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Nonlinear Time-varying System Identification Using the NARMAX Model
and Multiresolution Wavelet Expansions

H. L. Wei, M. Balikhin and S.A. Billings

Department of Automatic Control and Systems Engineering
The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK

Abstract: Identification techniques for nonlinear time-varying systems are investigated based on the
NARMAX model and multiresolution wavelel expansions. It is shown that @ NARMAX model with time-
varying coefficients can be reduced to a time-invariant linear-in-the-parameters analysis problem by
expanding each coefficient as a multiresolution wavelet expansion. An orthogonal least squares algorithm is
then adapted to estimate the parameters. An application to dafa relating to magnetic storms is used to
illusirate the realistic application of the new identification technique.
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1. Introduction

Many types of signals encountered in the real world are nonlinear, nonstationary or time-varying. Examples
include speech and image processing, seismic signal analysis, communications and control systems,
economeltrics, ecology, and astronomical observations. Although a great amount of work has been done on
linear time-varying system identification including time-varying AR and ARMA models (Kozin and Nakajima
1980, Grenier 1983, Charbonnier et al 1987, Dembo and Zeitouni 1988, Morikawa 1990, Tsatsanis and
Giannakis 1993), state space representations and Kalman filtering approaches (Ljung 1983, Young 1994), time-
frequency representations, and nonparametric approaches for nonstationary spectral estimation (Martin and
Flandrin 1985, Cho et al 1991, Jones and Parks 1992), few authors have studied the identification of nonlinear
time-varying systems using parametric approaches. This may be because the parametric representation for such
systems is quite difficult compared to linear parametric models. However, since linear models cannot capture the
rich dynamic behaviour associated with nonlinear systems, it is important to investigate and develop

methodologies for the parametric identification of nonlinear time-varying systems.

The identification of a nonlinear time-varying parametric model for a black-box system involves several
problems including how to determine the model structure and model order, how to detect the degree of
nonlinearity ofthe s ystem, and how to estimate the time dependent p arameters. I dentification and modelling
approaches for linear time-invariant systems have been extensively studied, and some methodologies for
nonlinear time-invariant systems have been developed. Among the latter, the NARMAX identification and
modelling methodology(Leontaritis and Billings 1985), which constitutes the foundation of the present work, has
been successfully applied to many systems (Tabrizi 1990, Cooper 1991, Noshiro et al 1993, Jang and Kim 1994,
Aguirre and Billings 1995, Radhakrishnan et al 1999, Glass and Franchek 1999). It is the wide range of
successful applications of the NARMAX model to real systems that motivates the adoption of this methodology
in the present study by combining this approach with multiresolution wavelet expansions for the identification

and modelling of nonlinear time-varying systems.

Parametric identification of nonlinear time-varying systems is possible if each of the time-varying coefficients
can be expanded as a finite set of basis functions. The problem then becomes time-invariant with respect to the

parameters in the expansions and the problem can be reduced to a linear-in-the-parameters regression problem.
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Several types of functions including polynomials, Fourier bases, splines etc. have been chosen as the basis
functions to represent the time-varying coefficients. In the present study, orthogonal wavelet basis functions will
be employed d ue to their d istinct approximation properties in b oth the time and the frequency d omain (Chui
1992) and the time-varying coefficients will be expanded as multiresolution wavelet expansions (Mallat 1989).
Based on a NARMAX model structure, the orthogonal forward regression (OFR) algorithm (Korenberg et al
1988, Billings et al 1988,1989a,b, Chen et al 1989b) is then adapted to estimate the parameters in the

expansions.

This paper is organised as follows. [n section 2, the time-varying N ARMAX model is introduced and the
NARMAX methodology is briefly reviewed. In section 3, the time-varying problem is reduced to a linear-in-the-
parameters regression problem by expanding the time-varying coefficients as multiresolution wavelet
expansions, and an orthogonal least squares algorithm is adapted to estimate the parameters in the expansions. In
nonlinear system identification, it is vitally important to determine the model structure or to decide which terms
should be included in the model and this is discussed in section 4. In section 5, satellite data relating to magnetic
storms is analysed to illustrate the effectiveness of the nonlinear time-varying modelling and identification

approach. This is followed by brief conclusions, which are given in section 6.

2. System representation: the time-varying NARMAX model
Under some mild assumption, a discrete-time multivariable system with 77 outputs and ¥ inputs can be
descried by the NARMAX (Nonlinear AutoRegressive Moving Average with eXogenous inputs) model

(Leontaritis and Billings 1983)
YO = =1,y —n,)u(t =1),-ult —n,),e(t =1),+,e(t —n,)) +e(?) ¢

where

y@& =@ y,@ - y,OF
u(t) =[u(t) u, (@) - u, @
e(t)=[e(t) e(t) - e, (O

are the system output, input and noise, respectively; f () is a nonlinear mapping vector; 7 o By and n, are the

maximum lagsin the output, input and noise; the noise variable {e(f)}is a zero mean i ndependent sequence

which accommodates the effects of measurement noise, modelling errors and unmeasured disturbances; e(f) is

sometimes called the prediction error which is defined as

e(t) = y(t) - y(®) (@)
where

7) = ELy(y' ™ u ™ ©)

Y=l y@ - ye-nY )

w7 =[u() w2 - u@-01" 5)

E[e(n)ly"™u"™']=0 ©)

A special case of the general NARMAX model (1) is the NARX (Nonlinear AutoRegressive with eXogenous

inputs) model




yO) = fE =1yt —n, )u(t~1), - ,u(t—n,)) +et) )
In most cases the form of the nonlinear function /() in (1) and (7) will be unknown. The unknown function
J(-) can however be arbitrarily well approximated by polynomial m odels (Chen and Billings 1989a) or by

other functional expressions (Sjoberg et al 1995). Taking the case of a time-varying SISO system as an example

and expanding model (1) by defining the function f (-) to be a polynomial of degree £ gives the representation

YO = 0,00+ Y6, (0%, () +3 3.6, (0%, (), () +--

iy=1 k=i,

£330, 0%, (05, (O, (O + ) ®

i=1 fg=igy

where
n= Hy + n, 4 n,
and
¥t —1) l£v5n,
x. () =qu(t—(r~n,)) n,+1<t<n, +n,
e(t—(r—n,-n,)) n,48, +12eZ 8, +0, +8,
Model (8) belongs to the linear-in-the-parameters time-varying regression class of models
i
WO =6,(t) + 2.8, (), (1) +e(®) ©
m=]
where
,(#) is a function to indicate the intrinsic varying trend of y(¢), usuaily 8, (¢) = const,
& _(t) is a time-varying parameter,
x, () =yt - n.yl)---y(t —nyN Ju(t—n,)---u(t- n,, )e(t—n,)---e(t — R, ) 10)
m :1323"':Ms
1£ny1,ny2,-v—,ny’Ny £
ISnul,nuz,---,nu!N“ <n,,
lsnel:ne?,"“’ne,N,_. <n,, Ny,Nu,Ne =0,
and

N, =0 indicates that x, (f)containsno y(-) terms,
N, =0 indicates that x () contains no u(-) terms,

N, =0 indicates that X, () contains no e(-) terms.
The degree of a multivariate polynomial is defined as the highest order of all the terms, for example, the degree
of the polynomial A(x,y,z)=(x—a)* +(y-b)(z-c)+(x—a)’*(y—b)(z —c)*is 2+1+2=5. Similarly, a

NARMAX model with polynomial degree £ means that the order of each term in the model is not higher than £ .

If all the coefficients &, (¢) are not dependent on the index ¢, that is, €_(¢) =8 _=const, m = 0,1,---,M ,

then model (1) reduces to the conventional NARMAX model. As a general and natural representation for a wide
class of linear and nonlinear systems, model (8) includes, as special cases, several traditional model types,
including the Volterra and Wiener representations, time-invariant and time-varying AR(X), NARX and

ARMA(X) structures, output-affine and rational models, and the bilinear model (Pearson 1999).
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3. Expanding the time-varying coefficients into multiresolution wavelet expansions
In this section a routine, which translates the time-varying model Eq (9) into a time-invariant regresson

model, is explored by expanding each time-varying coefficient as a multiresolution wavelet expansion. Problems

relating to the selection of the model structure and terms, and how to determine the model orders 7 y» 1, and

n,, as well as other problems, will be discussed in the next section.
If each coefficient & (t),m =0,1,---,M , in Eq(9) can be approximated by a linear combination of the

basis functions &, (¢), [ =1,2,---,L

L
0,0)=>cf"E@), m=01,-,M, (11)
=1

then the identification can be implemented by estimating the time-invariant coefficients {C‘I{m)}E}iM

Substituting (11) into (9), gives a set of equations that are linear-in-the parameters and which can be solved by

several methods in the least-squares class of algorithms.

In the approach proposed here, multiresolution wavelets and scaling functions (Mallat 1989) are chosen as the
basis functions for the time dependent coefficients &, (f). With this choice, each coefficient &, () can be
expressed as the resolution-limited representation

Ko () J K (m)
4,1 = Zaju,k ok () F ZZ)B;,;: @4 (2) (12)
=ty J=igk=k;
where @(f)and @(1) are the basic mother wavelet and the basic scaling function, respectively, and J is the

highest resolution level . The function g, €{@; ,(£),@;,(2), j,k € Z} is defined as

By
8,,(1)=22g(2"t-k) (13)
Substituting (12) into (9), yields
M an M J K}'
YO=2 D ot 0%, (03D D B, ()%, (1) +5(0) (14)
m=0 k=k, m=0 j=jg k=kq

Where £(f) is the modelling error, and x,(f) =1. Eq.(14) is a time-invariant equation with respect to the

parameters of the wavelet coefficients {a’j:’i} and {ﬁj(",:)} ,m=01,---, M.

Introduce the following multiresolution wavelet expansion matrices
(M) P(t) =[x, (2), x, (), -+, %, ()]
M2) TO)=[8), 4, @ b 400 s 20,k @]
M3 A =P()®T()
M) A ;O=[@; 4 @) @pn(®)s 0,0 O T = JosJo Tl
M5) B ()=P)OA(t), j=JorJo+L,J
(6) B(t)=[B; (1), B}, (),,B] (1)]




24 (04

s &

w7 o =[@®, ,a® - 2@  ig® L0 W L 1g0D GO0 L O

Jorko > P oo+ 12T 2T oKy T T nske T Jurketl 2 Ky 2 Jasko 7 Joske 17 JooK ;o
T _rp® (0) - 1 B 0] m - 10) - M)y pa) 00
(Mg) ,Bj —[ﬁj,ko’ﬁj,kq‘i-l’ :ﬂj,}() 2 ﬁj'kﬂ!ﬂj.ko+l} zﬁj,](j ' : ﬁj,p’cGSﬁj,ku-H! ’aj-Kj] 5

j:jgajo +15"'5J:
(M9) ﬁr=[ﬁfu,ﬁ£+l,'",ﬁf]

where the symbol “ & ” denotes the Kronecker product.

Now, (9) can be expressed as

y(t) = A(t)a + B(t) B + &(1) (15)
If N measurements of the input and output signals are available, (15) can be written in the compact matrix form
Y=H%+¢ (16)

where
YT =[y1) y(2) - y(N)]
g =[e(l),e(2), -, &(N)]

A1) B()
A(2) B(2)
A(N) B(N)
3" =[a” B 1=1%,% " Fr@pm] (17)

The symbol I'{er, ) in (17) is used to indicate the number of unknown parameters in (14) or (15). This will be
dependent on the selection of the basis functions and the truncation in the wavelet expansions. If the mother
wavelet ¢(t)and the basic scaling function @(t) are compactly supported as in the case of the Haar and the B-
spline wavelets and scaling functions (Chui 1992), then the number of unknown parameters can be easily
determined from (14) or (M7)-(M9).

The parameter vector ¢ in (15) can now be estimated using a least-squares-based algorithm. The orthogonal
forward regression (OFR) algorithm (Billings et al 1989a) is recommended. The advantage of using this
orthogonal algorithm is that the contributions of candidate terms are decoupled and consequently the

significance of each term in the regression model can be measured based on the corresponding error reduction

ratio (ERR)(Chen et al 1989b).

4. Model sturcture determination, variable selection and model validation
In contrast with linear system identification, several fundamental problems arise in the identification of time-
varying nonlinear systems, namely, i) how to determine the model order? ii) how to determine the model

structure and select the model terms? iii) how to measure model quality?

4.1 Determining the model order and selecting significant variables
In linear system identification, the model order determination problem has been extensively studied and

successfully resolved. The most widely accepted information theoretic criteria are Akaike’s FPE, AIC and BIC
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criteria (Akaike 1969,1974,1978), which have recently been applied to time-varying linear system identification
(Tsatsanis and Giannakis 1993, Zheng et al 2001).

For nonlinear system identification based on the structure (1), however, the model order determination
problem is much more complex than the linear model case. The NARMAX methodology provides one solution
to this problem based on the orthogonal least squares (OLS) algorithm (Billings et al 1989a,b, Hong and Harris
2001) and the error reduction ratio (ERR) (Chen et al 1989b), combined with model validity tests which will be
discussed in the next subsection. Other methods including conditional probability analysis (Savit and Green
1991) and sensitivity analysis (He and Asada 1992) are also available to determine model orders and select

significant variables.

4.2 Determining the model structure and selecting model terms
It is vital to determine the model structure or which terms should be included in the final model, whatever

basis functions are chosen to implement the model (1). For example for the polynomial NARMA X model (8),

m
the maximum number of candidate terms is &, :[ 2 ) =(m+£)!/[m!l], where m = n,+n +n,.

This means that the candidate terms will dramatically increase as the system model orders (7, 7, and 1,) and

the polynomial degree £ increase. Similarly the number of potential unknown parameters {af;",)c} and {ﬁfT)

¥y

in Eq. (16) can become large.

Several approaches have been developed to determine which terms are significant and should be included in
the nonlinear model (see, for example, Billings et al 1986, 1988, 1989a,b, Mendes and Billings 2001). These
approaches were derived for conventional NARMAX models but are still valid for the time-varying NARMAX
model (8) and can be used for detecting the model structure and selecting the model terms in time-varying

nonlinear system identification.

4.3 Model validation

Several methods of model validation have been proposed for nonlinear system identification (Billings et al

1986,1994,1995). Let ]?'() represent an estimate model for the system f'(-) and let the residuals £(-) be given
by

eW)=y@) = ft =1,y —n ) u(t =), ult —n),e(t-1),-,e(t-n)) (18
If the model structure and parameter values are correct, £(-) will be unpredictable from all linear and nonlinear

combinations of past inputs and outputs. For nonlinear SISO systems, this can be tested by computing the

following correlation functions (Billings and Voon 1986)

(@) =5@), vr
Yue () =0, vV
Fuaelir=0, T2l (19)
Va2 (7)=0, V1
1772 () =0, Yt

where # (1) =u* (#) —1* (¢) , the bar indicates time averaging; the correlation function ¥ s () is defined as
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N-t
D+
Yer (r)= = (20)

(Eeo[Ze)

The first two conditions in (19) form the traditional test used in linear system identification. The remaining three

conditions involve cross correlation tests between the input and residuals, by which all possible omitted

nonlinear terms can be detected. In practice, if these correlation functions fall within the confidence intervals at a

given level (0 < <1),say & =0.05 or @ = 0.1, the model is viewed as adequate and acceptable.

Although the model validation tests are normally justified on the basis of the calculation of cormrelations
between the input and the residuals, Billings and Zhu (1994,1995) showed that the use of the outputs enhances
the performance of the tests and allows the number of individual correlation tests to be reduced. When the output

is introduced, only two tests are required

Y e (7) = 26(2)

for V7 @
7 oy (1) =0

and these can be more efficient in the cases of MIMO system identification.

4.4 An algorithm for the identification of time-varying NARMAX models
The nonlinear, time-varying system identification algorithm can now be summarized below:
(1)  Select initial values for 7, 1, , 1, and £ inmodel (1). If any prior knowledge is available this can be
used to prime the model or preselect the model terms, then go to (iif).

(#) Determine the model terms using the NARMAX structure detection procedure. Denote the term set as

{xm (f)}f:r:l and assume that each x (2) is expressed as (10).

(#ii) Form a time-varying model (9) using the model terms {x, (f)}f:zl :

(iv) Transform the time-varying model into a time-invariant form using the method proposed in section 3.

(v) Form the linear-in-the-parameters regression model (16).

(vi) Estimate the unknown parameters in the linear-in-the-parameters model (16) using the OFR. algorithm.

(vii) Test the model validity using (19) or (21). If testing fails, then force any indicated terms into the model (9)
and repeat (ifi)—(vi), or go to (¥) to reset the initial model specification and boundary values.

It should be noted that, the model obtained using the above procedure may not be unique. Different models
(different terms and different numbers of terms) might be obtained under different initial conditions. Trade-offs
among the models include parsimony, accuracy, and validity. Although it may sometimes be difficult to
determine which model is the best, the following criteria can be used to compare the quality o f the different
models.

i=1,1

Assume [ models are available for a given system. Let {'(i)}

i Jr=1 be the output of the 7 th model, and

{y ! },-, » the output measurement of the system.

______ (a) Theil's inequality coefficient . U




The following Theil’s inequality coefficient (Theil 1966) can be used to measure the coherency between }3{(:')

and Y,

£l o BBk (22)

POy, 3) = =
1 2 1 ~(i)y2
= 2 e fos E »
\/N,_]yr N{:![_rj

where, 0 < p® <1, and the smaller the value of p” is, the closer between 9 is to {¥,}. The function

,D(f} (¥,7) alsohasa very clear geometric meaning (Liu and Wei 1998).
(b} Relational coefficient
Define the relationship coefficient between )"'fi) and ¥, as (Wei and Li 1997)
1, if ]yf")—yf|so

P, ={ min min|y —y|+£® max max]7 ) -] » 1=12,000, 0 (23)
Pi b ; otherwise

S P pe——cTy

and the relationship degree as

Wiy 5 éi N ADp® gy T 24
r ()’s)’)"*NZ P; 5 1 Wy 3 ( )
=1

where £9 5 (1=1,2,---,1) are called resolution coefficients. The smaller the value of f(f) , the higher the

resolution is. Usually é’w is set to a value between [0, 0. [Jor [0, 0.5]. AP are weighted coefficients which can
be given different values according to the features of the original data, for example, in different time periods of

the process, different values of A% might be required. The larger the value of 7% , the closer {j}f')} is to

{r.}.

5. Applications

As an example of the algorithm described above, a nonlinear time-varying model of a dynamic process
related to the terrestrial magnetosphere will be identified.

5.1 Application to geomagnetic activity

The sun is a source a continuous flow of charged particles, ions and electrons called the Solar wind. The
terrestial magnetic filed shields the Earth from the solar wind, and forms a cavity in the solar wind flow that is
called the terrestrial magnetosphere. The magnetopause is a boundary of the cavity and its position on the day
side (sunward side) of the magnetosphere can be determined as the surface where there is a balance between the
dynamic pressure of the solar wind outside the magnetosphere and the pressure of the terrestrial magnetic field
inside. A complex current system exists in the magnetosphere to support the complex structure of the
magnetosphere and the magnetopause. Changes in the solar wind velocity, density or magnetic field lead to
changes in the shape of the magnetopause and variations in the magnetospheric current system. In addition if the
solar w ind m agnetic field hasa c omponent directed t owards the south a reconnection between t he terrestrial
magnetic field and the solar wind magnetic field is initiated. Such a reconnection results in a very drastic

modification to the magnetospheric current system and this phenomenon is referred to as magnetic storms.
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During a magnetic storm, which can last for hours, the magnetic field on the Earth’s surface will change as a
result of the variations of the magnetospheric current system. Changes in the magnetic field induces considerable
currents in long conductors on the terrestrial surface such as power lines and pipe-lines. Unpredicted currents in
power lines can lead to the blackouts of huge areas, the Ontario Blackoutis just one recent e xample. Other
undesirable effects include increased radiation to crews and passengers on long flights, and effects on
communications and radio-wave propagation. Forecasting of geomagnetic storms is therefore highly desirable
and can aid the prevention of such effects. The D, index is used to measure the disturbance of the geomagnetic
field in the magnetic storm. Numerous studies of correlations between the solar wind parameters and
magnetospheric disturbances show that the product of the solar wind velocity V and the southward component
of the magnetic field, quantified by B,, represents the input that can be considered as the input to the

magnetosphere. Denote the multiplied input by VB,.

The input-output data consist o f4 344 hours o f measurements o f the solar wind parameter VB, and the D,

index over the time period from January to June 1979, with a sample period of 1 hour. This is depicted in Fig. 1.

wwm Mm

0 500 1000 1500 2000 2500 3000 3500 4000 4500

100 : - - - - r
- L ’ [ .3
2 M
-100 g
-200 4 4
1] 500 1000 1500 2000 2500 3000 3500 4000 4500
Hours

Fig. 1 The input VB, and the output Dy, of the dynamic magnetosphere process

5.2 System identification

A nonlinear, time-varying NARMAX model will be identified to represent the above dynamic process using
the first 4000 points. With the initial values set to n, = 3,n, =10, n,=0 and £ =2, the NARMAX
procedure was applied using an intelligent search strategy (Mao and Billings 1997), and a model term set, which

contained 18 terms, was obtained in Eq. (25) and ordered according to the significance of terms

y(t=Du(t-8), u*(t-1), u(t — Du(t - 6),
‘ u(z-1), y(=1), vt —3u(t-3),
S={Oh |,2¢-2, u? (- 4), u(t - 2), (25)
T ue- 6l -7, ut-Du—-17), ult-3),
u’(t-8), u(t—=3)u(t—-8), ult—2u(-5),
YA-3,  yl-u@-2), ye-Dut-5) |




where u and y represent VB, and D, , respectively. A time-varying NARMAX model for the terrestrial

magnetosphere process can therefore be expressed as

(@) = lZS: 0, (t)x, (1) +e(t) (26)

where x (1) €S and x,, (1) = x, (1) if m= k.

Each & () was then expanded into resolution-limited representation using B-spline wavelets, with the
resolution levels from j = j, =0 to j=j__ = J(J =23,4,5,6) to give the regression models of the form of
(16). E stimates of the unknown p arameter vector ﬁ in (17) were then obtained using the forward regression
orthogonal algorithm. Based on the criteria (29) and (30), the highest resolution scale J =4 was chosen. Finally
all the 18 time-varying coefficients &_(¢)(i=1,2,-+-,18 ) were reconstructed using 9. The estimated time-

varying coefficients ém () over the range of 1 €[0,4000] are shown in Fig. 3(A) to Fig. 3(C).

The model validity tests of (19) for the identified model were all within the 95% confidence intervals, and the
model was therefore accepted. The comparison between the one-step-ahead (OSA) prediction (the dashed line)
and the original measurement data (the solid line), along with the prediction error over the range [0,4344] are
shown in Fig. 4, where the value of the covariance of the prediction error is &>=35.11. The part over the range

[4001,4344] is expanded and depicted in Fig. 5. Inspection of figure 4 and 5 shows that the model fits the data

extremely well.
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Fig. 3 (A) The estimated time-varying coefficients Fig. 3 (B) The estimated time-varying coefficients
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6. Conclusions

A NARMAX wavelet based identification scheme for general nonlinear time-varying systems has been
introduced. Initially a NARMAX parameter estimate procedure is applied to obtain a set of model terms. A
nonlinear time-varying model structure can then be formed. This model structure contains several other types of
traditional linear and nonlinear models as special cases. By expanding each time-varying coefficient in the model
as a wavelet expansion, the time-varying problem is transformed into a linear-in-the-parameters regression
problem which can be solved using the orthogonal forward regression algorithm. The identification of a model

relating to the terrestrial magnetosphere was used to illustrate the application of the new identification approach.
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