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The classical XY model with conserved angular momentum is an archetypal
non-Newtonian fluid

R. M. L. Evans*,! Craig A. Hall,’ R. Aditi Simha,? and Tom S. Welsh

1School of Mathematics, University of Leeds, LS2 9JT, United Kingdom
*IIT Madras
(Dated: March 3, 2015)

We find that the classical one-dimensional (1D) XY model, with angular-momentum-conserving
Langevin dynamics, mimics the non-Newtonian flow regimes characteristic of soft matter when
subjected to counter-rotating boundaries. An elaborate steady-state phase diagram has continuous
and first-order transitions between states of uniform flow, shear-banding, solid-fluid coexistence and
slip-planes. Results of numerically studies and a concise mean-field constitutive relation, offer a
paradigm for diverse non-equilibrium complex fluids.

Apart from the Ising model, the classical XY Model
(also known as the classical rotor model or O(2) model)
is the simplest paradigm of condensed matter physics [1].
Like the Ising model, its applications extend far beyond
the simple magnetic systems that first inspired it [2—4].

The 1D XY model consists of a chain of rotors (or
“spins”), each with one continuous degree of freedom:
the angle 0; of a two-component unit vector s; =
(cos®;,sin6;). Each site couples only to its two nearest
neighbours, via a potential that favours parallel align-
ment. So the Hamiltonian (in units of the coupling con-
stant) is given by H = Zjvzl [—sj Sj_1 + %95] where
the rotor’s moment of inertia (scaling the final, kinetic
energy term) has been set to unity without loss of gen-
erality. As with any 1D system with short-range inter-
actions, the 1D XY model has trivial equilibrium phase
behaviour, with a single transition to an ordered state
at zero temperature [5]. Away from equilibrium, we
have found that this simple 1D model has an elabo-
rate steady-state phase diagram with transitions between
flow-regimes that mimic the phenomenology of soft mat-
ter [6, 7].

Whereas a Newtonian fluid, under uniform stress, flows
with uniform shear rate, complex fluids (e.g. foams, par-
ticulate suspensions and smectic liquid crystals) can ex-
hibit coexistence of macroscopic regions with distinct
shear rates [8-15]. This phenomenon, known as shear
banding, has been explained in terms of various models
with non-trivial stress fields [16-19]. The definition of
shear flow requires at least two spatial dimensions. In
the 1D XY model, if we represent the unit vectors s; ly-
ing in a plane perpendicular to the one spatial dimension
of their locations j, then we can interpret their rotational
velocity differences as shear rates. Surprisingly, we find
the 1D XY model exhibits shear-banding and other non-
Newtonian phenomena routinely seen in soft matter.

While equilibrium phase behaviour is independent of
the model’s dynamics, non-equilibrium states require us
to specify an equation of motion. We use Langevin dy-
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namics, at temperature 7', with kg = 1, and include only
forces (torques) that respect Newton’s (rotational) third
law of motion and so conserve angular momentum. So,
like the conservative forces, the frictional and stochastic
forces act only between neighbours, and depend on their
relative motion and orientation. With only angular de-
grees of freedom — no radial motion — no centrifugal or
coriolis forces act, so the system is independent of abso-
lute angular velocity and respects an angular version of
Galilean relativity. Thus the Langevin equation for the
XY model with conserved angular momentum is given by

b= r—r, 1)
7 = sinA0; + pAb; +1;(t) (2)

where 7; is the torque applied by rotor j41 to rotor j, at
relative angle Af; = 0,41 —6;. The coeflicient of friction
is p, and n;(t) are the usual delta-correlated Gaussian-
distributed functions with (n;(t)n;(t")) = 2uTé(t — t')d;;
and zero mean. Hamilton’s equations are recovered in
the conservative case T'= p = 0.

Although the model is insensitive to absolute rota-
tional velocities, we can drive it into a non-equilibrium
steady state by rotating one of its boundaries relative
to the other (as in a parallel-plate rheometer shearing a
sample of fluid [20-22]). To impose periodic boundary
conditions whilst also applying a relative torque across
the system, rotors at opposite ends of the chain are des-
ignated as neighbours, but see each other through an an-
gular offset that increases at a constant angular velocity.
Thus the set of N rotors lives in a periodic space with
an overall twist that rotates at a rate N4. So all rotors
respect the same equations of motion, and the Hamilto-
nian remains that of the XY model, while the system as
a whole experiences a mean shear rate (angular velocity
difference per rotor) of .

Here, we present the results of numerically exploring
the XY model’s steady-state behaviour in shear flow, and
a mean-field analysis explaining its phenomenology.

The DPD algorithm [23] was used to evolve the state of
the system. Finite-size effects were eliminated by using
512 < N < 2048. Statistically steady states were estab-
lished by comparing systems with disparate initial condi-
tions. The discrete time step dt was chosen adaptively to
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FIG. 1: Angular velocity versus position in a chain of 512
rotors, typifying the four distinct steady states at asymptot-
ically late times (¢ > 4500). Main panels: time-averaged
over several rotation-times (~ 47'). Insets: instantaneous
snap-shots. (a) Uniform at (T, u,7y) = (0.02,10,0.007813);
(b) shear banding at (7, u,%) = (0.006,1,0.002). (c) solid-
fluid coexistence at (T, u,) = (0.001,1,0.0078125); (d) Slip
planes at (T, u, %) = (0.001,0.5,0.00585938);

ensure that the relative angular increment between any
neighbours never exceeded 0.2.

Four qualitatively distinct types of flow behaviour were
observed (Fig. 1), separated by phase transitions or
narrow cross-over regimes: a state of statistically uni-
form shear flow throughout the system, a shear-banding
regime, a coexistence between solid and fluid regions,
and a regime of solid regions separated by localized slip
planes. Animations are available online [24].

Empirically, we find an approximate data-collapse
(Fig. 2) into fairly clearly-defined phase regions on axes
of (T%) and (Tu), allowing us to present all of our sim-
ulated phase data in one figure. The simulations were
performed at values of y ranging from 1073 to 10% and ¥
from 1072 to 7.0. On increasing temperature or friction
coefficient or shear rate, the trend is to progress from the
slip-plane regime, through solid-fluid coexistence, then
the shear-banding regime, to a uniform state. For some
parameter values, one or both of the intermediate states
are bypassed.

In the uniform phase, local shear rate s; = (dAf;/dt)
is independent of location j, where (...) indicates a time-
average. Local shear rate s; should not be confused with
its spatial average, the global shear rate 4. The two are
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FIG. 2: (Colour on-line) Steady states, on axes Ty versus
T+. Symbols represent: uniform phase (red open circles);
shear banding (yellow filled diamonds); solid-fluid coexistence
(green filled squares); slip-plane phase (blue crosses).

equal in the uniform phase only. It exists at large param-
eter values, when either thermal energy or shear-induced
kinetic energy of relative motion dominates over the in-
teraction potential, or when frictional forces dominate
over the potential gradient.

In the slip-plane regime, s; = 0 at most locations j,
and the relative angle Ag; exhibits only small-amplitude
excursions about a constant value, within the potential
well. These rotor-pairs are “locked” in the terminology
of Biittiker et al. [25]. So, most of the system behaves
as an elastic solid, while all of the shear flux is concen-
trated in a small population of isolated inter-rotor gaps
(the slip planes), where the relative angle is “running”.
The location k of each slip plane remains fixed for a du-
ration far exceeding its internal rotation time 27m/Afy.
Slip planes in surfactant cubic phases have been mod-
elled by Jones and McLeish [26] using the same periodic
potential, treated perturbatively.

The stability of each solid region requires the time-
averaged torque to be less than the largest potential
gradient (unity), the threshold torque at which an elas-
tic solid region would yield. This follows from time-
averaging Eq. 2 given s; = 0 by definition of “solid”.
Repeated traversing of the periodic potential at each
slip plane creates a torque oscillation that propagates
through the nearby solid as damped torsion waves, vis-
ible as very short slanting lines in Fig. 3a, which is a
space-time diagram of the system’s motion, with all of the
shear concentrated in a single slip plane near the right-
hand end. Meanwhile long wavelength torsional waves of
lower amplitude travel across the entire system, visible
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FIG. 3: Grey scale represents inter-rotor potential (from
U = —1 (white) to U = 1 (black)) as a function of posi-
tion (whole system shown horizonally) and time (increasing
upwards). (a) At (T,u,%) = (107*,0.5,0.001896), with one
slip plane. Image spans 512 rotors and 375 time units, after
initialization exceeding 4500 time units. (b) Solid-fluid co-
existence at (T, u, ) = (0.0005,5,0.002), showing N = 1024
rotors and 750 time units, after ¢ = 4500. (c) At (T, p,5) =
(1073,10,0.017578125), a near-critical phase. Image spans
N = 1024 rotors and 375 time units, after ¢ > 65000.

as long, faint slanting marks in Fig. 3a.

Whereas the space-time diagram for slip planes
(Fig. 3a) shows linear propagation of small-amplitude
waves through the solid, large-amplitude non-linear
waves of yielding events propagate through the fluid re-
gion of a solid-fluid coexistence (Fig. 3b), where black
marks signify the maximum of the potential being over-
come. Each yield event locally displaces enough stress
to trigger another yield event nearby, creating slanting
chains of events in Fig. 3b. Local stress excitations from
these events maintain fluid activity within a finite region
of the system, while the remaining portion can remain
solid because the mean torque is just below the yield-
point value (unity). Due to finite temperature, some
relatively rare yield events occur in the “solid” region
also, so that it is in fact a high-viscosity fluid, and this
coexistence may not be qualitatively distinct from shear-
banding.

It is surprising that the correlated chains of yield events
persistently recur within the same finite locales (the fluid

regions), rather than spreading across the whole system.
We infer that there exists a threshold rate-density of bar-
rier crossings, below which they cannot trigger each other
in a chain reaction (though it is not obvious to us why it
should exist). Thus, if the fluid region were to grow, at
the expense of the solid, its local shear rate s; would fall,
since the global rate 4 would be spread over a larger fluid.
Thus the rate-density of barrier crossings within the fluid
would drop below the threshold, causing a portion of it to
re-freeze. If the fluid region were to shrink, its local shear
rate would rise, causing mean torque to rise, due to the
frictional term pA@; in Eq. 2. So part of the solid region
would yield and melt. Thus the solid-fluid coexistence is
maintained.

In the shear-banding regime, the system self-organises
into macroscopic regions with different effective viscosi-
ties. A continuous transition appears to separate the
shear-banded and uniform states, but we have not estab-
lished whether this is an isolated critical point, a criti-
cal end-point of a first-order phase transition, or a line
of continuous transitions. Near the transition, critical
phenomena are observed. Although diverging correlation
lengths are impossible in locally-interacting 1D systems
at equilibrium, our non-equilibrium steady state exhibits
correlated configurations (where A ~ 7 = U =~ 1) ex-
tending across large distances, but not at constant time,
apparent only in the space-time domain (Fig. 3c). We
note a resemblance to some of the flow phenomena in the
space-time diagrams of Ref. [28].

The equation of motion (from Eq. (1)) for the relative
angle Af; between neighbours,

Aéj:Tj_H +Tj_1—27'j, (3)

with Eq. (2), forms a closed set of equations indepen-
dent of any absolute angular positions ;. Imposing the
steady-state condition that time-averaged accelerations
vanish, together with the periodic boundary condition,
that the torques are equal at opposite ends of the chain,
Eq. (3) implies that time-averaged torque is uniform,
(1) =7 ¥ j, resembling a uniform-stress condition for
steady shear flow of a fluid.

The equations of motion (3 and 2) are non-linear in
Af;(t) which is generally not a small variable. It is use-
ful to recast them [27] in terms of the fluctuations ¢;(t)
about constant shear rate, defined (with vanishing time-
average) by Af;(t) = s;t + ¢; + ¢;(t) with constant off-
sets c¢;. Time-averaging and using the boundedness of
€;(t) yields a relationship between local shear rate s; and
mean torque, 7 = ps;+(sin(s; t + ¢; +¢;(t))) . The final
term would vanish for constant relative motion (g; = 0),
yielding a Newtonian fluid of viscosity p. But fluctua-
tions at a frequency matching the local shear rate lead
to a non-uniform distribution of angles Af; and hence
non-Newtonian rheology.

Next, we expand ¢;(t) in Fourier modes, ¢;(t) =
>, &j(w)e™t where the summation is over a discrete
but infinite set of frequencies {w} that are not neces-
sarily equally or finitely spaced, since the motion may be



aperiodic. A continuous Fourier transform is not used
because ¢;(t) has a discrete spectrum of delta functions,
excited by the continual rotation of the interacting pairs
of rotors. The torque and noise functions are similarly
expanded. Thus, mean values are given by £;(0) = 0 and
7;(0) =7, and Eq. 3 becomes

—w? &5 (w) = Fipa(w) + 71 (w) — 275 (w). (4)

Analysis is thus far exact. We now assume small fluc-
tuations and linearize Eq. 2 with respect to ¢, yielding
[27] the torque-spectrum

Ti(w) = ps;6(w,0)+ %ib;é(w, —sj) — %ibjé(w, sj) + 05 (w)
+iwpéj(w) + 5bié5(w — s5) + 5078 (w + 55)

(5)

where 7);(w) = (n;(t) exp(—iwt)) and b; = exp(ic;) and
asterisks indicate complex-conjugation. In principal, so-
lution of Eqs 4 and 5 gives the torque for any given
configuration of shear rates {s;} and offsets {c;}, thus
yielding a spatial constitutive relation for the XY model.
Torque uniformity then restricts the allowed configura-
tions, yielding phase behaviour. The solution is straight-
forward in solid regions, where s; = 0, and we find
T = sin(c¢;), representing an elastic response to the mean
angle of twist, c;.

For general s; we develop a mean-field theory, assum-
ing uncorrelated fluctuations of neighbours. Averaging
Eq. 4 over complex phase of 741 and 741, only their
zero-frequency contributions remain, yielding

w?é;(w) = 27j(w) — 27 6(w, 0), (6)

equivalent to placing a single rotor-pair in a medium of
constant torque. In a fluid region, where s; # 0, the
offset c¢; becomes arbitrary, so we then choose ¢; = 0.
Only one shear rate s; = s remains, so Eq. 5 and 6
generate harmonic spectra at integer multiples of s.

We make further progress, in the mean-field spirit,
by dropping (average over) the noise term, equivalent
to setting zero temperature and, without further ap-
proximation, obtain a recurrence relation for the ra-
tio R, = ¢£;(ns)/é;j(ln — 1]s) for n > 1: 1/R, =
ns(ns — 2ip) — Rp41. Using this to define the variable
R, allows us to express a neat consititutive relation, in-
volving the imaginary part of a continued fraction,

7 = sin(c;) (s, 0) + pus + (R1) (7)
1
Rl = B )
s(s — 2ip) — 25(2572@1)71

1
3s(3s—2ip)— L

plotted in Fig. 4a for various values of p.

A local constitutive relation (a fluid’s stress as a func-
tion of local shear rate, Fig. 4a), has a standard inter-
pretation [29]. A negative gradient indicates an unstable
regime where unbalanced stresses due to small nonuni-
formities act to enhance the perturbation. Coexistences
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FIG. 4: (a) Mean-field predictions (Eq. 7) of torque 7 versus
us, where p is friction coefficient and s local shear rate, for
various p. (b & c) Comparison between the theory (continu-
ous curves), as a function of local shear rate s, and simulation
measurements (symbols) plotted against global shear rate 7 at
T = 0.01. Both are evaluated for (b) = 0.2 and (c) p = 1.0.

can occur between s values at equal 7. Thus, coexis-
tence is necessary wherever the gradient is negative, and
forbidden wherever s is single-valued as a function of 7.

For s = 0, Eq. 7 describes a solid capable of support-
ing any torque in the range |7| < 1, implying a vertical
line segment in Fig. 4a. So curves below the dotted line
(where 7 = 1) at finite s allow solid-fluid coexistence.

So the approximate theory reproduces the observed
uniform states at high u, a continuous transition (inflec-
tion in Fig. 4a) to shear-banding on decreasing p, and
first-order “freezing” (to solid-fluid or slip-plane states)
at lower u. Furthermore, Eq. 7 is quantitatively reason-
able, compared with simulation measurements(Fig. 4b
and c¢) of 7 versus % (the volume-weighted mean of s).
Metastability complicates the simulations at 7" = 0 so the
coldest reliable results (7' = 0.01) are compared with the
zero-temperature theory. In Fig. 4b, the systems crosses
a phase transition (gradient discontinuity) directly from
uniformity at high 4 to the slip-plane state at low 5. A
near-critical response (diverging (97/07)p ) is seen at
low s in (Fig. 4c), where large fluctuations were observed.

It is remarkable how closely the angular-momentum-
conserving 1D XY model mimics diverse soft matter.
All fluids have a uniform-flow regime. Shear-banding is
found in polymers [8, 9], colloids [10, 11] and various sur-
factant phases [12-14]. Slip-planes occur in surfactant
cubic phases [26] and polymer melts [30, 31], and both
slip and coexistences are seen in foams [15, 32] and col-
loids [10, 11, 33]. The existence of all four phenomena in
a simple model with concise mean-field constitutive rela-
tion (Eq. 7) offers a paradigm for the physics underlying
non-equilibrium complex fluids.
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