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Abstract— Wavelet based nonparametric additive NARX models are proposed for nonlinear input-output system
identification. By expanding each functional component of the nonparametric NARX model into wavelet
multiresolution expansions, the nonparametric estimation problem becomes a linear-in-the-parameters problem, and
least-squares-based methods such as the orthogonal forward regression (OFR) approach can be used to select the
model terms and estimate the parameters. Wavelet based additive models, combined with model order determination
and variable selection approaches, are capable of handling problems of high dimensionality.
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1. Introduction

In the past few decades, system identification and analysis methods for nonlinear systems have been widely
studied with many applications in approximation, prediction and control. Several nonlinear models have been
proposed in the literature including the NARMAX (Nonlinear Autoregressive Moving Average with eXogenous
mputs) model representation which was initially proposed by Leontaritis and Billings (1985). NARMAX can
describe 2 wide range of nonlinear dynamic systems and includes several other linear and nonlinear model types,
including the Volterra, Hammerstein, Wiener, ARMAX, and NARX models as special cases (Pearson 1995).

A general desire in data-driven modelling procedures for nonlinear systems is to develop efficient model
construction procedures that overcome the curse-of-dimensionality. Several authors have studied this problem
and a key idea of the methods that have been developed is to represent a multivariate function as additive
superpositions of functions of fewer variables. The projection pursuit algorithm(Friedman 1981), multi-layer
perceptron (MPL) architecture(Haykin 1994), and radial basis functions(Chen et al 1990, 1992) are among these
representations for multivariate functions. Although Kolmogrov’s theorem (Lorentz 1996), which states that any
continuous function of n-variables can be completely specified by a function of a single argument, guarantees the
existence of a univariate (continuous) function that completely characterises any continuous n-variable function,
currently there are neither transparent methods to get a univariate function, nor numerically feasible algorithms
to compute it. The existing strategies that attempt to approximate general functions in high dimensionality are
based on additive functional models (Friedman 1991) , in which the additive functions are often referred to as
functional components(Stone 1985). The functional components can be arbitrary functions with fewer arguments
and with global or local properties. Kernel functions, splines, polynomials and other basis functions can all be

chosen as functional components (Hastie and Tibshirani 1990).

In this paper, wavelet-based NARX models are considered. Wavelets, which have excellent approximation
capabilities, are chosen as the functional components in the additive models. The wavelet analysis procedure
involves adopting a wavelet prototype function, called the mother wavelet or simply wavelet. Temporal analysis
is perforﬁigd with a contracted, hwh frequency version of the same function. Because the SlgnaI to be studied
can be represented in terms of a wavelet expansion, data operations can be performed using only the

corresponding wavelet coefficients. By expanding the functional components using wavelet basis functions, the




.

additive models then become an ordinary linear-in-the-parameters problem which can be solved using least-
squares of algorithms. The new wavelet-based additive routine, combined with model-order determination and
variable selection approaches (Chen et al 1989, Billings et al 1990, Savit and Green 1991, He and Asada 1992),

is capable of handling problems of moderately high dimensionality.

2. The general form of additive NARX models
The NARX model

y(®) = f(y@ -1,y —n,)ut—1),--,ult —n,)) + £@1) (€Y

is often used to describe the input-output relationship for nonlinear systems, where [ is an unknown nonlinear
mapping, #(¢) and y(z) are the sampled input and output sequences, £(f) is an independent identically

distributed random variable, and 7, , 1, are the maximum input and output lags, respectively.
The NARX model is a special case of the NARMAX model, which takes the form of the nonlinear difference
equation(Leontaritis and Billings 1985):
y@®) = f(y =1, -,y —n,)u 1), ,u(t-n,),et—1), et —n,)) +e) (2)
where the noise variable e(f) with maximum lag 7,, is immeasurable but is assumed to be bounded and

uncorrelated with the inputs. The model (2) relates the inputs and outputs and takes into account the combination

effects of measurement noise, modelling errors and unmeasured disturbances represented by the variable e(t).
Consider the NARX model (1) and assume that the nonlinear mapping f can be expressed as a finite set of

hierarchical correlated functions expanded in terms of the lagged output and input variables Wz —i) and u(f—j)

such that

yO = fo+ S A+ S F 0%, 00+ 3 f (0,0, %, @)+ +
i=1
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where X; (t) = y(t — i) for i=12--+n, and x(t)=u(t—1) for i= n, +1.0, 42,4 with n=n, +n,.
The zero-th order functional component f}, is a constant to indicate the intrinsic varying trend of () ; the first
order functional components f;(x,(2)) represents the independent contribution to y(#) which arises by the
action of the ith variable x,(f)alone; the second order functional components f; (x; (£ ),x,(t)) gives the
interacting contribution to y(¢) by the input variables X, (r) and x; (), etc. The last term i (s Xy,
contains any residual n-th order correlated contribution of the input variables (Li et al 2001).

Experience shows that the representation of up to second order of terms in model (3)

Y0 = o + Y L@+ 33 £ 0,3, )+ £0) @
=1

=l j=i
can often provide a -satisfactory description-of y(#) for-many high dimensional problems providing that the -

input variables are properly selected (Li et al 2001).The presence of only low order functional components does




not necessarily imply that the high order variable interactions are not significant, nor does it mean the nature of

the nonlinearity of the system is less severe.

In practice, many kinds of functions, such as kernel functions, splines, polynomials and other basis functions
can be chosen as functional components in model (3). In the present study, however, wavelets are chosen as the

functional components to express the additive model.

3. Expanding the additive NARX models using multiresolution wavelet bases

3.1 Wavelets multiresolution expansions

From wavelet theory (Chui 1992), any given function g € I*(R") can be approximately expressed as a
wavelet expansion

g(x]’xzzulrxd): ijéj(xl’xZ’-”’xd) (S)
£eQ
where
2 [x-b
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&(-) is a basic wavelet or scaling function, @, € R" and b, € R? are dilation and shift factors. Restricting the
double index to a regular grid gives a special case to form a wavelet frame defined as
jd
2 , . P
Q={ =a*f@x-pk): je Z,ke Z"} 7
where the scalar factors ¢ and [3 are defined as the dilation and translation steps for discretization. The most

popular choice 1s to restrict the dilation and translation parameters to a dyadic lattice as ¢ = Z.8=1.

Multidimensional wavelet decompositions (expansions) can be defined by taking the tensor product of the
one-dimensional scaling and wavelet functions (Mallat 1989). Let g € L*(R“), then g(x) can be represented

by the multiresolution wavelet series as
29
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W = = @or @ (scalar scaling function and the mother wavelet) but at least one 77{ s =@ . In the two-

with 7
dimensional case, the multiresolution approximation can be generated, for example, in terms of the dilation and

translation of the two-dimensional scaling and wavelet functions
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Although many functions can be chosen as scaling and wavelet functions, most of these are not suitable in
system identification applications, especially in the case of multidimensional and multiresolution expansions
because of the curse-of-dimensionality. An implementation, which has been tested with very good results,

involves B-spline scaling and wavelet functions as the regressors (basis functions) (Billings and Coca 1999).

3.2 Expanding the functional components using wavelets
Expanding each functional component in model (3) or (4) into the multiresolution wavelet expansions (8), an
ordinary linear-in-the-parameters equation can be obtained. Consider the model (4), this can be expanded using

wavelet multiresolution expansions as follows.

fo(x, (r))—za(”km(x (r))+22 0. (x,®), p=12, (12)
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Inserting Eqgs (12) and (13) into (4) yields a linear-in-the-parameters equation with respect to the wavelet

;ll)k i 51113. s ﬁ')kq (i=1,2,3). This can be solved using least squares type algorithms. The

coefficients ozjf?k 5
orthogonal forward regression (OFR) approach (Billings et al 1989, Chen et al 1989), which has been widely
applied in system identification and parameter estimation, is recommended and will be adopted in this paper.

Notice that the wavelet networks proposed by Zhang (1997) can be considered as special cases of the wavelet
based nonparametric additive model (3), where only the last functional component f(xl,xz,--',xn) is

considered and expanded using the wavelet expansion (5).

4. An example: a terrestrial geomagnetic system

Figure | shows 2172 data points of the measurements of the solar wind parameter VB's (input) and Ds? index
(output) with a sample period of 2 hours. In order to fit a model, 6 significant variables Dst (¢t —1),
Dst(t—2), VBs(t—1), VBs(t—2), VBs(t—3) and VBs(t—35) were chosen initially using variable
selection procedures.

Let X, (t)=Dst(t —1), X,(t)=Dst(t —2),%,()=VBs(t —1), %,(t)= VB{t—2), X;(t) = VBsz-3),
X%()=VBy(t —5). Normalize X(¢)by setting x, (f) = (X, (z) — Dst . )/(Dst_, — Dst ;) for i =1,2 and
x,(1) = (x,(6) -VBs,;,) /(VBs,, —VBs,.) for i=345,6 so that x,(r)€[0,]] over the time interval

concerned, where Dsz . and Dst_  are the minimum and maximum values for the J)s? index (the output),

max

VBs ., and VBSmx are the minimum and maximum values for the solar wind pa:ametcr VBS (the mput) The

* normalized variables x, (f) were used to identify a wavelet based additive model.

The first 1500 points were used for identification and the remaining 672 points were used to test the model.

The nonparametric model (4) was adopted and the functional components in the model were expanded using the




wavelet multiresolution expansion (12) and (13), where the 4-th order B-spline wavelet and scaling functions

were employed. The wavelet and scaling functions were expanded at scales j_, = j, =4 for the expansion (12)

and j_.. = J, =2 for the expansion (13). The model predicted outputs based on the final model were compared

with the measurements of the Dst index and the results are illustrated in figure 1, which shows that the model

predicts very well.

5. Conclusions

In this paper, a new wavelet based additive modelling approach has been proposed. An advantage of additive
models is that the dimensionality can be greatly "reduced" when dealing with problems in high dimensional
spaces. The most notable property of wavelets is the excellent local approximation capability. Combining
wavelets and additive models makes it possible to represent problems in high dimensionality accurately using
low order functional components and enables the identification of nonlinear input-output systems even with
severe nonlinearities. The number of candidate regressors in a wavelet based additive model depends on the
wavelet basis (or scaling) functions and the chosen scaling levels. High scaling levels (high resolution ) could
perhaps improve the approximation accuracy but can result in over fitting of the model which will contain a
large number of regressors, some of which may be redundant. This problem can be overcome by performing a
redundant-regressor elimination procedure and significant regressor selection approach. The results from the

illustrative example has demonstrated the efficiency of the modelling approach presented.
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Figure 1. The identification results of the terrestrial magnetosphere process of the Dst index. (a) The solar wind VBs (input);
(b) The model predicted outputs (the dashed line) and the real measurements of the Dst index ( the solid line).
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