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Abstract Ȃ The last twenty years has seen a growing interest in models of transportation 

networks which explicitly represent the epoch-to-epoch adaptive behaviour of travellers, 

such as the day-to-day dynamics of driversǯ route choicesǤ These models may represent the 
system as either a stochastic or deterministic process. A body of theoretical literature now 

exists on this topic, and the purpose of the present paper is to both synthesise and advance 

this theory. To provide a focus to the work we analyse such models in terms of their ability 

to capture various contributory sources of variance in transportation systems. Dealing 

separately with the cases of uncongested and congested networks, we examine how 

moment-based deterministic dynamical systems may be exactly or approximately derived 

from some underlying stochastic process. This opens up such problems to the tools of both 

deterministic dynamical systems (e.g. stability analysis) and stochastic processes (e.g. 

Monte Carlo methods, statistical inference). In analysing these sources of variation, we also 

make several new advances to the existing body of theory, in terms of: extending the 

model assumptions (e.g. randomly-varying choice probabilities and stochastic demand); 

deriving exact, explicit connections between stochastic and deterministic processes in 

uncongested networks; applying stabililty analysis in novel ways to moment 

characterisations; and last, but not least, providing new limit theorems for asymptotic 

(large demand) analysis of the dynamics of stochastic process models in congested 

networks. 

1. Introduction 

For many decades transport modellers and planners have relied on the steady-state 

equilibrium paradigm as the basis for predicting the impacts of transport measures, be this 

through the Deterministic User Equilibrium (DUE) or Stochastic User Equilibrium (SUE) 

approach. More recently the focus of much development has been on within-day dynamic 

extensions of the equilibrium paradigm, with Dynamic Traffic Assignment (DTA) models. 

Common to all these approaches is, however, the implicit assumption of an essentially 

unchanging world over days (or, at least, the assumption that such variation is 

unimportant, or that the general pattern of traffic is not sensitive to such variation).  

 

In contrast with equilibrium-based methods, dynamic process traffic assignment models 

emphasise the adaptive nature of traveller choices and the transport system over 

successive similar time periods, e.g. over days, weeks and months. We refer to such adaptations as Ǯday-to-day dynamicsǯǡ even though they may actually occur over longer 
periods than a day; this distinguishes them from the Ǯwithin-day dynamicǯ issues that have 
been the focus of much DTA research. Such dynamic process traffic assignment 

approaches have a history dating back to the works of Horowitz (1984), Smith (1984) and 

Cascetta (1987, 1989), and so we can make some claim to this being a mature research 

area. Two recent companion papers to the present one review the main sub-classes of this 

research field, notably discrete-time Stochastic Process (SP) models (Watling & Cantarella, 
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2012) and discrete- and continuous-time Deterministic Process (DP) models (Cantarella & 

Watling, 2012), developing further the unified treatment of DP and SP models presented 

by Cantarella & Cascetta (1995). It is clear that there is now a substantial body of theory on 

these methods, and so with the first work almost thirty years ago, it is timely to consider 

how far this framework can take us in analysing particular kinds of problem. 

 

While there is not the space here to describe all the contributions to this body of 

theoryrather the reader is referred to the reviews above and to the source 

referencessome key themes that have emerged in the study of day-to-day dynamic 

process traffic assignment models are:  

 

 Coincidence with equilibrium models: While day-to-day dynamic models avoid the 

premise of equilibrium, the notion of a fixed point of the dynamical system is still 

extremely important for understanding the modelled system. For example, if we know 

that all the point equilibria of a deterministic dynamical system are, say, DUE or SUE 

solutions, then we may exploit the body of literature on the multiplicity/uniqueness of 

DUE/SUE to infer properties of our day-to-day dynamical system. In this respect, we 

would highlight a recent strand of research exploring the coincidence between the 

point equilibria of certain classes of Ǯadjustment processǯ and DUE or boundedly-

rational equilibrium solutions (Zhang et al, 2001; Yang & Zhang, 2009; Guo & Liu, 

2010). For example, if a system is analysed shortly after an unplanned event (He & Liu, 

2012), a planned change (Watling et al, 2012), or after some responsive 

control/information system is implemented (Hu & Mahmassani, 1997), then it may not be reasonable to assume that drivers have adapted sufficiently to be ǲnear to a new equilibriumǳ ሺwhatever that may mean precisely). However, even in such cases it is 

useful to know that a day-to-day model of such a system possesses point equilibria that 

it may be headed towardthe question of whether it really is headed towards such 

equilibria is then the task of stability analysis (see below).  

 

 Stability analysis of point equilibria:  The classical analyses of deterministic dynamical 

systems focus on examining the point equilibria, and asking: i) is a point equilibrium 

locally stable (essentiallyǡ if we start sufficiently close to itǡ is there a finite Ǯballǯ that 
bounds its future distance from the equilibrium?); ii) is it convergent (essentially, 

given some initial conditions, will the system approach the equilibrium as time tends to 

infinity?); iii) is it locally asymptotically stable (is it both stable and convergent for 

some domain of attraction within a neighbourhood of the point equilibrium?); and iv) 

is it globally asymptotically stable (is the domain of attraction in iii) the entire state-

space?). A range of stability results of this kind now exist for various kinds of system in 

both continuous-time (Smith, 1984; Friesz et al, 1994; Zhang & Nagurney, 1996; Han & 

Du, 2012) and discrete-time (Cantarella & Cascetta, 1995; Watling, 1999; Bie and Lo, 

2010; Cantarella et al, 2012; Cantarella, 2013). Thus by characterising stability we are able to understand Ǯattractiveǯ states towards which the day-to-day dynamic model will 

be ultimately drawn over time. 

 

 Existence and convergence of stationary probability distributions: The analysis of 

stability, as described above, fundamentally lies within the domain of deterministic 

dynamical systems (i.e. DP models), yet corresponding issues arise in the study of SP 

models. Although relatively less attention has been paid to SP models, there still exist 

rather general frameworks for analysing SP traffic assignment models, that allow 
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inferences to be made concerning i) existence of stationary probability distributions 

over ergodic subsets of the state-space (an ergodic subset being effectively a minimal 

region of the state-space for which there is zero-probability of the process leaving once 

it has entered entered), ii) uniqueness of a stationary distribution for any given 

process (if i) and ii) together are satisfied, then we say the process itself is ergodic); 

and iii) (strong) convergence of the process to a unique stationary distribution. Results 

relating to these issues may be found in Cascetta (1989), Cantarella & Cascetta (1995) 

and Watling & Cantarella (2012). Even if we use Monte Carlo simulation as a means of 

computing this process, knowledge as to whether it is headed towards a unique 

stationary distribution clearly has important implications for the way we interpret 

such simulations. Moreover, for ergodic processes it follows that an unbiased estimate 

of stationary means, variances, etc. of the process may be gained from a single pseudo-

random realisation of the process, without the need multiple, replicated runs; clearly 

this has major implications for the computational load involved in implementing the 

approach. 

  

 Relationship between stationary probability distributions and equilibrium models: As 

discussed above, there is a correspondence between point II in the world of DPs and 

point III in the world of SPs; it is natural to ask, then, does there exist a body of work 

corresponding to point I (which is clearly associated with DPs) but in the world of SPs? 

Indeed there does, though with the difference that the correspondence is not an exact 

one, but an asymptotic one that may be established as the OD demands and link 

capacities tend to infinity in tandem. Davis & Nihan (1993) provide the key source for 

this result, showing that in the asymptotic case the stationary distribution converges 

(in distribution) to a multivariate normal distribution, with mean given by an SUE 

model. Hazelton & Watling (2004) extended the applicability of this result by devising 

a practical method for computing the variance-covariance matrix of the stationary 

distribution, using only the SUE solution (i.e. without having to simulate the dynamic 

evolution of the process). Balijepalli & Watling (2005) subsequently extended this 

approach so as to be applicable to day-to-day dynamic models incorporating a within-

day dynamic network loading. In the case of problems that possess multiple SUE, the 

behaviour of the corresponding SP may be more complex than this result suggests, yet 

still there are systematic procedures that can be followed for using SUE solutions to 

reveal the emergent phenomena of SP models in such cases (Watling, 1996). Even 

though we may apply our SP model in cases for which asymptotic (large demand) 

behaviour does not seem a plausible assumption, the asymptotic properties still reveal 

relatively easy-to-compute features that can aid in the interpretation of the results 

from, say, a simulation experiment, so have important practical consequences.  

 

The purpose of the present paper is both to synthesise and extend these results in various 

ways. Our original contributions include extending the model assumptions, such as  to 

randomly varying choice probabilities (section 3.3) and stochastic demand (section 4); 

explicitly deriving connections to deterministic processes in uncongested networks 

(sections 3 and 4); applying stabililty analysis in novel ways, to moment characterisations 

of stochastic process models (sections 3 and 4); and providing new limit theorems for 

asymptotic (large demand) analysis of the dynamics of stochastic process models (section 

5.3.2). 
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Our purpose in doing so is both to extend the state-of-the-art, but also to explore (and 

encourage others) to use, extend and apply in novel ways the existing results in the 

literature. We do this, in part, by examining how to construct processes which satisfy the 

minimal necessary conditions needed to even consider applying the results above; we set 

out these conditions in the following section. Our purpose is to show that it is possible to 

be creative and to use these existing results in ways that may not have been envisaged by 

the authors, and we do this in order hopefully encourage others to be creative too in this 

way. Thus, one intention is that our paper acts as a bridge between modellers wishing to 

create day-to-day dynamic models, and the theory which currently exists. 

 

In order to provide a focus to our approach, we examine such processes with a particular 

goal in mindnamely the representation, in a single consistent framework, of various 

kinds of time-dependent and stochastic variationǤ The Ǯconsistencyǯ we refer to arises from 
the requirement explicitly to represent how all elements of the transport system view, 

learn, assess and react to the variation; we cannot simply add the variation in an ad hoc 

way. This may be contrasted with the conventional equilibrium paradigm, which faces 

(and often avoids) the philosophical dilemma of how (and indeed, whether) equilibrium 

might be reached in a variable system. In fact, rather than rejecting equilibrium methods, 

our approach also helps to answer these questions.  

 

In order to achieve this goal, we introduce the techniques in an original way, which we 

believe helps provide new and better insights into the foundations of dynamic process 

traffic assignment models, especially for the purpose we have in mind. In all cases our 

starting point is in terms of statistical models, and so fundamentally we adopt a SP 

approach. However, we shall see how DPs emerge for moments of such processes; firstly in 

the case of uncongested networks, where they emerge exactly to provide a full 

characterisation of the process, and secondly in the case of congested networks, where 

they arise from large demand approximations. This opens up the possibility to apply 

results on stability of DPs to the moment-based models, providing insights into both the 

deterministic and stochastic domains. Moreover, it allows an examination of how different 

model specifications, including different contributory sources of variation, influence the 

properties of such systems. 

 

The paper is structured as follows. In section 2 we introduce the notation and some 

foundation concepts which guide the development of the models in subsequent sections. 

Section 3 considers the case of uncongested networks with fixed demand, and section 4 

extends this to the case of stochastic demand, in each case using a series of models for a 

simple illustrative network. In the case of uncongested networks we show that it is 

possible to derive some exact analytic results. Section 5, on the other hand, considers 

congested networks, and develops asymptotic results for such a case (since exact results 

cannot be derived). Finally, in section 6 we draw together our conclusions and indicate 

promising avenues for future research.  
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2. Basic Concepts & Notation 

A fundamental element of the models we consider will be the adaptive behaviour of 

travellers over time, as they repeat the requirement to make certain decisions related to 

travel or the location of activities. In the context of the present paper, the decision 

considered will be that of route choice, and we imagine that such decisions are potentially 

reviewed over discrete time periods which we refer to as Ǯdaysǯ. Days will be denoted by 

the letter t (for t = 0, 1, 2,...). 

 

As stated in section 1, our objective in the present paper will be to show how various kinds 

of process may be cast in a form that allows the existing body of theory on day-to-day 

dynamic traffic assignment models to be applied; that is to say, our goal is to arrive at a 

situation in which subsequently it may be asked, are the sufficient conditions of a given 

theoretical piece of work satisfied? In order to do this, we shall require that the models are 

formulated in a way so as to satisfy four basic conditions: 

a) There is a fixed and well-defined state-space ࣭ which describes the Ǯuniverseǯ of 
possible states corresponding to any single day t, with the state vector that describes 

day t as x(t)  ࣭ (for t = 0, 1, 2,...). 

b) If the model is a DP then ࣭ is part of m-dimensional Euclidean space (࣭ ك Թm) for some 

finite and constant m. If the model is a SP then either ࣭ is finite and formed from 

integer n-tuples (i.e. ࣭ ك Ժn), or ࣭ is part of m-dimensional Euclidean space (࣭ ك Թm), 

or ࣭ is a combination of these two kinds of variable (i.e. ࣭ = ࣭1  ࣭2 ك Ժn  Թm). 

c) The process satisfies the one-step Markov property. In the case of DPs this means that 

in order to determine the state at time t it is sufficient to know the state at time t Ȃ 1, 

and no additional information is imparted by knowing earlier states. In the case of SPs, 

we suppose that in order to determine the state probability distribution at time t  it is 

sufficient to know the state probability distribution at time t Ȃ 1  .  

d) The process is time-homogeneous. In the case of DPs this means that the functional 

dependence of x(t) on x(tȂ1) is time-independent, all that matters is what the state x(tȂ1) 

was, not the time t Ȃ 1 at which it was experienced (i.e. the same functional relationship 

would hold for the dependence of x(s+t) on x(s+tȂ1) for any positive integer s). In the case 

of SPs, time homogeneity relates to the fact that the conditional joint probability 

distribution/density of x(t) given x(tȂ1) is independent of t.  

 

While these might seem, at first sight, rather trivial and weak conditions to satisfy, in order 

to satisfy them all it is often necessary to be creative, especially in the definition of what constitutes a Ǯstateǯ. For example, on point a), it is not necessary that we describe a 

transportation system state only in terms of its traffic flows; see, for example, Watling 

(1999) for a description in terms of travel costs, which allows a model that is non-

markovian in terms of flows to still satisfy the conditions above. On point b), our 

requirements are linked to the spaces which permit analysis with the theoretical tools 

available. For DPs, stability analysis is typically based on the analysis of the system 

Jacobian, which clearly only make sense for models expressed with a continuous state-

space. On the other hand, the most well-known and directly-applicable results for SPs are 

in the case of discrete state-spaces; however corresponding tools do exist for a wider 

range of spaces, as discussed in Watling & Cantarella (2012). Regarding point c), this 

requirement might at first sight seem to preclude important classes of model in which drivers Ǯlearnǯ from a sequence of past days in order to make their travel decisions for the 
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forthcoming day; in fact, it does not preclude such approach, provided that we imbue our 

definition of the state variable with some notion of a finite history. Thus, we can see an 

important interdependence between a), b) and c). Finally, point d) is more of a pragmatic 

requirement. Although it is possible to analyse time-inhomogeneous models (see Watling 

& Cantarella, 2012), little in the way of explicit theory has yet been developed for 

transportation systems, and in fact we are a long way from reaching the boundaries of 

application of existing theory of time-homogenous systems. For most problems of interest 

to transportation planners, the assumption of time-homogeneity will likely be acceptable. 

 

The particular focus of the following sections 3 to 5 will be to analyse the extent to which 

various notions of variability may be included in day-to-day dynamics models, and how we might ǮinterrogateǯȀformulate these models in a way so as to satisfy the four requirements 
above. Given our interest in variability, then all of the models will be initially cast in the 

form of a SP; corresponding DPs will then emerge as a way of understanding the SP. Given 

the focus on SPs, we note here some basic notation that is used to describe them; this 

notation is not entirely conventional, but allows us to describe SPs under the various kinds 

of state-space permitted in point b) above. In particular, we suppose: 

{q(t)(x) : x  ࣭} denotes the day t joint probability/probability-density function across the 

possible states x  ࣭ (for t = 0, 1, 2...); and  

{(x, y; ) : x, y  ࣭} denotes the conditional joint probability mass/density function across 

possible states x  ࣭ today, given that y  ࣭ was the state yesterday, assuming a model 

parameter vector    ȋwe shall refer to this as the ǲtransition functionǳȌǤ 
Property d) above for SPs then corresponds to the requirement that the transition function 

 be time-independent, and the parameter vector  be fixed and time-independent, 

implying that the resulting process is time-homogeneous. We may then write our stochastic 

process as one of the following: 

  

For any given initial distribution {q(0)(x) : x  ࣭}, then for t = 1, 2, ...: 

   i) Markov Chain: 

  q(t)(x) = y  ࣭  (x, y; ) q(t Ȃ 1 )(y)   (x  ࣭ ك Ժn;   ) 

   ii) Markov Process: 

  q(t)(x) =  y  ࣭  (x, y; ) q(t Ȃ 1 )(y)  dy  (x  ࣭ ك Թm;   ) 

   iii) Markov Process/Chain 

  q(t)(x)  q(t)((x[1],x[2])) =  

   y[1]  ࣭[1]   y[2]  ࣭[2]  ((x[1],x[2]),(y[1],y[2]); ) q(t Ȃ 1 )((y[1],y[2]))  dy[2]  
 

   (x  (x[1],x[2]), x[1]  ࣭[1] ك Ժn; x[2]  ࣭[2] ك Թm;   ). 

The three specifications have the common feature that each includes the functions  and q, 

and in each specification these functions perform the same role: in simple terms we might 

say that   is ǲthe modelǳ (the thing that we calibrate and specify as modellers) and then 

(for time t = 1, 2, ...) q is ǲthe unknownǳ. 
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3. Uncongested Networks with Deterministic Demand 

The examples in the present section reduce our problem to the simplest day-to-day 

process of all, and will aim to subsequently describe the development of techniques from 

this foundation. Here we aim to follow the analogy by which equilibrium methods 

originally stemmed from all-or-nothing and uncongested probabilistic assignment (and 

indeed which continue to use these foundation methods as building blocks). The examples 

given in sections 3.1 and 3.2 below are very clearly restricted examples of the wide family 

of models considered by Cantarella & Cascetta (1995). Example 3.3 does not so clearly fit 

within their framework, and so appears to extend it. In all examples, however, we aim to 

provide insights that are beyond this source reference, by making the restriction to 

uncongested cases. Although all of the examples consider only a network with two parallel 

routes, they are all extendable to the general case; we consider only the simplest case to 

aid description. For a general network description of the examples in section 3.1 and 3.2, 

for example, the reader is referred to Cantarella & Cascetta (1995), although the 

corresponding analysis was not performed there. 

3.1 Modelling route choice behaviour: an introductory model Ȃ example 1 

All the examples in this paper concern a network consisting of two parallel arcs/routes 

connecting a single OD pair. 

 

In this sub-section we assume a fixed (non-random) integer OD demand d  1, such that 

we may represent the state of the network by an integer scalar x denoting the flow on arc 1 

(with the flow on arc 2 then clearly d Ȃ x). Thus, our state space ࣭ ك Ժ is given by ࣭ = {0, 1, 

2, ... , d}, and we are appealing to specification i) in section 2, that of a Markov Chain.  

Moreover, the demand d is assumed given, thus it is a parameter of the model. 

 

We suppose that all the factors that affect route choice are combined into a single weighted measure which we call Ǯperformanceǯ ȋi.e. generalised cost), with the 

performance of arc i denoted by the fixed (non-random) value ci (i = 1,2), with c = c1 Ȃ c2 . 

Moreover the network is uncongested (or so lightly congested that it may considered to be 

uncongested), and so the flows do not affect the factors that motivate route choice such as 

travel time. Thus the cost difference c is a parameter of the model. 

 

On any given day, each of the d drivers is supposed to choose between the routes 

independently and at random according to a logit choice random utility model, with scale 

parameter  > 0, based on arc performance values; the standard deviation of all sources of 

uncertainty, e.g. model aggregation or behavioural variation in terms of the user 

perception of performance, is proportional to Ȃ1. Thus the probability of choosing 

arc/route 1 is given by  = 1/(1 + exp(c)).  

 

The parameters of the overall model may be collected together in the vector  = (d, c, ). 

The assumptions together imply that the transition functioni.e. the conditional 

probability distribution of the flow x on arc 1 on any one day, given that the flow on arc 1 

was y yesterdayis given by the Binomial expression: 

 (x, y; ) = (d!/(x! (d Ȃ x)!))  x  (1 Ȃ )d Ȃ x  =  f(x; ),  

   say (for x = 0,1,...,d; y = 0,1,...,d;  = (d, c, )). 
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That is to say, the transition function is independent of the previous dayǯs flow y, and the 

evolution of the state probability distribution is given by: 

  q(t)(x) = y  ࣭  (x, y; ) q(t Ȃ 1 )(y) = f(x; )  y  ࣭  q(t Ȃ 1 )(y) = f(x; )      (x = 0,1,...,d; t α ͳǡʹǡǥȌ 

i.e. it is time-independent and coincides with the transition function. This occurs only 

because of the very restrictive assumption that the choice probabilities of the routes are 

constant, since the performance measures that driver these probabilities are flow-

independent. In general, the state distribution and transition function, although both 

probability distributions, are two quite different entities (as we shall see in other examples 

below), but ones which seem to be often confused with each other by those unfamiliar 

with stochastic process methods. In this special case, where we obtain Binomial variation, 

it is simple to see that the state distribution has a mean and variance given by: 

 E[X(t)] = d  

   var[X(t)] = d(1 Ȃ)    (t α ͳǡʹǡǥȌǤ 
In general, stochastic process models also possess important auto-correlations, as 

measured by cov(X(t), X(s)) (t  s), but in the model given all such covariances are zero, the 

model assumes entirely independent draws over days, from an unchanging distribution.  

 

The expected value E[X(t)] thus coincides with the traffic flow that would be predicted by a 

standard logit-based stochastic assignment model. The variance var[X(t)], being Binomial, 

increases with the actual driver population size d; this implies that, unlike with traditional 

equilibrium methods, it is no longer sufficient to think only of a flow rate, it makes a 

difference as to whether we are examining the behaviour of 2000 drivers over a 2 hour 

period or 1000 drivers over a 1 hour period. If, on the other hand, we fix d, then it is simple 

to show that the variance is at its maximum when  = 0.5, i.e. when c = 0. Thus for fixed  

c  0, it follows that var[X(t)] increases as   0. In other words, more behavioural 

variation in terms of the perception of performance (as measured by Ȃ1) implies more 

flow variation; this is rather intuitive, but is worth remarking on primarily as it does not 

necessarily follow in more complex versions of the model specification (as we shall see 

later). On the other hand, for fixed  > 0 then var[X(t)] increases as |c|  0. As |c| becomes 

large, then the alternatives are more clearly distinguished, whereas as |c|  0 the 

alternatives become more similar, such that ultimately it as if each driver tosses a coin to 

decide which route to take.  

 

Obviously this model is highly simplistic and is yet to capture the real issue of day-to-day 

dynamics that we wish to highlight, and we can well see here the analogy we made earlier: 

while all-or-nothing assignment and stochastic network loading (Dial, 1971; Sheffi, 1985) 

have both proven to be critical building-blocks in the analysis of congested networks, the 

approaches themselves do not actually deal with the congestion issue. However, just as in 

the analogy, it is still valuable to analyse the features of the foundation method (in this 

case the modelling of uncongested networks through time-independent processes), since 

it allows us to understand to what extent the behavioural components of this model might 

be suitable for inclusion in a more general approach, such as that described later.  

 

In particular we ask: What is this model actually assuming that drivers do, who make 

repeated trips? Firstly, the Binomial distribution implicitly assumes independence 

between the individual elements, in this case between the decisions of drivers. This could 

be defended, even in the case of a congested network, since the independence assumption 
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resides in the transition function; i.e. in general, it is an assumption of conditional 

independence, essentially saying that given their past history (in which drivers will 

interact and so be interdependent), drivers make a decision today independently of one 

another. This seems a reasonable approximation, and seems broadly consistent with the 

notion of competitive, non-cooperative behaviour as assumed in DUE or SUE models. The 

distinction between independence and conditional independence is not clear from this 

simple example though (since this is a special case where they coincide), and so we will 

return to illustrate this issue later, with more complex examples.  

 

Secondly, a quite different kind of independence emerges in this model, namely the 

temporal independence of decisions. That is to say, that while the decisions made on days  

t Ȃ 1 and t, say, come from a common probability distribution, the actual realisation of any 

previous day does not affect a future day. This is a rather subtle issue to understand. Even 

though later we remove the assumption of a common probability distribution (through the 

use of learning process of the cost/performance measures), still we then have the issue of 

temporal conditional independence: i.e. the decisions on day t given the history up to day t 

are statistically independent of the decisions on day t Ȃ 1 given the history up to day t Ȃ 1. 

Thus, while the histories will typically be dependent over time, the decision-making given 

those histories is independent. This seems more difficult to defend.  

 

Given the same group of drivers, it seems likely that there would be some consistency over 

time in their decisions, given an unchanging history on which to base those decisions Ȃ so 

what is the statistical variation representing? One interpretation is that if the logit 

probabilities gave choice probabilities of the two routes of 0.3:0.7, say, then each driver on 

each day they travel randomly chooses between these two routes with these probabilities. 

Perhaps a more plausible interpretation is that what we observe on different days is not 

the same d drivers, but a sample of d from a large population, and so we might try to match 

a sequence of drivers with similar characteristics over time, they are not actually the same 

d drivers, and this is some reason for the variation we see (the actual individual might not 

be so variable in their decisions). This is a similar logic used in the application of the 

paired t-test in cases where the entities being observed are not exactly the same in the two 

cases, but are paired together to be similar.  

 

Having said this, the assumption of temporal conditional independence is a strong one, and 

it is natural to seek ways in which we might relax or control this in the model. The next 

example considers a simple device for achieving this. 

3.2 Modelling route choice behaviour: a general model Ȃ example 2 

In the example above we noted the difficulties in justifying the assumption of temporal 

conditional independence, given that travellers are likely to be somewhat repetitive in 

their behaviours over time if the underlying stimuli do not change so much. At least, it 

seems we should have a means of controlling/calibrating the level of repetition. This also 

provides us with the simplest way of generating a truly dynamic, stochastic process, and at the same time will allow us to explore ǲdeterminisedǳ dynamic approximations to the 
stochastic process.  

 

We thus adapt the very simple model described in Example 1, simply by assuming now: 
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 with probability  travellers reconsider their previous dayǯs choice, and those that do 

decide to reconsider then make choices according to the logit model as before (possibly then repeating the previous dayǯs choiceሻ; and 

 with probability 1 Ȃ  travellers choose between the available routes with probabilities 

equal to the fraction of travellers that actually chose those routes on the previous day. 

 

Therefore we have one more parameter, assumed strictly positive, thus   ]0,1], with  

 = 1 leading to example 1 discussed in the previous sub-section. 

 

Under such a behavioural model, travellers now are assumed to have two reasons for 

choosing route 1 (over route 2): either they choose it out of habit based on a probability of 

y/d (where y is the number of drivers that actually chose route 1 yesterday), or they 

choose it according to a logit model as in Example 1. The probability of choosing for the 

first reason is 1Ȃ and for the second reason is . Assuming they choose conditionally 

independently between individuals at any given time, this combination of assumptions 

implies: 

 X | Y = y ~ Binomial(d , (1Ȃ)(y/d) +   

and thus the transition function is: 

 (x, y; ) = (d!/(x! (d Ȃ x)!)) . ((1Ȃ)(y/d) + )x  (1 Ȃ ((1Ȃ)(y/d) + ))d Ȃ x  

       (for x = 0,1,...,d; y = 0,1,...,d;  = (d, c, )). 

By standard properties of the Binomial we thus have for t α ͳǡʹǡǥǣ 
 E[X(t)|X(tȂ1)] = d ((1Ȃ)( X(tȂ1)/d) + )       

 var[X(t)|X(tȂ1)] = d ((1Ȃ)(X(tȂ1)/d) + ) (1Ȃ((1Ȃ)(X(tȂ1)/d) + )). 

These expressions show that the trajectory of the process, both in terms of its mean and 

variance, is dependent on actual choices made in the past (as reflected in X(tȂ1)), unlike the 

model considered in Example 1. We can rearrange these expressions slightly to become: 

 E[X(t)|X(tȂ1)] = d + (1Ȃ)X(tȂ1)       

 var[X(t)|X(tȂ1)] = d (1Ȃ) + (1Ȃ)(1 Ȃ 2) X(tȂ1)  Ȃ ((1Ȃ)2/d) (X(tȂ1))2 

and we may then use standard statistical identities to obtain expressions for the 

unconditional moments: 

 E[X(t)] = E[E[X(t)|X(tȂ1)]] =d + (1Ȃ)E[X(tȂ1)] 

   var[X(t)] = E[var[X(t)|X(tȂ1)]] + var[E[X(t)|X(tȂ1)]] 

             = d (1Ȃ) + (1Ȃ)(1 Ȃ 2) E[X(tȂ1)] 

                         Ȃ ((1Ȃ)2/d) (var[X(tȂ1)] + (E[X(tȂ1)])2) + (1Ȃ)2 var[X(tȂ1)] . 

Thus, in the special case we are considering, we are able to understand the future 

evolution of the mean and variance from knowing only the mean and variance of the 

distribution in the previous time step, we do not need to know any higher order moments. 

Also, we can see in this particular case that if our interest were only in how the mean 

changes, then it is sufficient to know only the mean in the past. If we write (t) = E[X(t)],     

(t) = var[X(t)], then we can write the above simply as: 

  (t) = d + (1Ȃ)(tȂ1) 

 (t) = d(1Ȃ) + (1Ȃ)(1Ȃ2) (tȂ1)  Ȃ (1Ȃ)2 dȂ1( (tȂ1) + ((tȂ1))2) + (1Ȃ)2 (tȂ1) . 
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An equilibrium/stationary probability distribution of such a system, would thus be 

characterised by a (mean, variance) combination (*,*) satisfying  (t) =(tȂ1) =* and  

(t) = (tȂ1) =*, which from the above is given by: 

 * = d 

 * = d (1Ȃ  + (1Ȃ) (1 2 )) /(1 Ȃ (1 Ȃ dȂ1)(1Ȃ)2) . 

Figure 1 shows variance * against parameter  (such that  = 1/(1 + exp(c) as 

introduced above) for  = 0.25, 0.50, 0.75, 1.00 (from top to bottom). As expected the 

variance decreases as parameter  increases (choice behaviour becomes less at random); 

moreover, the higher the reconsidering probability, the smaller the variance * is. 

 

 
Figure 1: Variance against Logit dispersion parameter ȟ for different values of Į. 

 

How might we use these results to understand something about our underlying system? It 

is not the purpose of the present paper to pursue this (rather our purpose has been to 

show how to open up the models for analysis), but it would seem that this formulation 

opens up several subsequent lines of enquiry, part of which is specific to this model and 

part of which draws on the theory described in section 1: 

 

 From the expressions above we may examine how the derivative of the stationary 

variance * depends on d,  and , and thereby understand both the direction and 

relative importance of these components of flow variation. This may be done partly to 

ask whether the model is reasonable, but also as a potential means of suggesting a 

candidate parameterisation of the variation which might be estimated from observed 

data. It is notable in this model that * is independent of , so  does not influence the 

stationary mean of process, only the stationary variance. 

 Although, as noted above,  does not affect the stationary distribution, it is clear from 

the expressions that it does affect how fast stationarity is approached from some given 

initial conditions. This may be seen by re-writing the process for the mean in the form 

of a process relative to the stationary mean, where it is evident that the greater is  

then the faster is the decrease in distance to stationarity: 

 ( (t)  * ) = (1 Ȃ )((tȂ1)  *) . 

Finally, we may also examinethrough the stability theorems for Deterministic Processes 

(DPs) cited in section 1 (see Cantarella, 2013, for an updated presentation)  the coupled 

system above in terms of the binary state variable ((t), (t)) considered as a DP over the 

mean and variance space,  (t) and (t); in this case the pair of stationary moments (*, *) 
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plays the role of the (unique) fixed-point of the DP. To study the stability properties of this 

fixed-point it is useful to look at the Jacobian matrix of the DP. The Jacobian is clearly 

triangular, with entries on the main diagonal independent of the state variables, ((t), (t)). 

Thus it is easy to compute its determinant , moreover the two eigenvalues 1,  2 are 

given by the entries on the main diagonal: 

  = (1Ȃ)3(1  dȂ1) 

 1 = (1Ȃ) 

 2 = (1Ȃ)2(1  dȂ1) 

As far as   ]0, 1] and d  1, the determinant of the Jacobian is non negative and less than 

one, that is the system is dissipative, that is converges to some attractor; moreover both 

the eigenvalues are non negative and less than one, thus the (unique) fixed-point  (*, *) is 

always (asymptotically) stable. 

3.3 Modelling route choice behaviour: an extension Ȃ example 3 

We have thus seen one simple way to relax the assumption of temporal conditional 

independence of decisions, and to control the level of dependence through the parameter 

 . This parameter has been seen to have important impacts on the dynamic trajectory of 

the process as well as on the levels of variability observed, even when the process is 

stationary. Now we explore how we might parameterise some additional elements of 

choice variation. 

  

We generalise Example 2 by now supposing that X |Y , rather than following a Binomial 

distribution with a fixed choice probability, follows a Beta-Binomial distribution, derived 

from compounding a beta-distributed choice probability with a Binomial distribution 

across routes conditional on the choice probability. The Beta-Binomial model has been 

widely used in the statistical analysis of many social systems, such as consumer 

purchasing including car fuel purchasing (Chatfield and Goodhart, 1970), as an error 

distribution for regression where we wish to identify components of variance (Crowder, 

1978), in Bayesian inference for brand choice of consumers (Lee & Sabavala, 1987), and 

for representing the variations in choice probabilities between trials of subjects given 

sensory or preference tests to perform (Ennis & Bi, 1998). Wilcox (1981) reviews the 

development and use of this model for representing individuals performing various 

psychological functions, noting the problem with the simpler binomial assumption applied to individuals ȋrather than situation in natureȌ is that it Ǯignores an individualǯs wisdomǡ determinationǡ pessimism and experienceǯǢ andǡ besidesǡ the beta-binomial has been 

shown to fit well to populations of individuals performing such psychological functions. It 

seems that it is not a great step, then, to argue that the Beta-Binomial may be a suitable 

model for representing population of individuals repeatedly making path choice decisions; 

if nothing else, it provides a means of representing over-dispersion in choices relative to 

the Binomial model, and from real data we may then test whether this over-dispersion is 

significant. 

 

In our particular case, for the mean of the beta distribution we shall use the expression for 

choice probability derived in Example 2, namely (1Ȃ)(y/d) + , remembering the 

meaning of . Since we wish to specify the mean of the beta distribution, we use a 

commonly-used re-parameterisation of the distribution in terms of its mean and a 

parameter  > 0 such that we suppose the choice probability P is distributed as: 
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 P ~ Beta(a,b)   where a =  E[P] and b =  (1 ȂE[P]) 

where in our case we set E[P] = (1Ȃ)(y/d) +  , and the density function of the beta r.v. is 

f(p) = paȂ1 (1 Ȃ p)bȂ1 / B(a,b), with B(a,b) = (a + b) / ((a) (b)), (.) being the gamma 

function. Therefore we have one more parameter, assumed strictly positive,  > 0, with  

   leading to example 2 discussed in the previous sub-section. Figure 2 shows the pdf 

of Beta for different values of of E[P] and . 

 

 
Figure 2: Beta density function for different values of E[P] = 0.2 (left) or 0.6 (right)  

and  = 6 (thin line) or 12 (thick line) . 

 

Supposing, then, that X | (Y, P) is Binomial(d, P), then the composition of these assumptions 

leads to the Beta-Binomial density for the transition function (i.e for X | Y) of: 

 (x, y; ) = (d!/(x!(d Ȃ x)!)) . B(x + ((1Ȃ)(y/d)+), d Ȃ x + (1 Ȃ(1Ȃ)(y/d)Ȃ)) / 

                                              B(((1Ȃ)(y/d)+), (1 Ȃ(1Ȃ)(y/d)Ȃ))                         

                                                    (for x = 0,1,...,d; y = 0,1,...,d;  = (d,  (=1/(1+exp(c))), )) 

Supposing, then, that X | (Y, P) is Binomial(d, P), then the composition of these assumptions 

leads to the Beta-Binomial density for the transition function (i.e for X | Y) of: 

 (x, y; ) = (d!/(x!(d Ȃ x)!)) . B(x + ((1Ȃ)(y/d)+), d Ȃ x + (1 Ȃ(1Ȃ)(y/d)Ȃ)) / 

                                              B(((1Ȃ)(y/d)+), (1 Ȃ(1Ȃ)(y/d)Ȃ))                         

                                                (for x = 0,1,...,d; y = 0,1,...,d;  = (d,  (=1/(1+exp(c))), )) 

where the function B(.,.) is defined above.  

 

By standard properties of the Beta-Binomial distribution, we thus have for t α ͳǡʹǡǥǣ 
 E[X(t)|X(tȂ1)] = d((1Ȃ)(X(tȂ1)/d)+) 

 var[X(t)|X(tȂ1)] = d((1Ȃ)(X(tȂ1)/d)+)(1Ȃ(1Ȃ)(X(tȂ1)/d)Ȃ)(1+(dȂ1)/(+1)). 

That is to say, we obtain the same conditional mean as in Example 2, and a similar 

conditional variance but just with the additional multiplier (1+(dȂ1)/(+1)) above. Thus 

as    we approach the Binomial (fixed choice probabilities) case; the variance in the 

choice probability, like var[X(t)|X(tȂ1)], is inversely proportional to  .  

 

Since the multiplier (1+(dȂ1)/(+1)) is independent of X(tȂ1), then we can use the results 

derived for Example 2 but just with the additional multiplier inserted. Thus the 

unconditional mean and variance now behave as: 
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  (t) = d + (1Ȃ)(tȂ1) 

 (t)/ (1+(dȂ1)/(+1)) = d (1Ȃ) + (1Ȃ)(1Ȃ2) (tȂ1)   

    Ȃ (1Ȃ)2 dȂ1( (tȂ1) + ((tȂ1))2) + (1Ȃ)2 (tȂ1)  

and thus as  is reduced (indicating increasing choice probability variance), so the factor 

(1+(dȂ1)/(+1)) is increased and so the variance (t) is relatively more sensitive to 

changes in the right-hand side variables ((tȂ1),  (tȂ1)). 

The stationary distribution is again fully characterised by (*, *), now satisfying: 

 * = d 

 * = d (1 Ȃ  + (1 Ȃ) (1 2 )) /((1/(1+(dȂ1)/(+1))) Ȃ (1 Ȃ d Ȃ1)(1Ȃ)2) . 

What might we conclude from such an approach? Again, there are many suggestive 

features for further investigation: 

 

 From the process for ((t),  (t)), we can see that the mean process is not affected at all 

by the new parameter, but the variance process is. 

 

 From the expressions for the stationary moments, it is clear that reducing  (i.e. 

increasing choice probability variance) therefore increases the stationary flow 

variance *, as one may expect from intuition. 

 

Figure 3 shows variance * against parameter  (such that  = 1/(1 + exp(c) as 

introduced above) for  = 0.75, and  = 10, 100, 1000, 1000 (from top to bottom). As 

expected the smaller the parameter, the greater the variance * is. 

 
Figure 3: Variance against Logit dispersion parameter ȟ for different values of  (Į = 0.75). 

 

As in example 2, we can consider the DP over the mean and variance space,  (t) and (t), 

with a triangular Jacobian with entries on the main diagonal independent of the state 

variables. Thus, the determinant and the two eigenvalues are given by: 

  = (1Ȃ)3(1  dȂ1) (1+(dȂ1)/(+1)) 

 1 = (1Ȃ) 

 2 = (1Ȃ)2(1  dȂ1) (1+(dȂ1)/(+1)) 

As far as   ]0, 1], d  1, and  > 0 the determinant and both the eigenvalues are non 

negative. Thus the system is dissipative if the determinant is less than one, that is if the 

following condition holds: 
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   > 1(d, ) = d ((1Ȃ)3 (d 1) Ȃ1) / (d  (1Ȃ)3 (d 1)) 

Moreover, the first eigenvalue is always less than one but, the second eigenvalue is less 

than one for great enough values of parameter  only, that is if the following condition 

holds: 

   > o(d, ) = d ((1Ȃ)2 (d 1) Ȃ1) / (d  (1Ȃ)2 (d 1))  

If the above condition holds, the fixed-point (*, *) is (asymptotically) stable, the stability 

region depending on d, , and ,  It is also worth noting that for    both the above 

conditions always holds, consistently with results in the previous sub-section. 

 

Function o(d, ) increases against d, whilst decreases against , with o(d,  = 1) = 1 

(Fig. 4). This function takes negative values for  > 1 1 (d1)1/2. Thus increasing the 

habit parameter  and/or decreasing the demand flow d enlarge the stability region. 

Similar considerations hold for function 1(d, ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Boundary stability function o(d, )  for parameter ,  
left side: function o(d, ) against d for  = 0.25, 0.50, 0.75 (top to bottom)  

right side: function o(d, ) against  for d = 50, 100, 150, 200 (left to right) 
 

The investigation of the stability properties of the process ((t),  (t)) suggests that reducing 

, while increasing the choice variation, will tend to reduce the stability domain, which 

may seem counter to intuition in which adding variation tends to make stability better. 

This can be better understood by the interpretation often given to   in such a Beta-

Binomial specification as acting as a kind of sample size, such that a smaller  is like saying the system is based on a smaller number of individuals and so behaves in a more Ǯlumpyǯ 
wayreducing  is in a sense working in the opposite direction to the asymptotic, law of 

large numbers results exploited later in section 5, and this respect an interesting feature is 

the contrasting effects of d and  on issues such as stability. 
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4. Uncongested Networks with Stochastic Demand 

In the previous section we considered how to model variation in the behavioural elements 

of route choice, and the manner in which such elements impact on the variation in flows 

we might observe in the real-world. In the present section we consider how we might 

model variation in elements or processes that are exogenous to our modelled world, 

especially through variation in the parameters supplied to the model. Examples of such 

parameters we might consider include: 

 

 variation in the origin-destination demand levels, reflecting daily changes in activity 

patterns; 

 variation in any of the behavioural parameters represented in section 3, perhaps 

reflecting daily variation in the composition of the driving population; 

 variation in the elements of the congestion relationships, as considered in section 5, e.g. 

variability in capacities. 

 

However, we shall focus in the present section on one example of such variation, namely 

that in the origin-destination demand levels, and will propose several alternative 

formulations of this phenomenon. Two different approaches will be presented below.  

4.1 Binomially-distributed stochastic demand Ȃ example 4 

Our first approach aims to generalise Example 2 of section 3.2. assuming Binomially-

distributed stochastic demand. We suppose that there is a larger pool of potential 

travellers, given by some integer dpot > 0, and that this potential pool of travellers each 

chooses to travel on any one day independently (of each other and days) with constant 

probability  (0 <    1). Thus, if the random variable Xi denotes the flow on route i (i = 

1,2), then the allocation to the three options (route 1, route 2, no-travel) is given by the 

random variables (X1, X2, dpot Ȃ X1 Ȃ X2), which are conditionally Multinomially distributed 

given the flows on the previous day, with probabilities (p, (1 Ȃ p), 1 Ȃ ) if p is the 

conditional probability of choosing route 1. The probability p will then be defined using 

the techniques described in section 3.2. 

 

It is convenient to slightly change the parameterisation introduced earlier to use: 

 1 =  2 = 1 Ȃ   

and with our state variable now two dimensional, x = (x1, x2), the above combination of 

assumptions implies: 

 (X1, X2) | (Y1, Y2) = (y1, y2) ~  

  Multinomial(dpot,  ((1Ȃ)dpot
Ȃ1y1+1),  ((1Ȃ)dpot

Ȃ1y2)+2)) 

and thus the transition function is: 

 (x, y; ) = (dpot!/(x1! x2! (dpot Ȃ x1 Ȃ x2)!)) . ( ((1Ȃ)dpot
Ȃ1y1+1))x1 .  

               ( ((1Ȃ)dpot
Ȃ1y2+2))x2 . (1 Ȃ ((1Ȃ)dpot

Ȃ1(y1+y2) Ȃ )dpotȂx1Ȃx2 

              (for x, y  (0,1,...,dpot)2;  = (dpot, , , 1, 2)). 

By standard properties of the Multinomial we thus have for t α ͳǡʹǡǥ and for i = 1, 2: 

 E[Xi
(t)|(X1

(tȂ1), X2
(tȂ1))] = dpot  ((1Ȃ)dpot

Ȃ1Xi
(tȂ1) +i) 

 var[Xi
(t)|(X1

(tȂ1), X2
(tȂ1))] = dpot  ((1Ȃ)dpot

Ȃ1Xi
(tȂ1) +i) .(1Ȃ  ((1Ȃ)dpot

Ȃ1Xi
(tȂ1) +i)) 
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and 

 cov[X1
(t),X2

(t)|(X1
(tȂ1), X2

(tȂ1))] = Ȃdpot 2 i=1,2 ((1Ȃ)dpot
Ȃ1Xi

(tȂ1) +i) . 

In order to make a connection to Example 2, we shall change our parameterisation by 

introducing the mean demand level d = dpot , thus writing our expressions in (d, ) rather 

than (dpot ,). This has the advantage that we can examine the effect of changing our 

assumption about the level of demand variability (i.e. through the choice of value for ), 

while keeping the mean demand d constant. Thus, below, we will examine the impact of 

demand variability on flow variability, under a given mean demand level. This re-

parameterisation gives, after simplification: 

 E[Xi
(t)|(X1

(tȂ1), X2
(tȂ1))]= di +  (1Ȃ)Xi

(tȂ1) 

 var[Xi
(t)|(X1

(tȂ1), X2
(tȂ1))] = di (1Ȃ i) + (1Ȃ) (1Ȃ 2i) Xi

(tȂ1) Ȃ  3dȂ1(1Ȃ)2 (Xi
(tȂ1))2 

 cov[X1
(t),X2

(t)|(X1
(tȂ1), X2

(tȂ1))] = Ȃd212 Ȃ2(1Ȃ)2X1
(tȂ1) Ȃ2(1Ȃ)1X2

(tȂ1) 

              Ȃ dȂ13(1Ȃ)2 X1
(tȂ1)X2

(tȂ1). 

Note that in the special case  = 1 (deterministic demand, i.e. each traveller chooses to 

travel each day with probability 1), the expressions for E[X1
(t)|(X1

(tȂ1), X2
(tȂ1))] and 

var[X1
(t)|(X1

(tȂ1), X2
(tȂ1))] above collapse to those given in section 3.2, as we would expect. 

 

Using the statistical identities as previously: 

 E[Xi
(t)]= E[E[Xi

(t)|(X1
(tȂ1),X2

(tȂ1))]] = di + (1Ȃ)E[Xi
(tȂ1)] 

 

 var[Xi
(t)] = E[var[Xi

(t)|(X1
(tȂ1),X2

(tȂ1))]] + var[E[Xi
(t)|(X1

(tȂ1),X2
(tȂ1))]] 

        = di (1Ȃ i) + (1Ȃ) (1Ȃ 2i) E[Xi
(tȂ1)] 

        Ȃ  3dȂ1(1Ȃ)2 (var[Xi
(tȂ1)] Ȃ (E[(Xi

(tȂ1))])2) + 2(1Ȃ)2 var[Xi
(tȂ1)] 

 

 cov[X1
(t), X2

(t)] = E[cov[X1
(t), X2

(t)|(X1
(tȂ1),X2

(tȂ1))]]  

                   + cov[E[X1
(t)|(X1

(tȂ1),X2
(tȂ1))],E[X2

(t)|(X1
(tȂ1),X2

(tȂ1))]] 

                              = Ȃd212 Ȃ2(1Ȃ)2 E[X1
(tȂ1)] Ȃ2(1Ȃ)1E[X2

(tȂ1)]  

                           Ȃ dȂ13(1Ȃ)2 (cov[X1
(tȂ1), X2

(tȂ1)] Ȃ E[X1
(tȂ1)]E[X2

(tȂ1)]) 

                     + 2(1Ȃ)2 cov[X1
(tȂ1), X2

(tȂ1)] . 

and so we may characterise the process fully in terms of the means i
(t) (i = 1,2), variances 

i
(t) (i = 1,2), and covariance (t) as: 

 i
(t) = di +  (1Ȃ)i

(tȂ1)        (i = 1,2) 

 i
(t) = di (1Ȃ i) +  (1Ȃ)(1Ȃ 2i) i

(tȂ1) +  3dȂ1(1Ȃ)2 (i
(tȂ1))2 

  + 2(1Ȃ)2 (1 Ȃ  dȂ1) i
(tȂ1) (i = 1,2)  

 (t) = Ȃd212 Ȃ2(1Ȃ)21
(tȂ1) Ȃ2(1Ȃ)12

(tȂ1) + dȂ13(1Ȃ)2 1
(tȂ1)2

(tȂ1) 

        + 2(1Ȃ)2 (1 Ȃ  dȂ1)(tȂ1) . 

Again we note that in the special case  = 1, the expressions above (for 1
(t) and 1

(t)) 

collapse to those given in section 3.2, as we would expect. 

 

The stationary distribution is again fully characterised by (*, *, *), whose rather 

cumbersome expressions, given below, are not completely developed for brevityǯs sakeǣ 
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 i
* = di  / (1   (1Ȃ))      (i = 1,2) 

 (1   2(1Ȃ)2 (1 Ȃ  dȂ1)) i
*  = di (1Ȃ i)  

   +  (1Ȃ)(1Ȃ 2i) i* +  3dȂ1(1Ȃ)2 (i*)2  (i = 1,2)  

 (1  2(1Ȃ)2 (1 Ȃ  dȂ1)) * = Ȃd212  

   Ȃ2(1Ȃ)21
* Ȃ2(1Ȃ)12

* + dȂ13(1Ȃ)2 1
*2

* 

As in examples above, a stability analysis of the fixed-point  (1
*, 2

*, 1
*, 2

*, *) can be 

carried out by looking at the Jacobian matrix of the DP over the means, variances and 

covariance space, i
(t), i

(t) and (t). The Jacobian is clearly triangular with entries on the 

main diagonal independent of the state variables, thus it is easy to compute its 

determinant , and its five eigenvalues are given by the entries on the main diagonal: 

 1 =  (1Ȃ) 2 =  (1Ȃ) 

 3 = 2(1Ȃ)2 (1 Ȃ  dȂ1) 4 = 2(1Ȃ)2 (1 Ȃ  dȂ1) 

 5 = 2(1Ȃ)2 (1 Ȃ  dȂ1) 

As far as   ]0, 1], d  1, and    ]0, 1] the determinant of the Jacobian is non negative 

and less than one, that is the system is dissipative; moreover all the eigenvalues are non 

negative and less than one, thus the (unique) fixed-point  (1
*, 2

*, 1
*, 2

*, *) is always 

(asymptotically) stable. 

 

Same results as above are obtained if we generalise Example 2 of section 3.2 by 

introducing D, which denotes the random OD demand, and X, whichn as before denotes the 

flow on route 1, with now (D, X) our state variable, we thus have (extending the fixed 

demand results of section 3.2): 

 D(t) | (D(t Ȃ 1), X(t Ȃ 1)) ~ Binomial(dpot , ) 

 X(t Ȃ 1) | (D(t Ȃ 1), X(t Ȃ 1), D(t)) ~ Binomial(D(t), (1Ȃ)(X(t Ȃ 1)/dpot) + ) . 

It is worth remarking that the fact that the distribution of D(t) | (D(t Ȃ 1), X(t Ȃ 1)) is 

independent of the previous state (D(t Ȃ 1), X(t Ȃ 1)) is a special case, and is an expression of 

inelastic demand; thus our model is one of stochastic but inelastic demand. A quite simple 

generalisation would be to include a demand function in this specification, so that then 

demand could be both elastic and stochastic. However, in keeping with the focus of the 

present paper, we shall focus only on the case of inelastic, stochastic demand. 

4.2 Poisson distributed stochastic demand Ȃ example 5 

What if instead we had started with a Poisson demand distribution for the demand? 

Approaching this using the kind of formulation used for Example 4, say that now the OD 

demand is distributed as: 

 X1 + X2 ~Poisson(d)  

and that given flows of (Y1,Y2) yesterday: 

 Xi | (Y1,Y2, X1 + X2) ~ Binomial(X1 + X2, (1Ȃ)(Yi/d)+i)   (i = 1,2). 

 Then X1 |(Y1,Y2) and X2 |(Y1,Y2) are independently distributed as: 

 Xi |(Y1,Y2) ~ Poisson(d((1Ȃ)(Yi/d)+i))    (i = 1,2) 

i.e.: 

 Xi |(Y1,Y2) ~ Poisson((1Ȃ)Yi + di)    (i = 1,2) 

with the transition function thus: 
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   (x, y; ) = ((1Ȃ)y1+d1)x1  ((1Ȃ)y2 +d2)x2 . exp(Ȃ(1Ȃ)(y1+y2)Ȃd)/(x1! x2!) 

             (for x, y  Գ2;  = (d, , 1, 2)). 

Standard properties of the Poisson thus yield: 

 E[Xi |(Y1,Y2)] = var[Xi |(Y1,Y2)] = (1Ȃ)Yi + di       (i = 1,2) 

or:  

 E[Xi
(t)|(X1

(tȂ1),X2
(tȂ1))] = var[Xi

(t)|(X1
(tȂ1),X2

(tȂ1))] = (1Ȃ)Xi
(tȂ1)

 + di      (i = 1,2) . 

Applying the statistical identities used previously yields, for i = 1,2: 

 E[Xi
(t)]= E[E[Xi

(t)|(X1
(tȂ1),X2

(tȂ1))]] = (1Ȃ)E[Xi
(tȂ1)] + di        

 var[Xi
(t)] = E[var[Xi

(t)|(X1
(tȂ1),X2

(tȂ1))]] + var[E[Xi
(t)|(X1

(tȂ1),X2
(tȂ1))]] 

      = E[(1Ȃ)Xi
(tȂ1)

 + di] + var[(1Ȃ)Xi
(tȂ1)

 + di] 

      = (1Ȃ) E[Xi
(tȂ1)] + di + (1Ȃ)2var[Xi

(tȂ1)] 

and:  

 cov[X1
(t), X2

(t)] = E[cov[X1
(t), X2

(t)|(X1
(tȂ1),X2

(tȂ1))]]  

   + cov[E[X1
(t)|(X1

(tȂ1),X2
(tȂ1))],E[X2

(t)|(X1
(tȂ1),X2

(tȂ1))]] 

  = E[0] + cov[(1Ȃ)X1
(tȂ1)

 + d1, (1Ȃ)X2
(tȂ1)

 + d2] 

  = (1Ȃ)2 cov[X1
(tȂ1), X2

(tȂ1)] 

and so we may characterise the process fully in terms of the means i
(t) (i = 1,2), variances 

i
(t) (i = 1,2), and covariance (t) as: 

 i
(t) = di + (1Ȃ)i

(tȂ1)+        (i = 1,2) 

 i
(t) = di + (1Ȃ) i

(tȂ1)
 + (1Ȃ)2i

(tȂ1) (i = 1,2)  

 (t)  = (1Ȃ)2 (tȂ1) . 

Thus, the mean flow on each route evolves exactly as in Example 2, again being separable 

from the evolution of the other moments. The evolution of the variance follows a different 

rule to that in Example 2. It is interesting to note that the model also will include a non-

zero covariance term (if initialised at time t = 0 with a non-zero value), even though the 

flows are conditionally independent.  

 

The stationary means, variances and covariance are given by: 

 i
* = di        (i = 1,2) 

 i
* = di / (1 Ȃ (1Ȃ)2) (i = 1,2) 

 * = 0 . 

From the expressions for the stationary moments, it is clear that increasing any parameter, 

d, i , , increases the stationary flow variance *, as one may expect from intuition. 

 

As in example 4 above, a stability analysis of the fixed-point (*, *, *) can be easily carried 

out by looking at the Jacobian matrix of the DP, which is triangular with entries on the 

main diagonal independent of the state variables. It is easy to compute its determinant  

and its five eigenvalues, given by the entries on the main diagonal: 

 1 = (1Ȃ) 2 = (1Ȃ) 

 3 = (1Ȃ)2 4 = (1Ȃ)2 

 5 = (1Ȃ)2 

Thus, as far as   ]0, 1], d  1, and    ]0, 1] the system is dissipative, and the (unique) 

fixed-point (1
*, 2

*, 1
*, 2

*, *) is always (asymptotically) stable. 
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5. Congested Networks 

In sections 3 and 4 our focus was on the case of uncongested networks, as a foundation to 

examining dynamic process problems. In the examples given, a Ǯpositiveǯ feedback occurs 
from the decisions made on one day to the decisions made on subsequent days; it is 

positive in the sense that increased use of a route on one day will, in the model, lead to 

increased use of that route on the following day. On the other hand, in all but the last 

(micro-simulationȌ example there are Ǯmass effectsǯǡ in that the behaviour of the group 
influences the behaviour of the individual (through the habitual tendency). Congestion 

also is a kind of mass effect, but a negative one in that increased use of a link will tend to 

increase its travel time, and thereby reduce its perceived attractiveness for future 

journeys. Further than this, it implies that some of the attributes that typically motivate 

route choicesuch as those related to travel timecannot be known in advance by 

travellers; moreover, this seems to be beyond something that can be captured by stationary probability distribution of ǲmis-perceptionsǳ as in a random utility modelǡ there 
is likely to be something systematic about the Ǯlearning processǯ of information acquisition 

 

In practice, we may acquire information from many sources, such as personal experience 

of travelling some route, or talking with others about their experiences, or by accessing 

fixed or real-time information systems. Capturing such details is beyond the scope of the 

present paper, and instead we utilise the simple aggregate learning processes described in 

the literature which make no explicit reference to how the learning was done, effectively 

representing some combination of all the sources mentioned to capture how travellers as a 

group may acquire information (e.g following some systematic change to the network). 

This is not intended to suggest that the techniques are limited to such approaches since 

they are not, the real limitation is that there is still relatively little evidence of how drivers 

actually acquire information, at least for developing a suitable model of such acquisition. 

 

Unlike the case of uncongested networks, it is difficult to obtain analytic results to describe 

the system evolution of congested networks, even for simple two-route examples. 

However, it is possible approximately to characterise the relevant distributions, using the 

asymptotic results for general network structures described in Hazelton & Watling (2004) 

(an application of results first derived by Davis & Nihan, 1993), on which the example 

below draws. As in sections 3 and 4 we shall focus on the simplest possible networks, 

consisting of a single OD pair joined by a pair of parallel routes, and our example aims to 

generalise Example 1 in section 3.1 (this simplest example already turns out to be 

sufficiently complex to convey our main points). All of the analysis presented easily applies 

to the case of n parallel routes joining a single OD pair, if all mentions of Binomial are 

changed to Multinomial, and all mentions of 2 routes changed to n. The extension to 

several OD pairs is relatively straightforward, and will be discussed in a future paper. 

5.1 Modelling congestion: cost functions 

In order to make some progress in analytically capturing the evolution of this process, the 

analysis is based on an asymptotic analysis whereby we examine the behaviour of the 

process as the OD demand, denoted by  , becomes large, but in a special sense. Since 

simply scaling the demand would not give any meaningful results, what we analyse is what happens when the demand is Ǯscaledǯ for the purposes of modelling route choiceǡ but the 
scaling is reversed when it is substituted in the congestion relationships. We might think of 

this process, intuitively, as one in which OD demands and link capacities are scaled in 
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tandem, if we are adopting travel cost functions whose actual argument is the ratio flow Ȃ 

capacity, as almost always the case in transportation network analysis. Thus ci(xi) denotes 

the travel cost on route 1 when the flow on route 1 is xi under an OD demand of  , for  

i =1,2 . Noting that the ǲrealǳ flow (reversing the scaling) would be Ȃ1xi we are thus 

motivated to consider functions of the form: 

 ci(xi) = ci(Ȃ1xi) 

where ci(.) is a function independent of  . We use c(x) = (c1(x1), c2(x2))T and c(Ȃ1x) = 

(c1(Ȃ1x1), c2(Ȃ1x2))T to denote the corresponding vector mappings.  

 

Note that our assumption will be that the only source of randomness in the actual travel 

costs will be due to the randomness in flows. This is an extreme and unnecessarily 

restrictive assumption, and in practice there are likely to be many other unobserved 

sources of variation on the actual travel costs, e.g. due to weather, incidents, vehicle-mix. 

The model defined could be extended to represent such variations, either through 

postulating a probability distribution of elements of the parameters of the cost functions, 

and/or by assuming additional additive variation on the distribution of travel costs 

generated by variables flows and/or variable parameters (i.e. this would be in addition to 

the flow-based variation captured in the postulated model). These are important factors to 

consider, yet in line with the rest of the paper we neglect them here in order to obtain a 

simple illustrative model.  

5.2 Modelling route choice behaviour: learning and choice processes 

A central assumption to this Hazelton & Watling approximation method is the premise of a 

learning process for travellers for the measured disutility Ui
(tȂ1) of each route i perceived at 

the end of travelling on day t Ȃ 1, that is used when making decisions for the following day 

t. This measured disutility is assumed to be the accumulated knowledge based on a 

weighted average of a finite number m of previous actual experiences, i.e. on days t Ȃ 1,  

t Ȃ ʹǡ ǥǡ t Ȃ m, with exponentially-decreasing weights depending on the lag between the 

current day and the time at which the experience was had. Since we shall examine an aggregate modelǡ the Ǯexperienceǯ to which we refer is the experience of the whole driver 
population, and soas mentioned earlierthis process is intended to represent some 

combination of information sources, both direct and indirect personal experience.  

 

The actual experiences of cost derive directly from applying the travel cost functions (as 

defined in section 5.1) to the flows on the relevant days. Thus, if the random variable Xi
(t) 

denotes the flow on route i on day t (under the demand-scaling defined in section 5.1), 

then the vector random variable U(tȂ1) = (U1
(tȂ1), U2

(tȂ1))T of perceived ǲlearntǳ measured 
disutilities is assumed to be related to the vectors of flow random variables X(tȂk) = (X1

(tȂk), 

X2
(tȂk))T for k αͳ ǡʹǡǥǡm through: 

 U(t Ȃ1) = (s())Ȃ 1 k α ͳǡʹǡǥǡm k Ȃ 1 c(X(t Ȃ k)) 

where m is a given positive integer parameter, where the weighting parameter satisfies  

0 <  < 1, and where  s() = k α ͳǡʹǡǥǡm k Ȃ 1 = (1 Ȃm)/(1 Ȃ), such that the implied weights 

(s())Ȃ1kȂ1 (k α ͳǡʹǡǥǡm) are positive, decreasing (in k for any ) and sum to unity. 
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We assume, generalising Example 1 of section 3.1, that conditionally on the vector of learnt 

costs U(t Ȃ1) at the end of day t Ȃ 1, the  fixed demand of   travellers on an day t each choose 

a route independently of one another, with choice probabilities given by a random utility 

model p(U(t Ȃ1)) = (p1(U(t Ȃ1)), p2(U(t Ȃ1)))T.  

5.3 The overall model 

It follows that the combination of assumptions in sections 5.1Ȃ5.2 describe an m-

dependent Markov process, whereby the probability distribution of the state on any day t, 

as represented through the vector random variable X(t), is fully determined by the 

previously-realised values of the states {X(tȂk) : k αͳ ǡʹǡǥǡm}. The assumptions may be 

summarised as: 

 X(t) | U(tȂ1) ~ Binomial( , p(U(tȂ1))) 

where 

 U(t Ȃ1) = (s())Ȃ 1 k α ͳǡʹǡǥǡm k Ȃ 1 c(X(t Ȃ k)) 

and where 

 s() = (1 Ȃm)/(1 Ȃ) 

 c(x) = c(Ȃ1x) 

for some vector of cost functions c(.), choice model p(.), OD demand  , learning weight 0 < 

 < 1, and where asymptotic analysis will mean examining   . 

 

Before proceeding it is worth clarifying that p(U(tȂ1)) as used above is describing quite a 

complex entity. On the one hand, U(tȂ1) is a random variable that evolves based on a weighted average of a finite number of past ȋalso randomȌ experiencesǤ So it is a ǲmeanǳ in 
some sense, through the expression relating U(tȂ1) to the experienced travel costs, but a ǲmeanǳ that itself follows an unfolding, day-to-day varying probability distribution. When 

used in a random utility model, when we write p(U(tȂ1)), then we are considering U(tȂ1) as a 

mean in a quite different sensethere is not a unique interpretation, but a useful one to 

have in mind is that the distribution of U(tȂ1) contains information on between-day 

variation, whereas the distribution we consider in random utility theory could be said to 

represent between-individual (inter-personal) variation (as well as other sources of 

randomness such as aggregation modelling errors). Thus we are presuming that the 

coefficient of the random utility model defined through the function p(.) are 

parameterising this inter-personal variation, relative to the inter-day variation contained 

in the distribution of U(tȂ1). However, at the time a (conditional) choice is made all the 

variation in U(tȂ1) is conditioned out, so that as far as the random utility model is concerned 

p(U(tȂ1)) is a fixed, not random, entity. In fact, as this discussion may suggest, the 

theoretical connection between random utility models and stochastic process models is far 

from simple. This is still more the case when one considers that stochastic process models 

are generally aiming to capture real observable variation (in flows, travel times etc.), 

whereas part of the variation captured by the distribution in a random utility model will 

represent the modellerǯs uncertainty in understanding choice behaviour, so in this sense is 

not an observable phenomenon of the transportation system. This is a philosophical and 

technical issue that we shall leave for future research to resolve. 

5.3.1 An approach to the asymptotic analysis of the stationary distribution 

The specification of the model presented is especially useful, by virtue of two results. The 

first, as established by Cascetta (1989), noted that if the random utility model p(.) is such 
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that a non-zero probability is assigned to all feasible alternatives (as satisfied by regular 

random utility models defined on an infinite support), then the process above has a unique 

stationary probability distribution to which it converges, regardless of the initial 

conditions. Davis & Nihan (1993) subsequently established that for the process described, 

this unique stationary distribution as represented by the random variable X* satisfies the 

following limit result: 

  Ȃ0.5(X* Ȃ xSUE) d MVN(0, V*)        as    

for some covariance matrix V*, where d denotes convergence in distribution, where MVN 

denotes the multivariate normal distribution, and where xSUE is the (assumed) unique SUE 

solution satisfying: 

 xSUE = p(c(xSUE)) . 

Why is this result significant? As noted by Hazelton & Watling (2004), a direct implication 

of this result is that if * denotes the mean of X* then: 

 Ȃ1* = Ȃ1xSUE + O( Ȃ0.5) 

where f() is O(n) if lim   f()/ 

n = k <  for some finite constant k. For large   we thus 

have a justification to approximate Ȃ1* by Ȃ1xSUE, since * and xSUE both grow with  . 

Expressed a different way, which might make this clearer, if * and SUE are respectively 

vectors denoting the stationary and SUE proportions of demand on the two routes, then the 

result above states that: 

 * = SUE + O( Ȃ0.5) . 

Hazelton & Watling went on to produce analogous results for the stationary covariance 

matrix V*, with the logic that the mean and covariance matrix were sufficient to characterise the full stationary distributionǡ based on Davis Ƭ Nihanǯs asymptotic theorem 

of a multivariate normal limiting distribution. The results for the covariance matrix were based on two distributional approximationsǡ derived from Davis Ƭ Nihanǯs resultǡ namely 
assuming c(.) and p(.) to be continuously differentiable: 

 c(X) = c(xSUE) + Ȃ1 B (X Ȃ xSUE) + Op( Ȃ0.5) 

 p(U) = p(c(xSUE)) + D (U Ȃ c(xSUE)) + Op( Ȃ0.5)  

where B and D are respectively the Jacobian matrix of c(.) evaluated at xSUE and the 

Jacobian matrix of p(.) evaluated at c(xSUE). Note that since these are statements about 

relationships between random variables, then so must the order notation logically be a 

statement about distributions. In particular we say a random variable Y = Op(n) if there 

exists an a such that lim Pr(|Y/n| > a) = 0. In simple terms, this indicates that as    

then we can regard the transformation c(X) of the random variable X as a linear 

transformation, given by the first order Taylor series approximation about the SUE 

solution. 

 

It is worth pausing at this stage with the development, to ensure that it is clear what the 

expressions for c(X) and p(U) are aiming to convey. As an example, consider the 

expression for p(U). The left hand-side, namely p(U), is describing a non-linear 

transformation of the random variable U, and so the result of this transformation will itself 

be a random variable. On the right-hand side, however, p(c(xSUE)) and D describe functions 

evaluated at a particular value c(xSUE), and so themselves simply return a single value. 

Thus, all terms in p(c(xSUE)) + D (U Ȃ c(xSUE)) except for U are single values,  and so this 
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expression is simply describing a linear transformation of the random variable U, the 

result of which is also another random variable. The expression is, then, fundamentally an 

expression about the equality of random variables, i.e. that they follow the same 

probability distribution. The correspondence between the non-linear and linear 

transformations is not exact, however, and thus the Op( Ȃ0.5) term captures the error in 

approximating the probability distribution of p(U) by the probability distribution of 

p(c(xSUE)) + D (U Ȃ c(xSUE)). 

 

Hazelton & Watling subsequently show, through a series of steps, that the stationary 

covariance matrix of the process may be related to properties of the SUE solution. It is 

helpful for this purpose to define a function that returns the covariance matrix of a 

Binomial( , p) random variable: 

 ( , p) =  (diag(p) Ȃ p pT) 

and in particular let: 

 SUE = ( , p(c(xSUE)) . 

They then show that the stationary covariance matrix V* is related to SUE through: 

 Ȃ1V* = Ȃ1SUE + (s())Ȃ2 Ȃ1 D {i α Ͳǡͳǡʹǡǥ Mi (BSUEBT) (Mi)T} DT + O( Ȃ0.5 + mȂ1) 

where 

 M = (s())Ȃ1 BD +  I . 

This expression for V*, like the expression earlier for the mean (Ȃ1* = Ȃ1xSUE + O( Ȃ0.5)), 

indicates that in principle we can construct relatively accurate estimates for these 

moments (and hence the whole limiting distribution) based on knowledge of the SUE solutionǤ (ere Ǯrelatively accurateǯ means accurate relative to the OD demand  . Note that 

we cannot expect to get estimates with high absolute accuracy, since the mean and 

covariance matrix grow with  .  

 

The expression above, involving an infinite sum, does not give a practical method of 

constructing estimates of V* however; instead they propose truncating the sum at the first 

two terms to yield a practical estimator of: 

 . ෡ = SUE + (s())Ȃ2 (DBSUE(DB)T + DMBSUE(DMB)T)܄ 

5.3.2  Asymptotic analysis of the dynamics of the process 

The objective of the source paper for the material in sub-section 5.3.1 was, therefore, to 

relate the stationary distribution of the stochastic process to properties of the process (as 

contained in D, M, B and ) and the SUE solution. Departing from this objective in the 

present section, we may also consider to what extent these theoretical results shed light on 

the dynamics of the process, not just the stationary distribution.  

 

Now, from standard properties of the Binomial distribution we know that: 

 E[X(t) | U(tȂ1)] =  p(U(tȂ1)) 

Applying the statistical identity as used previously: 

 E[X(t)] = E[E[X(t) | U(tȂ1)]]  

  =  E[p(U(tȂ1))] 

and using the distributional approximation for p(U) in the neighbourhood of stationarity: 



 

 

25 

 Ȃ1 E[X(t)] = E[p(U(tȂ1))] = p(c(xSUE))+ D (E[U(tȂ1)] Ȃ c(xSUE)) + O( Ȃ0.5) 

      = Ȃ1xSUE + D (E[U(tȂ1)] Ȃ c(xSUE)) + O( Ȃ0.5) . 

Now, also we have that: 

 E[U(t Ȃ1)] = (s())Ȃ 1 k α ͳǡʹǡǥǡm k Ȃ 1 E[c(X(t Ȃ k))] 

  = (s())Ȃ 1 k α ͳǡʹǡǥǡm k Ȃ 1 (c(xSUE) + Ȃ1 B (E[X(t Ȃ k)] Ȃ xSUE) + O( Ȃ0.5)) 

  = c(xSUE) + Ȃ1 (s())Ȃ 1 k α ͳǡʹǡǥǡm k Ȃ 1 B (E[X(t Ȃ k)] Ȃ xSUE) + O( Ȃ0.5) . 

Combining these expressions and denoting (t) = E[X(t)] yields: 

 Ȃ1 ((t) Ȃ xSUE) = Ȃ1 (s())Ȃ 1  k α ͳǡʹǡǥǡm k Ȃ 1 DB ((tȂk) Ȃ xSUE)  + O( Ȃ0.5) . 

Thus, asymptotically with small error relative to  , we can relate the mean (t) of the 

process to the means {(tȂk) : k α ͳǡʹǡǥǡm} on the preceding m days, at least approximately in a neighbourhood of stationarity where Davis Ƭ Nihanǯs result may be assumed to 
approximately hold. 

 

Note that in stationarity, (t) =(tȂ1) =(tȂ2) α ǥ α(tȂm) = * (say), and the dynamic equations 

above give: 

 Ȃ1 (* Ȃ xSUE) = Ȃ1 (s())Ȃ 1  k α ͳǡʹǡǥǡm k Ȃ 1 DB (* Ȃ xSUE)  + O( Ȃ0.5)   

  = Ȃ1 DB (* Ȃ xSUE) (s())Ȃ 1  k α ͳǡʹǡǥǡm k Ȃ 1  + O( Ȃ0.5)   

          = Ȃ1 DB (* Ȃ xSUE) + O( Ȃ0.5)   

implying that: 

 Ȃ1 (I Ȃ DB) * = Ȃ1 (I Ȃ DB) xSUE  + O( Ȃ0.5)  . 

Now, as discussed in Cantarella et al (2010), the invertibility of I Ȃ DB is a condition that 

may be adopted for assuming uniqueness of the SUE solution. In particular, it is weaker 

than (is implied by) assuming that the Jacobian B of the travel cost functions is positive 

definite (possibly non-symmetric) and that the choice model is a regular random utility 

model (meaning that D is a negative semi-definite symmetric matrix). Thus, under the 

assumption that (I Ȃ DB)Ȃ1 exists, we obtain:  

 Ȃ1 * = Ȃ1 xSUE  + (I Ȃ DB)Ȃ1 O( Ȃ0.5)  = Ȃ1 xSUE  +  O( Ȃ0.5)    

i.e. the result stated earlier for stationarity, as derived in Hazelton & Watling (2004). 

 

Let us now derive the analogous result that describes the dynamics of the covariance 

matrix of the process. Again, from standard properties of the Binomial distribution we 

know that: 

 var[X(t) | U(tȂ1)] = ( , p(U(tȂ1))) 

where (. , .) was defined above. Applying the statistical identity as used previously: 

 var[X(t)] = E[var[X(t) | U(tȂ1)]] + var[E[X(t) | U(tȂ1)]] 

            =  (diag(E[p(U(tȂ1))]) Ȃ E[p(U(tȂ1))(p(U(tȂ1)))T]) + 2 var[p(U(tȂ1))]. 

and therefore: 

  Ȃ1 var[X(t)] = diag(E[p(U(tȂ1))]) Ȃ E[p(U(tȂ1))(p(U(tȂ1)))T] +   var[p(U(tȂ1))] . 

Thus we require three elements, E[p(U(tȂ1))], var[p(U(tȂ1))] and E[p(U(tȂ1))(p(U(tȂ1)))T]. 
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Firstly, from results we deduced earlier we have immediately that: 

 E[p(U(tȂ1))] =  Ȃ1 xSUE +  Ȃ1 (s())Ȃ 1 k α ͳǡʹǡǥǡm k Ȃ 1 DB ((tȂk) Ȃ xSUE) + O( Ȃ0.5) . 

Secondly, for the variance we have: 

 var[p(U(tȂ1))] = var[p(c(xSUE))+ D(U(tȂ1) Ȃ c(xSUE))] + O(Ȃ1) 

which after some steps can be shown to be expressible as: 

     var[p(U(tȂ1))] = (s())Ȃ2  Ȃ2 DB (k 2kȂ2 var[X(t Ȃ k)]) (DB)T   

                             + 2(s())Ȃ2  Ȃ2 DB (j,k (j < k) j+kȂ2 cov[X(t Ȃ j), X(t Ȃ k)]) (DB)T + O(Ȃ1) . 

With some similar steps of substitution and simplification, the third and final term is: 

 E[p(U(tȂ1))(p(U(tȂ1)))T] 

       = ( Ȃ1xSUE ȂDc(xSUE))( Ȃ1xSUE ȂDc(xSUE))T + 2( Ȃ1xSUE ȂDc(xSUE)) DT (E[U(tȂ1)])T 

               + D E[U(tȂ1)(U(tȂ1))T] DT  + O(Ȃ1) . 

As already noted above: 

 E[U(t Ȃ1)] = c(xSUE) + Ȃ1(s())Ȃ 1 k α ͳǡʹǡǥǡm k Ȃ 1 B (E[X(t Ȃ k)] Ȃ xSUE) + O( Ȃ0.5) . 

Furthermore, 

 E[U(tȂ1)(U(tȂ1))T] = E[((s())Ȃ 1 j k Ȃ 1 c(X(t Ȃ j)))((s())Ȃ 1 k k Ȃ 1 c(X(t Ȃ k)))T] 

                     = (s())Ȃ2 j,k  j+kȂ2 E[c(X(t Ȃ j))(c(X(t Ȃ k)))T) 

Then it may be shown, after some steps, that we may express: 

 E[c(X(t Ȃ j))(c(X(t Ȃ k)))T)]  

  = (c(xSUE)ȂȂ1BxSUE)(c(xSUE)ȂȂ1BxSUE)T + 2(c(xSUE)ȂȂ1BxSUE) Ȃ1 (E[X(t Ȃ k)])TBT  

                      +  Ȃ2 B cov[X(t Ȃ j), X(t Ȃ k)] BT +  Ȃ2 BE[X(t Ȃ j)](E[X(t Ȃ k)])TBT + O( Ȃ1) . 

If we now denote V(t) = var[X(t)] and W(s,t) = cov[X(s), X(t)] (for s < t), then bringing together 

all these results then after simplification, we arrive at our final result: 

  Ȃ1 V(t) 

        =  Ȃ1 diag (xSUE + diag((s())Ȃ1k α ͳǡʹǡǥǡm k Ȃ 1 DB ((tȂk) Ȃ xSUE))  

 +  Ȃ1(s())Ȃ2DB(k 2kȂ2 V(t Ȃ k))(DB)T +  Ȃ12(s())Ȃ2 DB(j,k (j < k) j+kȂ2 W(t Ȃ j, t Ȃ k))(DB)T 

     Ȃ  Ȃ2 xSUE (xSUE)T  +  Ȃ1 Dc(xSUE) (xSUE)T   Ȃ1 xSUE (Dc(xSUE))T  Ȃ  (Dc(xSUE))(Dc(xSUE))T 

     Ȃ  2 Ȃ1 xSUE DTc(xSUE)  2Dc(xSUE)DTc(xSUE) Ȃ 2 Ȃ2xSUEDT(s())Ȃ 1k k Ȃ 1B((t Ȃ k)ȂxSUE)  

       2 Ȃ1Dc(xSUE)DT (s())Ȃ 1 k k Ȃ 1 B( (t Ȃ k) Ȃ xSUE)   

    Ȃ  (s())Ȃ2 D {j,k  j+kȂ2 {c(xSUE) (c(xSUE))T    Ȃ1(B xSUE (c(xSUE))T  c(xSUE)(BxSUE)T)   

                                    +Ȃ2 BxSUE(BxSUE)T + Ȃ1B(t Ȃ j) (c(xSUE)ȂȂ1BxSUE) +  Ȃ1c(xSUE)((tȂ k))T BT  

                           2Ȃ2 B xSUE ((t Ȃ k))T BT  +  Ȃ2 B (t Ȃ j)( (t Ȃ k))TBT }} DT 

      + O( 
0.5) 

 

The key in deriving this expression is that each of the individual components in the sum 

involves terms that grow at the same asymptotic rate with  (namely (t), V(t), W(s,t) and 

xSUE) as opposed to those that by construction do not grow with  (namely D, B,  and by 

the special way in which the cost functions incorporate demand, also c(xSUE)). Thus, for 

example, picking one component of the sum at random: Ȃ1xSUE (Dc(xSUE))T has a term xSUE 

that grows with   and so Ȃ1xSUE does not grow with  ; by construction, neither D nor c(xSUE) 
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vary with  , and so the overall terms does not vary with  . The same applies to all the 

terms, except the O( 
0.5) terms which clearly decay to zero as   , hence justifying an 

approximation that neglects the order terms for large  . It is noted that a term also exists 

involving the autocorrelations W(s,t). In order to complete our characterisation of the 

process, then, we would need to derive a third set of approximating expressions, relating 

the autocorrelations to the moments. In principle, it seems that this may be achieved by 

following the same strategy as was used to derive the V(t) limit, but an explicit derivation is 

beyond the scope of the present paper (justified by our focus  primarily on understanding 

the components of variance, rather than the dynamics per se).  

To conclude, from these expressions, we may make the following observations: 

 As noted also in the series of examples in sections 3 and 4, the process for the means 

decouples, in the sense that we can relate the mean (t) of the process to the means  

{(tȂk) : k α ͳǡʹǡǥǡm} on the preceding m days without knowledge of further moments. 

However, this is directly as a result of the asymptotic approximation effectively 

linearising the process, and so some greater care needs to be taken in interpreting this 

effect; it could as well be interpreted as a sign of the weakness in the approximation 

used. Primarily the purpose of the approximation is to provide insights into variances. 

 

 Overall we have defined a deterministic dynamical system in which ((t), V(t)) may be 

computed from {(tȂk) : k α ͳǡʹǡǥǡm}, {V(tȂk) : k α ͳǡʹǡǥǡm} and {W(tȂj, tȂk) : j α ͳǡʹǡǥǡ k Ȃ 1;   

k α ͳǡʹǡǥǡm} . This process would, in principle at least, seem tobe amenable to stability 

analysis as a deterministic process with state variables given by concatenated 

sequences (over successive periods of m days) of the moments (,V) and 

autocorrelations W. This is certainly not, however, straightforward. 

 

 Using the moment equations to solve for stationarity, whereby (t) =(tȂ1) =(tȂ2) α ǥ 
=(tȂm) = * and V(t) =V(tȂ1) =V(tȂ2) α ǥ αV(tȂm) = V* is not such an attractive option, since a 

complex equation would arise which would also include the unknown autocorrelations 

(which persist even when the process is stationary). In this case, i.e. when the interest 

is in the stationary distribution, the expression derived in Hazelton & Watling (2004) is 

more attractive since it is both explicit (for general networks) and does not require 

knowledge of the autocorrelations. This is achieved by making further approximating 

arguments; for example, it is supposed that  is small, so the Hazelton & Watling 

approximation is a limit both in terms of    and   0, whereas the dynamic 

analysis above makes no assumption about  . 
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6. Conclusions & Future Research Directions 

6.1 Major findings 

In this paper we have aimed to show how the relatively mature body of theoretical results 

on day-to-day dynamic process models may be creatively applied to problems, including 

those for which the developers of the theory did not envisage them being applied. We have 

seen that provided that we can satisfy the minimal necessary requirementsnamely, 

defining a state-space of appropriate form in order that the Deterministic Process (DP) or 

Stochastic Process (SP) is markovian and time-homogeneousthen we are in a position to 

apply a range of results and gain insights into the nature of the transportation system 

under study. 
 
The main thrust of the paper, in terms of its application, has been to examine the way in 

which SP models may be used to represent in an internally consistent manner various 

sources of variation, and how these sources combine and follow through to the variation in 

flows that we might observe on-street. To this end, several SP models have been proposed 

and discussed aiming at both presenting a step-by-step approach to an SP model 

specification, and analysing (some of) the several sources of dispersion that can be 

captured by the variance explicitly introduced by an SP model (in comparison with a DP 

model). In this way our aim has been to highlight how dispersion in the real world can 

effectively be modelled through SP models. This issue is relevant for project appraisal, 

improving our understanding of the real world and at the same time supporting more 

robust estimates of the effects of a project implementation. 

6.2 Extensions 

The reported SP instances in our paper are deliberate simple, mainly since all of them refer 

to a two-link network. However, the extension to general networks may be relatively 

straightforward, and we have provided source references in which such extensions are 

defined (though not investigated in the same way as for our paper). Certainly it would be 

interesting to expand the investigation of the present paper to more general networks, and 

in such cases a number of new issues would deserve attention, such as: 

 the distinction between link vs. route variables is no longer irrelevant, the former 

generally  leading to easier-to-solve models, the latter being (arguably) somehow the natural way to describe usersǯ behaviourǢ and 

 covariances between OD pairs which will emerge when extending the section 4 results, 

even though ODs are assumed conditionally independent (see Hazelton & Watling, 

2004, for some consideration of this issue already); 

 

Other issues worth of further analysis with such models include: 

 the development of SP models with a real (as opposed to discrete) state-space, which is 

especially relevant for Ǯinfiniteǯ learning modelsǡ such as exponential smoothing filters; 

the use of such models may need to include learnt disutility as a state variable to retain 

the Markov assumption (see Watling & Cantarella, 2012);  

 the learnt disutility may be described by a stochastic equation, analogous to the one 

used for flow, involving another  function; 

 limitations of the asymptotic theory used for the analysis in section 4, e.g. for near-

periodic systems; 
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 problems that arise with SP models when the corresponding SUE model possesses 

multiple solutions (see Watling, 1996), and the subsequent difficulty in applying the 

asymptotic theory of section 4 (can it be applied locally?) 

While many of the above-enlisted issues have already been partially addressing in the 

literature, a general framework for their analysis is still needed (possibly founded on that 

described in Cantarella & Cascetta, 1995). 

6.3 Research perspectives 

Apart from the extensions in the above sub-section, several wider issues seem worthy of 

further research effort, such as those enlisted below: 

 More research on moment characterisations of SP models, stability issues (with 

respect to the DP describing the evolution of moments), and the relationship to DP 

models (e.g. how much of the variation in the SP is captured through a DP model of the 

mean?). 

 Alternative methods of solution for SP models to Monte Carlo, following on from the 

point above, and developing the results in Hazelton & Watling (2004). 

 Further links to real-life data on variation (e.g. building on work such as that in Guo & 

Liu, 2010), and the corresponding need for statistical estimation methods, e.g. Bayesian 

techniques. Now it seems we have rich enough models to hope for such an approach. 
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