neighbourhood. In
the case of finite LDS’s, it is a straightforward task, that is, it can be determined in such a way
that the summation of the numbers of the sites in the given neighbourhood and the time lags
should be larger than twice the global state space dimension. In the case of infinite LDS’s, it
depends on the dimension of the local lattice LDS’s.

In what follows, the identification problem of the LDS’s will be considered. The system identifi-
cation of LDS’s involves the construction of the spatio-temporal input-output relationship from a
set of inputs and observations. From (6), the task of the identification is to reproduce the dynam-
ical relation g from the measured data along time and space. This problem has been extensively
studied (Coca and Billing 2001, 2002). In this paper, for a specific site 7, the identification
procedure can be outlined as below

i) Determine the spatial neighbourhood sites for the ith site;

ii) Determine the time lags;

iii) Apply the Orthogonal Least Squares (OLS) algorithm to obtain the parameters of the LDS
model (polynomials as regressors).

10




Note that in the classical identification procedure, the spatial neighbourhood sites of the identified
site and the time lags were considered as fixed. In other words, the neighbourhood of the identified
site was physically considered as a region around that site which directly influences the dynamics
of that site in the spatial domain, and the time lags were considered as the direct influences from
the history of the system evolution. But from the spatio-temporal embedding theorem 1, it is
realised that the idea behind the state space reconstruction method is that it should be sufficient
to use a number of ’proper’ independent spatial and temporal quantities to specify the state of
a LDS at any given time and any given site. This means that a LDS can be modelled in many
different ways depending on the selection of independent variables. Example 1 in the next section
is an illustration of this point where three spatio-temporal models are obtained for a single LDS.

In practical system identification, a general rule for the selection of the neighbourhood sites and
the time lags can be outlined. Due to the spatio-temporal embedding theorem, for finite lattice
LDS’s, the set J of the neighbourhood sites for site 7 can be chosen as any subset including the
site 2, of the lattice /. In this case a one-to-one correspondence between the system states and
the mixed spatio-temporal delay coordinate vectors exits as long as Yiesn; > 2 x card(J). In
the case of infinite lattice LDS’s discussed in the previous section, if the finite interaction range
G is known, then this can be chosen to be equal to I, sites while the time lags can be chosen as
satisfying 3 .cr, my > 2 x card(Iy). If G is unknown, the same rule applies as long as I, is chosen
large enough.

5 Numerical examples

5.1 Example 1 - Linear Diffusion Equation

Consider the following diffusion equation

9v(t, z) &%v(t, z) ’
Y R C Fraa u(t, ),z € [0,1] (20)
with initial conditions
v(0,z) = 0
du(0,
b(df‘ %) = dexp(—z) + exp(—0.5z) (21)
where
u(t, 1) = —13exp(—z)cos(1.5t) — 9.32exp(—0.5x)cos(2.1¢) (22)
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For C = 1.0 the exact solution v(¢,z) of the initial value problem (20), (22) is

v(t,z) = 4dexp(—z)cos(1.5t) + 2exp(—0.5z)cos(2.1t)
—dexp(—z)exp(—t) — 2exp(—0.5z)exp(—0.5t) (23)

Such a spatially extended dynamical system can be considered as a lattice dynamical system
when both the space and time are properly discretised.

In the simulation, the measurement function was taken as

y(t, 2) = v(t, %) (24)

and the spatial domain was sampled at 21 equally spaced points over [0,1]. In this way, it is
regarded as a lattice dynamical system with a finite lattice I = {1,---,21} where {z1, -, Zn1} =
{0,0.05,---,0.95,1}. Therefore, the global state space is R?!.

According to the spatio-temporal embedding theorem, it is generic that any other sites can be
chosen as a neighbourhood of any site for the local state space reconstruction. Therefore, in the
simulation, for a given site 4, three sets of neighbourhood were studied, that is, case 1: 7 + 1;
case 2: 1 — 1,4+ 1; case 3: 1 — 2,4 — 1,9+ 1,4+ 2. In all three cases it is theoretically required
that the time delay for each site should be larger than 42, 21, and 10 on the average. However,
the simulation results show that a small time delay is enough for this special system.

In the numerical simulation, for each site, 100 input/output data points sampled at At = 0.1
were generated. The data are plotted in Fig.(1).

The identification data consisted of 100 data points of input/output data u;(t), v;(¢) at site 7 = 11
corresponding to z = z;; = 0.5. In addition, 100 input and output data from neighbouring
locations acted as regressors during the identification. The three identified models are listed
in Table (1), where ERR denotes the Error Reduction Ratio and STD denotes the standard
deviations.

The model predicted output and the model predicted error are plotted in Fig.(2) which show
very good agreement between the exact solution and the CML model output. Furthermore,
the simulation results also show that such a LDS can be embedded into different reconstruction
spaces, which justifies the developed spatio-temporal embedding theorem.

5.2 Example 2 - Sine-Gordon Equation

Consider the two-dimensional Sine-Gordon Equation (Hirota 1973)




Terms Estimates ERR STD
yi(t — 1) 0.51010E+00 0.97473E+00 0.11133E400
Yir1(t — 2) 0.29727E+00 0.25102E-01  0.13878E+00
u;(t — 5) 0.64905E-01  0.13236E-03  0.57504E-01
yi(t —2) 0.45267E+00 0.12739E-04 0.13546E+00
ui(t — 1) -0.26402E+00 0.21892E-04  0.61936E-01
Yir1(t — 4) -0.31134E+00 0.24077E-06 0.13837E-+00
Case 1 constant 0.12748E-02  0.54424E-08  0.29894E-03
y;i(t — 4) 0.28483E-01  0.47670E-08 0.13295E-+00
Y (t —5) -0.33505E+00 0.20063E-07 0.13160E+00
yi(t—3) 0.14801E+00 0.64642E-08 0.13479E-+00
Yis1(t — 3) 0.13662E+00  0.34670E-08 0.13880E+00
u;(t — 4) -0.23632E+00 0.43983E-08 0.10595E+00
u;(t — 2) 0.46216E+00 0.27615E-07 0.10946E+00
y;(t — 5) -0.63146E-01  0.31759E-08 0.11490E+00
ui(t — 5)2 -0.95824E-04 0.30765E-09  0.20913E-04
ui(t — B5)yie1(t—5) -0.77616E-03  0.24184E-08  0.16436E-03
vt — 1)yt — -0.13775E-02  0.28060E-08  0.36203E-03
vi(t — Du;(t — -0.22775E-03  0.19617E-07  0.54374E-04
yi(t — Du; (t — 0.22760E-03  0.78590E-08  0.89990E-04
Yir1(t—1) 0.15953E+00 0.20172E-08 0.13461E+00
yi(t—1) 0.44886E+00 0.97450E+00 0.14608E400
Yir1(t — 2) -0.12130E+00 0.25229E-01 0.11473E+00
u;(t — 2) 0.62552E-02  0.21500E-03  0.26842FE-02
Case 2 Yie1(t — 2) -0.46516E+00 0.56718E-04  0.96212E-01
Yi—1(t = 1) 0.10690E+01  0.35351E-05 0.97783E-01
Yirr(t— 1) 0.43696E+00  0.30027E-07 0.12168E+00
yi(t — 2) -0.37547E+00 0.12109E-07 0.14645E+00
u;(t — 1) 0.32525E-02  0.40834E-08  0.28909E-02
constant -0.10198E-03  0.13912E-08 0.12100E-03
vt —1) 0.39445E+00 0.97450E+00 0.13572E+00
Yir1(t — 1) -0.12496E400 0.25232E-01  0.12018E+00
ui(t — 2) 0.38259E-02  0.21183E-03  0.43191E-02
Case 3 Yialt—2) -0.18572E4+00 0.56175E-04 0.13305E400
Yie1(t — 1) 0.59432E+00 0.36235E-05 0.13273E-+00
Yir1(t— 1) 0.25854E+00 0.24180E-07 0.12267E-+00
Yi—o(t— 1) 0.37694E+00  0.20224E-07 0.11270E+00
Yi—o(t — 2) -0.23501E+00 0.13585E-07 0.11128E--00
Yira(t — 1) 0.34798E+00 (.11117E-07 0.10910E-+00
Yira(t — 2) -0.19187E+00 0.98894E-08 0.10551E-+00
constant -0.12259E-03  0.39321E-08 0.11837E-03
yi(t — 2) -0.24013E+00 0.34177E-08 0.13700E+00
ui(t — 1) 0.58602E-02  0.24592E-08  0.46488E-02
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Table 1: Example 1: The terms and parameters of the final LDS models for three cases
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Figure 1: Example 1: System output

O%u(t, z,y) 4 Fult,z,y)  Bult,z,y)
0z? 0y? ot?

= sin(u(t, z,v)) (25)

which describes the motion of the magnetic flux quanta on a Josephson junction transmission
line.

The exact three-soliton solution of (25) can be expressed in the following form

u(t,z,y) = 4tan_1(f§t - Ug) (26)
where
flt,z,y) = 1+a(l,2)exp(m +n2) + a(1, 3)exp(m: + m3) + a(2, 3)exp(n + 13)
9(t,z,y) = exp(m)+exp(m) + exp(ns) + a(1, 2)a(1,3)a(2, 3)exp(m +m +m3))  (27)
in which

(B = P3)? + (g5 — ¢5)° — (w; — w;)?
(H+Pj)2+(4i+93)2 (w; + w;)?
ni = Pir + qiy — wit — m— ; (?7,,; is constant)
P?+q?—w?=1fors,j=1,2,3

a(i, j) =
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Figure 2: Example 1: Model predicted output and error (al) and (a2): case 1, (bl) and (b2):

case 2, (c1) and (c2): case 3



provided that the parameters P, ¢;, and w;,% = 1,2, 3 satisfy the condition

Progi w
det .P2 Ga W2 =
P; g3 ws

By approximating VZu(t, z,y) = 82125;’:? 2 82%:,’5’ -

as

V2u(t,z,y) = = (u(t,z+ h,y) +ult,z — h,y) +ult,z,y + h) +u(t,z,y — h) —4u(t,z,y)) (28)

1
n?

and letting v(t,z,y) = du(t,z,y)/dt then the system (25) can be considered as the following
lattice dynamical system

dui,j) ()
d’b‘i A (T @ 1
%() = —sin(uuz)(t) + ﬁ(“(iﬂ,ﬂ(t) + Ugi—1,5)(t) + Ui j41)(F) + U -1y () — dug g (2))

(29)

where ’u(i,j)(f) = u(t,ﬂ:,;,yj), ’U(i‘j)(t) == ﬂ(i,j}(t)a By = Ty — Zi—1 = Y5 — Yj-1; e l,"',M,j =
1,--- 1j\i’_

The simulation data was generated with M = N = 30 and h = 0.1 with the following parameter
values, P, = 1.1,P, = P; = 0.3;¢q; = 0.0,¢g, = g3 = 1.2 and w; = 0.4583, wy; = w3 = 0.6633, and
initial conditions

O
u(0, z;, ;) = 4tan~ (122282 (30)
The measurement function was taken as
y(t, z,y) = u(t, z,y) (31)

From each location, 50 input/output data points sampled at T = 0.5 were generated. Fig.(3)
shows four snapshots of y(¢,z,y) at t = 0.5 x 1 = 0.5 and ¢ = 0.5 x 5 = 2.5, respectively.

In this simulation, the neighbourhood for the site 7 was chosen as (2 — 1,7) and (4,7 — 2).
The identification data consisted of 15 data points of input/output data u;(t), vi(t) at the node
(1,7) = (25,25). The identified model is listed in Table (2)

The model predicted outputs are plotted in Fig.(4), which show that the identified LDS model
can reproduce the spatio-temporal patterns of the original system very well.
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Terms Estimates ERR STD
Yijo(t—1) 0.31071E400 0.99487E+00 0.41674E+00
y,;,j_g(t —2) 0.13599E+00 0.50331E-02 0.54055E400

constant 0.18561E+00 0.85853E-04 0.58803E-01
Yi1;(t—1) 0.11221E+01  0.69613E-05 0.87463E+00
y;;(t—2) -0.15402E+01 0.33817E-05 0.11698E+01
yiiri(t—2) 0.12513B401 0.12143E-05 0.14617E+01
yij(t—1) -0.38742E4+00 0.18126E-06 0.93930E+00

Table 2: Example 2: The terms and parameters of the final LDS model

6 Conclusions

A spatio-temporal embedding theorem for finite lattice LDS’s with external inputs has been
proved. Although this result is similar to that of Sauer, Yorke, and Casdagli (1991) who studied
the simpler time series case, it is believed that the insight the new embedding result brings for the
spatio-temporal case is an important step in the development of spatially extended dynamical
systems. With this result, the spatio-temporal prediction of LDS’s can be realised. It has
also been demonstrated that the new embedding theorem can be directly applied to the local
modelling of LDS’s defined on an infinite lattice. Furthermore, from a practical point of view,
the new results provide a guide to determining the neighbourhood and time lags for the problem
of system identification of LDS’s.
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