This is a repository copy of Steepest Descent for a Linear Operator Equation of the
Second Kind with Application to Tikhonov Regularization.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/84613/

Monograph:

Dodd, T.J. and Harrison, R.F. (2002) Steepest Descent for a Linear Operator Equation of
the Second Kind with Application to Tikhonov Regularization. Research Report. ACSE
Research Report 827 . Department of Automatic Control and Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt s:/leprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

L

UNIVERSITY OF SHEFFIELD

Department
of
Automatic Control and
Systems Engineering

Research Report Number 827

629

(s)




Steepest Descent for a Linear Operator Equation
of the Second Kind with Application to Tikhonov
Regularization

Tony J. Dodd and Robert F. Harrison
Department of Automatic Control and Systems Engineering
The University of Sheffield, Sheffield S1 3]JD, UK
e-mail: {t.j.dodd, r.f.harrison}@shef.ac.uk

Research Report No. 827
October 2002




Abstract

Let H;, H; be Hilbert spaces, T' a bounded linear operator on H; into H; such
that the range of T, R(T), is closed. Let T* denote the adjoint of T. In
this paper, we review the generalised solution, and method of steepest descent,
for the linear operator equation, Tz = b,b € Hs. Further, we establish the
convergence of the method of steepest descent to the unique solution (T*T +
AI)~1T*b,b € H, of the operator equation of the second kind, (T*T + Al)z =
T*b, if zp is in the range of T*. This new result is shown to have immediate
application to the iterative solution of the Tikhonov regularisation method for
the original operator equation, Tz = b,b € Hs.




1 Introduction

Following the discussions in (Kammerer and Nashed 1972; Nashed 1970), let
H; and Hj be Hilbert spaces over the same scalars (real or complex). For any
subspace, S, of Hy or Hj, the orthogonal complement and closure of S are
denoted by S+ and 5 respectively. We consider a bounded linear operator, T,
on Hj into Hy. Then T* denotes the adjoint of T, i.e. for all z € Hy,be Hy 1,

(Tz,b) = (z, T*b).

Let R(T) and N (T) denote, respectively, the range and null spaces of T". The
following relations are then well known (Nashed 1970)

H = N(T)eN(T), (1)

Hy, = N(T)eNT), (2

{RMY* =N(T™), R(T*) = N(T)*, (3)
R(T) ia closed <4 R(T*) is closed , (4)
N(T*T) = N(T), R(T) = R(TT*). (5)

Definition 1.1 A veclor u € H; is called a least squares solution of the linear

operator equation
Tz=b, be H, (6)

if inf{||Tz — b : € Hy} = ||Tu—bl.

It can be shown that u is a least squares solution of (6) if, and only if, u is
a solution of the “normal” equation

T*Tz = T"*b. (7
The following theorem summarises this.

Theorem 1.1 (Groetsch, 1977) Suppose T : H; = Hj has closed range and
b € Hy, then the following conditions on = € Hy are equivalent:

(i) Tz = P;
(i) ||Tu — bl| < || Tz — b| for any = € Hy; and
(#i) T*Tx = T*b.
where P denotes the projection of b onto N'(T*)L = R(T).

In the case that H; is finite dimensional (7) always has at least one solution
since R(T*) = R(T*T). However, when H; is infinite dimensional and the
range, R(T'), is not closed this equation may have no solutions. We therefore
asgume that R(T') is closed. Then there always exists at least one least squares

1In expressing inner products, (-,-), it is assumed the Hilbert space to which the inner
praduct belongs is obvious.




solution for each b € Hy. For N(T') # {0} there will be infinitely many solutions
since if u is a least squares solution so is u + w for any w € N(T).

By the continuity and linearity of T' and T, the set, S, of all least squares
solutions of (6) is a nonempty closed, convex set. Hence it contains a unique
element, v, of minimal norm, i.e.,

[Ty —b]| < [Tz~ b|| for all z € Hy,

and
[[v]] < |l forallue S, u#w.

We then define the generalised inverse of T as the operator T : Hy — Hj such
that 7th = v, i.e. that operator which assigns, to each b € Hy, the unique least
squares solution of minimal norm of (6). Tt is linear and bounded. Note that
if T' is invertible we have Tt = T—1. The associated least squares solution of
minimal norm is the generalised solution, denoted 21(= v). It can also be shown
that T1b is the unique least squares solution in R(T™*) (Nashed 1970).

We will need the following lemma in Section 4.

Lemma 1.1 (Petryshyn, 1967) Suppose T is as described above and R(T)
is closed. Then the restriction of T to N(T)* = R(T*) has a bounded inverse.
Equivalently, there ezists a number m > 0 such that ||Tz|| > ml|z| for all
z € N(T)L = R(T*).

For a detailed introduction to the theory of generalised inverses of linear
operators with closed and arbitrary range, see (Groetsch 1977). Additional
useful references include (Ben-Israel and Charnes 1963) which describes, specif-
ically, the Euclidean case, (Desoer and Whalen 1963; Nashed 1971) and the
volume (Nashed 1976). In the next section a particular class of linear operator
equations, those of the second kind, ig described. Under certain, shown, condi-
tions such equations are uniquely invertible and therefore the generalised inverse
is the true inverse. The method of steepest descent for the iterative solution of
linear operator equations is summarised in Section 3 (Nashed 1970; McCormick
and Rodrigue 1975). For the class of equations of the second kind considered
an alternative method of steepest descent is presented in Section 4. It is shown,
uging an extension of the proof in (Nashed 1970), that the steepest descent it-
eration converges to the unique solution. In Section 5 the operator equation of
the second kind is applied to the Tikhonov regularisation of the original linear
operator equation. A natural corollary of the new steepest descent method is
therefore an iterative solution to the Tikhonov regularisation method.

2 Operator Equations of the Second Kind
Consider now the linear operator equation

Az —Az=y (8)




where z,y € Hy, A is a linear operator on Hj into Hj, A is a (complex) num-
ber and I is the identity operator on H;. This equation is called an operator
equation of the second kind, by analogy with integral equations (in contrast we
call (6) an operator equation of the first kind) (Kammerer and Nashed 1972;
Kantorovich and Akilov 1964).

We assume now that the operator A = T*T where T is as in Section 1,
i.e. linear and bounded. A is then itself bounded and also self-adjoint and
nonnegative (often simply referred to as positive), the latter since

(Az,z) = (T*Tx,z) = (Tz,Tz) = ||Tz| > 0. (9)
Theorem 2.1 Assume that A > 0, then the equation
(T"T+ Az =y
is uniguely solvable for all y € Hy, i.e. the inverse (T*T + M)~ always ezists.

Proof. We require that T*T + Al is one-to-one for every A > 0. Let T*T'z +
Az = 0. Multiplication by z gives (T*Tz,z) + (Az,z) = 0. By the definition of
the adjoint (T'z, Tz) + A{z,z) = 0 and therefore we must havez = 0. O
Suppose, further, that y = T"b, b € Hs, then we have

Corollary 2.1 For every b € Hy and A > 0, the equation
(T*T 4+ Az =T"b

is uniquely solvable. The solution can be wriltten in the form z = (T°T +
A~1T*b.

Theorem 2.2 For every b € Ha and A > 0, the solution of the equation
(T*T+ Az =T"b

can be written, equivalently, in the form 2 = T*(TT* + A\I)~'b and therefore we
must have z € R(T*).

Proof. Consider the operator T*T'T* 4+ AT™*, which gives rise to the following
equation
T*(TT" + M) = (T*T + AI)T*

where it is assumed that the appropriate identity operator, I, is used on each
side. Premultiplying by (T*T + AI)~!,

(T*T + A1) \T*(TT* + AI) = T*
and subsequently postmultiplying by (T'T* + AI)~?,
(T*T + AI) M\ = T*(TT* + AN

But we already have z = (T*T + AI)~T*b (Corollary 2.1) and therefore the
unique solution must also be expressible ag 2z = T*(TT* + AI)~'b. It is then
obvious that z € R(T*). O




3 The Method of Steepest Descent

Let T' be a bounded linear operator on H; into Hy and assume that R(T) is
closed. Suppose that J : Hy — R is the non-negative functional

J@) = oIz bl (10)
We seek a point z* € H; such that
J(z*) = inf{J(z) : = € H;}.
The method of steepest descent for minimising the functional, J(z), for b € H, is

defined, for a given initial approximation, zg, by the following sequence (Nashed
1970; McCormick and Rodrigue 1975)

Tn41 =:I:n"—’YﬂRn, ﬂ’—’"U,].,... (11)
where
R, =TTz, —T'b=T*(Tz,, — b) (12)
and 1 Ba?
= . 13
™ = T Ra[P e

Theorem 3.1 (Nashed, 1970) Let Hy and H, be Hilbert spaces and T be
a bounded linear operator on Hy into Hy such that its range, R(T), is closed.
The sequence of steepest descent defined by (11)-(13) converges to a least squares
solution of Tz = b for any 2o € H1. The sequence {z,} converges to the unique
element T1b if, and only if, zo € R(T*).

4 Steepest Descent for Equations of the Second
Kind

Again, let T be a bounded linear operator on H; into Hy and assume that R(T')
is closed. Suppose now that instead of J(z) we have the non-negative functional

1 A
7(@) = Iz~ P + 3 el (14)
We then seek a point z* € H; such that
J'(z*) = inf{J'(z) : z € Hy}. (15)

Assuming that J' is Fréchet differentiable at each point of Hj, and given an
initial approximation, zp, the method of steepest descent for minimising J'(z)
is now given by

Tni1 = Tn — anVJ'(20) (16)




where V.J!(z,,) is the gradient of J' at 2, and the @, are chosen to minimise
J'(zp41) at each step.
The gradient is given by

VI (z)=T"Tz—T*b+ Az =R' an
and therefore the steepest descent algorithm becomes
Tpt1 = Tn — anR). (18)

Choosing @, to minimise J'(Zn41)
P (@n41) = 3 Tons1 = P + 3zl
but z,41 = =, — a, R, therefore
P (@ns2) = 31T (5 — anR) = BP + Sz — cnRL .
Substituting r, = Tz, — b and expanding

1 A
J(2n41) = 5("71 = “nTR‘na n— anTR‘n) + E(“’n = a’—nR:ﬂzn = C!nR:;)

1 ' o ! ] A
= E(Tn,f'n) — Gn<f'n,TRn) -+ T(TR TRn) + E(.‘Iﬂ,ﬂ:n)

I
2
—an(zn, ) + S (B, RY).

This is minimised for
OJ (Zny1) _ 0
8o,

Therefore

'_("'mTR::) + a,,(TR:‘,TR:l) = A(me:x) + an(R:,,R:,) =0
from which ' i

= (Tn,TR") + )\(mmR:—.) !
(TR, TR}) + MR, R.,)

But

(rn:TR'n) = (T‘rmR::)

(R, — Az, R])
(R;:R;) . A(zn: R:s)

and therefore, finally,
IR

Qn = .
" IR + MRy |2

(19)




As a check we have
8*J' (2n11)

2
da

Il

(TR,,TR,) + MR,,R,)

ITRLII? + Al B, 2 0

for A > 0, therefore the particular choice of a,, (19), does, in fact, minimise
J ’($n+1).

The method of steepest descent for minimising the functional J'(2) for b €
H> is defined, for a given initial approximation, zg, by the following sequence

Tnt1 =T —apRy,, n=0,... (20)

'nd
where
R, =T*Tz, —T*b+ Az, (21)
and —
| Rp |
TR |12 + Al Ry |12
Theorem 4.1 Let Hy and Hy be Hilbert spaces and T be a bounded linear
operator on Hy into Hy such that its range, R(T), is closed. The sequence of

steepest descent defined by (20)-(22) converges to the unique solution, (T*T +
ANTIT*b, of (T*T + Az = T*b for any zp € R(T*) = R(T*T).

Proof.

an = | (22)

1
J(zpy1) = E(Ta:n —b—a,TR,, Tz, — b—a,TR))
+'E\(m,. — anRl,z, — o, R.).
Expanding
' ! 2 s o OB i i1 . A, o
' (@n41) = 3lTon = bl° — an{Tzn — b, TRy) + —FITRLII + S izl
' ap 1412
—apMzq, R,) + ?)‘"Rn” L
But J'(z,) = 3||[T2zn — b]|* + 3(|2al|?, thus
2
J'@ni1) = J'(@n) = an(T20—b,TR,) + |TR, | -
’ o 2
apMz,, R + ?M[R'ﬂ"
which can also be written as
2
J(Zny1) = J(@n) — an(T* T2y — T*b + Aty — Azn, R,) + %‘”TRH[E

o 1112
—anA(zn, Ry,) + '2_)‘”Rn[| :




Now, T*Tz, — T*b + Az, = R}, and thus

a? a?
J(#ng1) = J’(mn) "an(R::_ Az, RL)"“?"”TR;”E —ap(z,, RL)+7“A”R:I”2'

Therefore
a;
I (Tat1) = J(zn) — anl[Ry|1? + Aan(za, R}) + f—2"||'-T'Ri.||2
az
_)‘an(zn:R:.) + EEA’]R:-;”?'
and finally

a? o?
J'(@nt1) = I (zn) — anllRo? + —2"'“||TR:;|E2 + ?ﬂ'\”R;”z-

Substituting for a,, (19),

J'(LL‘ 1) - J,(E ) - ”R:l”‘ 4 l ”R:IN‘ "TR' "2
. w) TR+ NI T 2 (IR + A | Fon
X R -
A i R
2 (IR + NI onl
IR
= JCn) -~ R
! |14
L1 IR

2 TR' |12 + AR |12
5 (TR + MR e I Ball” + Al Ball)

and finally

1 (£ s

2||ITRy|1* + ARy |12

Therefore J'(2n41) < J'(z,) for all n, with equality holding when R/, = 0.
Recursively

J'(@n41) = J'(2n) —

13 (R
Jl i r = _—1.____W.
(@ni2) = 7'@) =3 3w+ R

Since J'(z) (= 1||Tz — b||* + 2||z||?) is bounded below by zero

00 /|4
R (23)
TR + AR

i=0
Moreover, by Schwarz’s inequality, ||TR.||? < ||T|*||R;||* and therefore

TR + MR TR + AR}

BT + X).

I IA




From which

i [EcA Tl . i (2Ll
= ITIPHRN® + MBI =5 IR + A)
(2l

1 o0 e o ]
Y IR <Y e (24)
ITI? + A & = TR + MR}l
Combining (23) and (24)
(s ]
DIRP < oo
i=0
and therefore R!, = T*Tz,, — T*b+ Az, = 0 as n — oo.
All that remains is to show strong convergence of {,}. By recursion
Tntl = To — ZO‘,‘Rz (25)
i=0
Hence, for m > n,
m—1
Ty — Ty = — Z a;Rj. (26)
i=n

Now
R =T*Tx; — T*b+ Ax; = (T*T + Iz; — T*b

Therefore, if zg € R(T*) we must have R} € R(T*) for all i and therefore
Ty — Ty € R(T*) for all m,n. Then, by Lemma 1.1

lzm — zall® < [IT@m — 2a)I* = (T°T (2 — Tn), Tm — n).  (27)
But

(T*T(xm — Tn); Tm — Tn)
= (T"T(zm — 2n) —T*b+T*b— Az + Azpy — ATy + ATy, Ty — Tn)
(T*T2m — T*b+ Az, 2rn — Zn) — (T* Tz, — T*b+ ATy, Ty — Tn) —
Mam — Tny T — Zn)

and therefore
8||zm — 2all2 € (T*Tzm — T*b+ AL, 2 — Tn) —
(T*T2p — T*b + AZn, & — Tn) — Al|Tm — Za|-
Since A > 0 we have 2 + A > 0 and therefore

(62 + Allzm — mn"2

(T*Tzym —T*b+ Ay, T — Zn) — (T* T2 — T*b+ AZp, Ty — Tn)
{T*Tzm — T*b + AL, Zm — Tn)| + (T Tz — T*b+ A2y, Ty — Tn)|
|IT* Tt — T*b+ Az ||||2m — Zall + [|T* T2y — T*b + Az,||||Zen — 2l

IA A A




But, [|#m — Za|| < 1/8||T (2m — 2 )||; and therefore
(0 + Nlzm — za|* <
(1/8)(IT*Tzm — T*b + Azm|l + T Tz — T*b + Azn|)IT (2m — zn)|l-
{T(zm — =)} is bounded, say ||T(#m — 2,)|| £ M and hence
(@ + Nlzm — zall?

M (T am — T+ Mzl + [T*Ton — T*b + Az

=
4
Thus {z,} is a Cauchy sequence and therefore converges to an element, u € Hy,
and

IA

(R}, + R.) =+ 0 as m,n — oo.

1;1£n J'(zn) = J'(u) = inf{J'(z) : z € H;} (28)
Since
T*Tz, —T*b+ dzn =R, = 0 (29)
then
(T*T + A)u=T"b (30)
or
u= (T"T + AN (31)

i.e. u is the unique solution (Corollary 2.1).
Now, we have already required that zo € R(T™*) (to ensure R} € R(T*)) and
therefore

Tnp1 =20 — 3 R} € R(T™) (32)
i=0
since R} € R(T*) for all i. Since R(T™) is closed then u € R(T*). Now
(T*T + AI)~1T*b is the unique solution (in R(T*)) and therefore we must have
that {z,} converges to u = (T*T + AI)~'T*b. O

5 Application to Tikhonov Regularisation

The problem of solving (6) is said to be well posed if a unique solution exists
which depends continuously on b. Following (de Mol 1992) we adopt a less
restrictive definition since we know that a unique generalised solution exista.
The following statements are equivalent:

(i) the problem of solving T'z = b is well posed;
(ii) z! exists for any b € Hy;
(iii) T is continuous (equivalently bounded);
(iv) R(T) is closed; and




(v) A =0 is not an accumulation point of the spectrum of T°T.

Otherwise, the problem is said to be ill-posed, i.e. the generalised inverse, T,
is unbounded. In order to obtain estimates of z! which are stable to variations
in b we must seek regularised solutions of the ill-posed problem.

We have restricted our attention to the case where R(T) is closed (and
hence Tt bounded), for which the problem of solving (6) is always well posed.
However, this does not ensure that the generalised solution will be numerically
stable. The relative error in the generalised solution corresponding to variations
in b is bounded as follows:

5=t 8
1=t < SO T )

where C(T') is the condition number of the operator T, given by

o) = [Tz = /322 (30

Amin and Amaz are, respectively, the lower and upper limits of the positive part
of the spectrum of T'T*. For a large condition number, the amplification of §b
may cause the generalised solution, z!, to be unstable. The problem is then
said to be ill-conditioned and, even though well-posed, we still need to apply
regularisation to achieve a stable solution. This is the reason for discussing
regularisation of the linear operator equation, (6), even though R(T) is closed.
‘We now describe the particular case of the Tikhonov regularisation method (Groetach
1984). Consider the problem of minimising the functional (cf. (14))

83(z) = 1T~ b + 3 el (35)

The quadratic functional ®,(z) has a unique minimum, denoted by z,, which
is a solution of

(T*T + A)zy = T*b (36)

where I denotes the appropriate identity operator. We have already seen that
the operator (T™*T + AI) is invertible for A > 0 and hence

2y = Lyb, where Ly = (T*T + A\I)~'T* (37

is known as the Tikhonov regularisation operator. We can also write the regu-
lariger as follows
Ly =T*(TT* + AI)~! (38)

from which it is clear that =y € R(T*) C N(T)! and hence (37) defines a
regularisation method (for a proof see (Groetsch 1984; Kirsch 1996)).

The following is therefore a natural corollary of the method of steepest de-
scent, Theorem 4.1, which provides an iterative solution to the Tikhonov regu-
larisation method.
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Corollary 5.1 Let H; and H; be Hilbert spaces and T be a bounded linear
operator on Hy into Ha such that its range, R(T), is closed. Assume, further,
that the problem of solving the linear operator equation, Tz = b,b € H; for
x € Hy is ill-conditioned. The sequence of steepest descent defined by (20)-(22)
converges to the unigue Tikhonov regularised solution, (T*T+ AI)~1T*b for any
zq € R(T*) = R(T*T).
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