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ABSTRACT

Traffic flows in real-life transportation systems vary on dydbasis. According to traffic flow
theory, such variability should induce a similar variability in travel tinbas this “internal con-
sistency” is generally not captured by existing network equilibrium modeéspiMsent an interia
ly-consistent network equilibrium approach, which considers two potential sources of flowlvariabi
ity: i) daily variation in route choice and ii) daily variation in origin-destination demand. We-parti
ularly aspire to a flexible formulation that permits alternative statistical assumptions, which allows
the best fit to be made to observed variability data in paatieyplications. Joint probability sH
tributions of route—and therefore link- flows are derived under several assumptions concerning
stochastic driver behavior. A stochastic network equilibrium model with stochastic demands and
route choices is formulated as a fixed point problem. We explore limiting cases which allow an
equivalent convex optimization problem to be defined, and finally apply this method to a real-life
network of Kanazawa City, Japan.

Keywords: network equilibrium, stochastic demand, route choice, consistency, variability.



1. Introduction, Review & General Framework

In recent years, topics under the broad heading of “network reliability” have received an in-
creasing share of research attention. A considerable body of work now exists on explanatory models
that relate traveler behavior (especially route choice) to variation in service levels offered by the
available alternatives (e.g. travel time variation), or to the inconvenient consequences ofdhat vari
tion (e.g., arriving late at a destination). Mirchandani & Soroush (1987) proposed an extension to
the well-known Stochastic User Equilibrium (SUE) model, in which the actual travel timesare ra
domin addition to travelers’ perceptions of them. To analyze the effect of traffic information, Arnott
et al. (1991) introduced random capagitfo network equilibrium, whereby informed users were
aware of the variations while uninformed users based their routing decisions on long-term-expect
tions. Chen et al. (2002prmulated the “capacity reliability concept, considering the probability
that a network can serve a given level of demand, given stochastic variations in the link capacities
(subsequently, also with stochastic variation in the demands themselves). Lo & Tung (2003) and Lo
et al. (2006) formulated a probabilistic user equilibrium model under link capacity variations.

More recently, Nie (2011) proposed a percentile user equilibrium model based on ran@em vari
tions in capacity. Yin & leda (2001), Yin et al. (2004) and Watling (2006) developed netwark equ
librium models under the assumption of exogenously-specified travel time distributions. Chen &
Zhou (2010), assuming an exogenously-specified lognormal travel time distribution, proposed a
model in which travelers aim to minimize thé€mean-excess travel time”. Several authors have
explicitly considered the impact of stochastic supply and demand on network equilibrium, including
Shao et al (2006), Siu & Lo (2008), and the studies of adverse weather by Lam et gla(®@D08
Sumalee et al. (2010). On a different, but related, theme of network robustness, Waller et al. (2001)
and Waller & Ziliaskopoulos (2006Ghvestigated how a planner’s uncertainty in the mean demand
level affects errors in equilibrium traffic forecasts, and Zhang et al. (2011) introduced the concept of
expected residual minimization into stochastic-flow network equilibrium.

Clearly there have been many developments to the array of tools available for the analysis of
stochastic networks. The purpose asthaper is to highlight an issue that, to some degreems co
mon to any such method of analysis, namely that of the internal consistency between the assump-
tions made regarding stochastic variation of various components of the traffic system, and-in parti
ular how this may be resolved within the context of an equilibrium approach. One approach adopted
in several reliability/robustness analyses is to view the variability as external to the equilibrium
process, in that the approach generates random input data to which some conventional notion of
equilibrium is applied. As argued in Clark & Watling (2005), such an approach seems lessiappropr
ate for studying network unreliability due to diyeay variability, since it is unlikely that the wa
elers in the transport system will be able to equilibrate on a daily basiss lpafer, on the other
hand, we consider what ‘equilibrium’ might mean in a daily varying system. While we could con-
sider more complex model forms and sets of assumptions, our focus will be on a relatively ‘stripped
down’ class of models, in which we return to the basic foundation of SUE, and explore how we
might formulate it in a coherent way when we may have stochastidpdiay variation (a) in the
OD demands and/or (b) in the route choices given any demands.

Consistently incorporating the resulting distributions of both route flow and route travel time
into network equilibrium is a non-trivial problem. Consider, as a starting point, the conventional
SUE model, in which route utility is a sum of a systematic part (typically, the mean travel time) and
a random residual term. Althougie random term introduces a stochastic element, the flows in the
SUE model are regarded as deterministic. However, once the equilibrium route choice proportions



have been computed, a probability distribution of route flows between each origin-desti@&tjon (

pair could be derived, ex post facto, as a multinomial distribution (Sheffi, 1985, p.281), which could
then be combined to generate a probability distribution of link flows and thence link travel times.
However, for a non-linear travel time function t(x), this will induce an inconsistency; for example,
since under a random flow X it is the case tBa(X)] = t(E[X]) (see Watling, 2002a), it follows

that the mean travel times on which the flow distribution was predicated are not equal to the mean
travel times that would arise from a post-analysis of the model.

One approach to addressing this inconsistency is to use Markov processes to modelthe unce
tain, dynamic evolution of networkssee Watling & Cantarella (2013a, 2013b) for recent reviews
of this literature. (The Markov process approach is compared, both theoretically and numerically,
with network equilibrium models of the kind studied in the present paper in Watling, 2002b). We do
not adopt this approach in the present paper, but rather present an extended formulation of the SUE
model that is able to accommodate such variability. The general framework we present is both a
synthesis and extension of several existing works in the literature.

A generic description of a network equilibrium mechanism with stochastic flows and travel
times is presented in Fig. 1. Since stochastic travel behavior is the main contributor to stochastic
network flow, we consider that route choice and/or demand (i.e. whether a traveler makgs a trip
could be represented as stochastic variables. Allowing for the possibility of the modeler to represent
either route choice or demand as a deterministic or stochastic entity, and given that the case in
which both are deterministic is already handled through conventional network equiligpium a
proaches, there are four important classes of stochastic-flow network equilibrium problems which
we shall address: i) stochastic route choice with deterministic demand, ii) deterministic route choice
with stochastic demand, iii) stochastic route choice with stochastic demafab(imy-stochastit
demand and route choice), and i'gompound stochastic route choice with stochastic (or dete
ministic) demand.

Table 1 presents existing approaches that fall within our framework. Class i includes the model
of Watling (2002a), who addressed the consistency problem between distributions of flow and trav-
el time through a second-order approximation based on multinomial route flows, thus equilibrating
the first and second order flow moments (means, variances, and covariances). Class iii includes the
extension of this model to include binomial demand variation, as described in Watling (2002c). Also
within Class iii, Nakayama and colleagues presented a similar modeling approach (thowgh not r
quiring any approximation) assuming negative-binomially distributed demand and stochastic route
choice (Nakayama & Takayama, 200&kayama, 2007), whereas Clark & Watling (Appendjx A
2005) suggested an approach for consistently modeling Poisson variation.

The purpose of 1B paper is to first bring together, under a common theoretical framework,
these previous approaches to consistent modeling of stochastic flows and travel times. In doing so,
we aim to highlight a broader range of assumptions that could be adopted within this overall
framework; these alternative assumptions are useful when fitting to observed data (some may fit
better than others) or because they may have more attractive theoretical properties or be-more co
ducive to efficient large-scale computation. Aside from the general theoretical framing of the prob-
lem, our specific technical contributions within this general framework are highlighted in Table 1. A
general formulation is presented as a fixed point problem. We subsequently establish the existence
of solutions to such models we consider. We also examine limiting or approximate cases, which are
appealing as they may be formulated as tractable optimization problems, which is both useful for
solution and can be used to establish uniqueness. We conclude by presenting an application of such
an approach to the real-life road network of Kanazawa city in Japan.



In summary, then, the key contributions of the paper are:
i.  To synthesize, and propose new possibilities to, previous studies on the problem &f stocha
tic network equilibrium with stochastic flows, as shown in Table 1.
ii.  To prove the existence of network equilibrium with stochastic flows in all presented models.
iii.  To develop establish limiting models, and to formulate these as convex optimizatien pro
lems, and hence to prove the uniqueness of solution of such psoblem
iv.  To illustrate the approach with a numerical application to a realistic network.

2. General Formulation of Network Equilibrium with Stochastic Flows

In this paper, we aim to present a generalized framework for modeling stochastic network equ
librium with stochastic route and link flows. All of the models have four common, and internally
consistent, elements. Firstly, the stochastic route flows give rise to stochastic link flows, simply by a
linear transformation from the route flow vector random variable to the link flow vector random
variable. Secondly, the stochastic link flows give rise to stochastic link travel times, through a
transformation of the link flow variables implied by the link performance functions (i.e. thase fun
tions that relate given link flows to given levels of congested link travel times). Thirdly, thestocha
tic link travel times give rise to stochastic route travel times, simply by a further linear transfo
mation of the relevant vector random variables. Fourthly, expectations (means) of the stochastic
route travel times are fed into a Random Utility Model (RUM), which is used to describeahe rel
tive desirability of the route alternatives.

The way that these four common and consistent elements are then utilized varies between the
different types of model within our framework. The different types of model vary in the way in
which they ‘generate’ the stochastic route flows. Within our framework, we suggest there are four
important classes to identify:

Class i: OD demand is deterministic, whereas travelers are assumed to make probabilistic decisions
in their choice of route. That is to say, the RUM provides a probability of an individual trageler s
lecting a route in any particular trip, and so random variation in the route flows arises due to the
given population of travelers playing out these random choices of route over repeated ‘trials’, which

may be assumed to represent the particular days on which they make journeys.

Class ii OD demand is stochastic, whereas travelers are assumed to make deterministic decisions in
their choice of route. In this case, the RUM provides a fixed proportion of the aggregate- OD d
mand that selects each route. Variations in the route flows now only arise due to the fact that these
fixed proportions are applied to randomly-varying OD demands.

Class ii: OD demand is stochastic, and additionalgonditional on the decision to traveltrav-

elers are assumed to make probabilistic decisions in their choice of route. This is an extension of
Class i, with the RUM providing a conditional probability of an individual traveler selecting a route,
given that the decision to travel has been made. Random variation in the route flows thus arises due
to two sources: (a) the total demand is randomly varying, and (b) given the demand realized on any
one occasion (e.g. day), the population that have chosen to travel on that day play out a random
choice of route.

Class iv: As extensions of Class i and Class iii, now we also suppose that the route choick probabi
ities vary about some mean probability level (the RUM giving these mean leMais)class in-



cludes three distinct sources of random variation: (a) in OD demand, (b) in the route chaee prob
bilities (about the mean probability from the RUM), and (c) in the traveler route choices given the
realized probabilities. We shall refer to (b) and (c) together as compound stochastic route choice.

Before proceeding further, we shall now introduce some basic common concepts and notation.
Throughout this paper, route choice is assumed to be described by random utility discrete choice
models. A utility function is supposed to generate the deterministic (or systematic) utility, where
throughout we assume that the deterministic utility is a continuous function of the mean route travel
time'. We also suppose that the travel tin{&]) on the a-th link depends only on the floywox the
a-th link, and not additionally on the flows on other links, i.ecated ‘separable’ link travel time
functions. Furthermore, we assume thég} is a polynomial of order.n

The notation throughout this paper is summarized in Table 2. Whsrgiven, then the mean
link travel time, which satisfies consistency condition 4 in Fig. 1, may be calculated,s)Eft
Elt, (212711645 Y )] (£ ta(E[Xa]), for non-linear &-). Efficient methods for calculating the mean
travel time from the random link flow distribution are developed in Lo & Tung (2003), Nakayama
(2007), and Ng & Waller (2010).

Though stochastic, our modet framework comprises standard elements of a ‘demand-side’

(which incorporats the distributions of OD demand levels and route choice) and a ‘supply-side’

(which links the flow and travel time distributions). From the ‘demand-side’, then, the joint proba-

bility distribution of the route flow vectoy is identified if we are given (a) tf@D demand distr

bution for each OD movement, afs) the (random utility) model which maps the travelers’ per-
ceptions of deterministic utilities onto route choice probabilities, conditional on the demand. The
process of connecting these distributions together in a consistent way follows the steps illustrated in
Fig. 1.

From the ‘supply-side’, the link flow probability distribution is consistently determined from
the transformatio’rX =AY . The mean link travel time under such a stochastic flow model is then
given by E. [T,]=E, [t.(X,)]. The details of how to construct this function are described later
(Section 3.6), but are not important for the present section; the important issue for our psesent di
cussion is that such a mean travel time function exists, which captures the effect of the stochastic
flow variation. The mean route travel time is then also a functign sihce: the mean route travel
time depends on the mean link travel times, the mean link travel times depend on the distribution of
link flows, the distribution of link flows depends on the distribution of route flows, and the distribu-
tion of route flows depends gn(as well as other parameters). Under the models we consider, the
deterministic utilityvj—as a continuous function of the mean route traveHsghen also a con-
tinuous function op. The deterministic utility;(p) is therefore defined for a cQ, through this
construction process. If f(.) denotes the utility function which transforms the mean route travel time
into the deterministic utility, then we are saying thaip) = f(z4) whereu; = 23 daj Exi[ta(Xa)]
where X =AY and where the distribution of is parameterized by .

The vector-valued functiof(p) is used to denote the RUM evaluated at deterministic utilities
vj(p) when the input route choice is givengyi.e.:

! This function may be non-linear so as to capture, for example, different attitude of travellers to riskl-As an a
ternative, a natural extension of the formulation presented would be to suppose that the utility function depends on
other elements of the random distribution of travel times, such as higher order moments. Our reason not to present
such an extended formulation above is that we felt the additional complication distracted from the main thrust of
the present paper.



¢.j (p) = P{Uij (p) + & > rjrl?rx{%(p) + ‘C"ij’}} . (1)

What is exactly meant by and therefore by the term ‘input route choice” depends on the par-
ticular type of model adopted. In the four classes of model above, the interpretations are for the four
classes-iiv above: i) the probabilities of a randomly-selected traveler choosing the alternative
routes; ii) the deterministic proportions of travelers choosing the alternative routes; iii) the cond
tional probabilities of a randomly-selected traveler choosing the alternative routes, givenehat a d
cision to travel has been made; and iv) the means of the conditional probabilities to chobse the a
ternative routes as described in i)idy. The word ‘input’ is used to indicate that the relevant prob-
abilities/proportions/conditional-probabilities/mean-probabilities are assumed to be given as a
‘known’, and so the vj(p) are then constructed from the mean route travel times, that is theaexpect
tions of the route travel time random variables. These latter random variables are constructed from
the link travel time random variables, which are in turn constructed from the link flow raraslom
lables, which are in turn constructed from the route flow random variables. Each of the different
classes has a different way of generating these last, route flow random variables, from tpe input
and the other assumptions/inputs of the model. This last step will be the focus of Section 3, which
follows.

By constructingu;(p) in this way, and then applying Eqg. (1), the resulting RUM provides in
¢(p) an output route choieethat is to say, for any given class of model, it provides an interpret
tion of route choice as an output which is presumed to coincide with the interpretation of route
choice relevant tp. Requiring consistency of the input and output route choice is then the common
mechanism for requiring network equilibrium in all the cases considered. That is to dayun a
presented models of network equilibrium with stochastic flows, we enforce the fixed poirt cond
tion:

p=d(p) (peQ). @

We remark that in all of the classes considered, if the link travel time functions are linear in the
link flows, then Eq. (2) defines a conventional Stochastic User Equilibrium condition (Sheffi, 1985).
In practice, such linearity is of course highly unlikely to hold, and so the quite different notions of
equilibrium that emerge from the different classes of stochastic flow model merit their own particu-
lar investigation.

3. Flow Distributions on Stochastic Networ k Equilibrium

In the present section we explore particular model specifications that fall within the framework
described in Section 2. In order to implement the approach described, the key question we need to
ultimately address in each case is: in what way does the distribution of rouseyfld@pend on the
choices from the random utility modp] as defined in Section 2? This is the element that differs
according to the model specification. Once this element is derived, we are then able to;@eyive
andg;(p), and hence have a well-defined problem (2) to solve. In fact, since in all specifications we
shall consider, we suppose that giyerany two routes serving different OD movements aresstati
tically independenif then since the route flow vect®r= (Y1, Y»...Y))" our primary task is toe

2 Clearly in equilibrium OD movements must be related, due to their interactions on a common network, which
our approach captures of course. Statistical independence here is more concerned with the question of whether,



duce the dependence prof the distribution of route travel timé&s for each OD movement.

3.1 Classi models: Deterministic OD demand and stochastic route choice

As described earlier, Class i models are characterized by a situation in which the OD demand is
fixed, but random variation occurs in route flows due to travelers making randomly varying prefe
ences. In the case of a single OD movement connected by two routes, each traveler conducts a Be
noulli trial, leading to Binomial variation in the total route flows; for more than two routes, the va
iation is multinomial, and if we assume OD movements to be statistically independent, then the
route flows are independent across OD movement and multingndiistributed within an OD
movement. The only issue that makes this non-trivial is the fact that the choice probabilities are not
fixed a priori, but depend on mean travel times which themselves depend on flows, giving rise to an
equilibrium condition. This problem is described in detail in Watling (2002a), where it was pro-
posed to approximate the equilibrium condition through a second order approximation, meaning
that flow means, variances and covariances are equilibrated. However, such an approximation is not
necessary, and following the logic presented in Section 2, we may specify an exact fixed point con-
dition (2) for such a case based on equilibrating the individual choice probalulitkes we e-
marked in the opening to Section 3, the key element we require is then the probability distribution
of route flows

Thus, we suppose that a route is randomly selected by each driver in any given scenario (e.g.
day). If the drivers are assumed homogenous, each driver traveling on the i-th OD movement
chooses the j-th route with the same probabilitySuppose further that each driver selects a route
independently of any other driver. Then the joint probability distribution of route fiGvier the
i-th OD movement is multinomial with parametersamdp;, where nis the given OD demanals
described in Table 2. Inserted into Eqgs. (1) and (2), this allows a fixed point condition to be defined
onp as individual choice probabilities.

3.2 Classii models: Stochastic OD demand and deter ministic route choice

In contrast with Classmodels, where the variation is all due to variations in individuals’ route
choice preferences, Class ii models suppose all the variation to be due to variability in tee OD d
mand levels. In this case, tR&JM gives rise to @ which is assumed to represent the fixed prepo
tion of the OD demand choosing a particular route.

The first question, then, is: what are sensible candidate distributions for modeling stochastic OD
demand? In practice, the choice of distribution should be resolved through empirical evidence, and
our proposal is that this is achieved by considering the ratio of the observed OD demand variance to
the mean, and matching this to the known theoretical properties of the underlying discrete and
non-negative models:

e binomial distribution if the variance of the demand is less than its mean;
e Poisson distribution if the variance and mean of the demand are (approximately) equal; and
e beta-binomial or negative binomial distribution if the variance of the demand exceeds its mean.

These candidate distributions offer the modeler a range of possibilities to use for any particular
casestudy, which can be chosen on the basis of the observed variability in the actual demand data.

before making a trip on a particular day, a traveler’s choices might depend on the pre-trip choices of other trake

ers on that day. This may occur, for example, if OD demand is correlated due to seasonal, special evént or weat
errelated factors. A natural extension of the approaches presented would be to suppose some correlation between
OD movements which might occur.



This includes the possibility that different distributions may be suitable for different OD movements
on the same network.

Of course, these are not the only candidate distributions, but in the following paragraphs we
provide a ‘deductive’ justification for suggesting them. Such a deductive justification may also
prove useful in cases where it is not feasible to obtain empirical evidence of the mean and variance
in OD demand; in such cases, a suitable distribution might be hypothesized, and the imgact of di
ferent levels of assumed variance investigated as a form of sensitivity analysis. Our dedukgtive just
fication is based on the concept of latent drivers. Each latent driver randomly decides whether to
make a trip. The realized demand is the number of latent drivers who actually make trips. The ran-
dom travels of latent drivers lead to stochasticity in the demand. We assume that the latent drivers
are homogeneous and mutually independent. Then, it follows that the demand is independent b
tween OD pairs. Since the latent drivers are assumed homogenous, they share a common trip prob-
ability 7. Whether or not a driver makes a trip constitutes a Bernoulli trial, when the trip probability
ris given and fixed, while driverslecisions are independent. Therefore, the demand generated by
v latent drivers follows a binomial distribution, namely~NB[ v, z]. Thus we have a justification
for the binomial as a candidate distribution.

The variance of &8[v, 7] variable, namelyv z(1-7), is smaller than its mean;z. It is
well-known that a 7 approaches 0, the variance of the demand converges to the mean, asd the di
tribution tends to the Poisson, an approximation of the binomial distribution (Stuart & Ord, 1994).
Thus, the Poisson might be justified as a candidate distribution by virtue of the fact that it-approx
mates the binomial variation described above. However, it may only fit a limited numberaef situ
tions; for example, with Poisson-distributed demand, the coefficient of variation may be too small
in comparison with observed data, especially if the mean demand is high

In real traffic networks, the trip probability may itself vary over different decisions of whether
to make a trip, for example due to variations in the activity patterns that motivate trip-making. For
such a situation, we may consider the case of a randomly-distributed trip probability following
beta distribution on the interval [D]; conditional on the realized probability, drivers make & Be
noulli trial of whether to travel. The resulting OD demand probability distribution is a compound of
the binomial and beta distributions, known as the beta-binomial distribution (Johnson et al., 1993).
The mean and variance @& beta-binomial random variabl&3B[wv, 7; ,x], are vi z; and
[(vi +7)/(vi +D)]vi @ A7), respectively, meaning that provided the number of latent drivers
is sufficiently large, a much greater variance may arise than with binomial or Poisson distributed
demands. Indeed, the varianceadfeta-binomially distributed demand may exceed its mean, re
deringit suitable for cases with relatively large variation. The negative binomial distribution sim
larly permits larger variancasillustrated in Nakayama (2007) and Nakayama & Takayama (2006).

Having chosen a suitable distribution to represent OD demand variation, the second issue is
how this is integrated with the route choice element, which in @lassdels is assumed determin-
istic, with the fixed route choice proportionsgrovided by thdRUM.

The first possibility we consider is that of binomially distribu@D demand.The situation is
visualized as follows: Consider that the latent drivers travelling on the i-th OD movemeit are d
vided into as many groups as there are routes available for that movement. Suppose, for this given i
there is a proportion;pof latent drivers in the j-th group. When a latent driver in the j-th group
makes a trip, he always takes the j-th route. In other words, each latent driver has planned his route
before making a trip and merely decides at random whether to travel. The number of latent drivers
traveling on the i-th OD movement and in the j-th group are denpi@ad v, respectively. Since
the probability of whether to make a trip is fixed, the homogenous population of drivers share a



commonz. Under these conditions, the route flows within each group are binomially distributed,
~B[pj w,7]°. In addition, the ¥ are mutually independent, because randomnesg mésilts on-
ly from random travel decisions of latent drivers in the j-th group of the i-th OD movement.
The binomial distribution has the property of partial reproducibility; that s,
N1+ Nz ~B[wvi+ v2, 71 when N~B[ w1, 7] and N~ B[, 7. Therefore,

J; J;
ZYU =N, ~%|:Zpijvi’”j|:%[vi’ﬂ-] (3)
j=1 j=1

The mean and variance of YB[pjjvi,7] are z pjvi = g and z(1-z)pj vi = (1-7) 145 = O'ijz respectie-
ly. Clearly, E[N]= iz =%}, 4 and Var[N|= 6,°=2}, 0;°=(1-7) 1z . Furthermore, g= X/ =7,
i i =7Z L W Z 4;1 O pij and §”=Var[Xy = 7(1-2) 2, u 27, 6ajj pij = (1-7) ma. Therefore,

rbne{2e]

Thus, the variances of the demand, link flow and route flow are-at) (fhultiples of their means.

A second possibility considered is that of Poisson-distributed OD demands. One (but not the
only) justification for such an assumption would be as an approximation of the binomial model
above, sinceB[w, 71 —I1[ ] as = approaches 0, and we have~YI[z;], where uz=7zv and
4 =pi 4 - The Poisson distribution has the property of strong reproducibility (Stuart & Ord, 1994,
p.395). Therefore, % T1[my]=TI[ =, =}, 5ajj 44 ]. Since the variance and meanadPoisson di-
tribution are equal, we havg®= z; and §°=m,

A third possibility we consider is that the OD demand follows a beta-binomial distribution
This distribution has one more parameter than the binomial distribution, and permits a more flexible
behavior of the demand. Assuming comman and that ¢; + )/(» + 1) is constant, the variance of
the demand is proportional to its mean, because the mean and vari@®e;ofr; , 4] are v 7,
and [(vi +7)/(i +)]vi 7y A—7x) , respectively. Setting W+x)/(n+1)=n, we obtain
n=Ww—n)l(n—1). These are applicable whegnincreases ag increases or when is sufficiently
larger thany. In many casesy; is sufficiently large, andv/y~#n—1. In the former case,

~BB[piju, 7, (v—n)l(n—1)] yields ;> =5 (1— 7 ) 4. Similarly, we obtain §=n(1- 7 ) m..
It is not always appropriate s®t(vi + 5 )/(x + 1) =n. In general, the variance BB[ v, 7 ,%] is

57 =My 7Y = ) = (5)
vi+l 7 (7 +1)
due to /i =v; 7.. The above implies that, as the mgarincreases, the varianég® increases by
second order in the mean. As mentioned above, the beta-binomial distribution has an ex&ra param
ter, which imparts greater flexibility to the demand. Therefore, the beta-binomial distribution admits
both linear and quadratic relationships between the mean and variance of the flow.

The fourth possibility we consider is the possibility for the OD demand to follow a negative
binomial distribution Like the binomial distribution, the negative binomial distribution has the
property of partial reproducibility. The mean and variance;d~XBI[p; o, 5]) are gai f= 1 and
pi o B(1+) = (1+) 4, respectively. Clearly, EfN= z =2 7., 14 and Var[N|= 6,°=2 ), ¢;°=
(1+p) ; . Furthermore, M=% 27, Saji iy = B2, a6 27 80 P, and §£=Var[X]= S+ 2!,

% Since we cannot ensure in the subsequent equilibrium procesguhatrecessarily a natural number, such a
binomial distribution may not be well-defined. We thus make a pragmatic approximation by adopting the gamma
function as an extension of the factorial function, singet+1) =y! when y is a natural number. In this way the
binomial probability of 8[n,#] variable when n is non-integer is presumed to be
r(n+1)2(1-2)™[T(y+1)T(n-y+1)].



0 27 Sajif Pij = (1+5) Ma.

If the OD demand follows any of the binomial, Poisson, beta-binomial or negative binomial
distributions and route choice is deterministic, the variances of the demand, link flow, and route
flow are all constant multiples of their means, and are defined as follows:

=c.’ ifi=i'andj=]|’
Oy =100 ) ©
0 otherwisdi =i'or j = j")
s2= pm. (8)
where

1-7 it N ~¥v, 7]

1 if N, ~ Rz ]
p=41+p it N, ~2¥a,p] 9)

n(l-7) if N, ~%%vi,ﬁ,v‘ _”}

n-1

Thus, from the collection of expressions above, we are able to fully characterize the routs-flow di
tributions for each of the four candidate choices of OD demand distribution (as well as information
on the link flow distributions, useful for computing the expected link travel times). This is then used
in Eq. (1) to solve Eg. (2) ip, wherep is in this class denotes the equilibrium proportions of flow

on the alternative routes.

3.3 Classiii models: Stochastic OD demand and stochastic route choice
In Class iii models there are two components of random variation in the route flows, namely

OD demand variation and random variation in route choice conditional on the OD demand. This is

an extension of Class i, with route choice conditional on the demand described by a multinomial

distribution. Three consistent formulations of such a class have already been described in detail in
the literature, and so are simply summarized here for completeness (the source papers may be con-
sulted for further details):

e Watling (2002c) compounded binomial OD demand variation with a multinomial distribution
for conditional route choice, resulting in a multinomial distribution for the unconditional route
flows.

e Clark & Watling (2005, Appendix A) compounded Poisson OD demand with multinomial con-
ditional route choice, whereby the resulting (unconditional) route flows follow independent
Poisson distributions.

e Nakayama & Takayama (2006) and Nakayama (2007) compounded negative-binorsially di
tributed demand with multinomial conditional route choice, with the resulting route flows then
following anegative multinomial distribution.

The route flow distributions are used to solve Eq. (2) given Eq. (1), this time with the equilibrium

process acting op as the conditional probabilities to choose the altenative routes, given t#at a d

cision to travel has been made.

3.4 Classiv models: Compound stochastic route choice
Class iv models extend those in either Class i (deterministic demand) or Class iii (stochastic
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demand) by supposing two contributory sources to variation in route flows aside from whether the
OD demand varies: the route choice probabilities, and the traveler route choices given the realized
route probabilities. In Classes i and iii, the multinomial route choice model assumes that all drivers
choose routes with fixed and common probabilities, whereas in class iv we suppose the route choice
probabilities themselves to be randomly distributed, according to a Dirichlet distribution (d-genera
ization of the beta distribution). Conditional on the realized probabilities, each driver randemly s
lects a route. The distribution of route choice probabilities is gively B[ B, 1i]. In this case, the

route choice inputp, introduced in Section 2 is the vector of mean route choice probabilities. This
route choice is referred to as compound stochastic, since it combines variation in the route choice
probabilities with variation in the choice itself.

If the OD demand is fixed (i.e. we aim to generalize Cigsthe resultant route flows aee
compoundof multinomial and Dirichlet distributions, known as the Dirichlet-compound multino-
mial distribution. The joint probabilityfy) is [n!T(r )/T(n +r NI ITCY; +6py)/ ¥ ' T )]

The mean, variance, and covariance of this distribution are as follows (Mosimann, 1962):

My = E[Yij] =N B (10)
Dinp, - p)=Varly,] ifi=i‘andj =
+,
&y =CoMY, Y ]={-2ln o p, if i =i'andj = ', (11)
1+,
0 otherwisdi =i')

The parameter, can be interpreted as a variance scale parameter. According tblEdhé¢ var-
ance of route flows enlargesr, increases. We shall call this compound stochastic route choice
‘Dirichlet-compound multinomial route choite.

If the OD demand is stochastic (i.e. we aim to generalize Class iii), then it is natural to consider
the Dirichlet-compound multinomial distribution for conditional route choice when the demand is
assumed to follow a beta-binomial distribution. In order to do so, we now introduce a hypothetical
link, where y is the number of no-travel latent drivers; that sty —ni. Let pp=1- 7;, and p is
the probability of no-travel becausg; is the mean trip probability as mentioned bef&wet = x
7.. As a compound of beta-binomial distribufioand Dirichlet-compound multinomial distribu-
tion, we then obtain the following for the unconditional route flows:

in (yi) = in |ni(yi) O, (ni)
_ vilT(7) & F(yij +7Pi) - (12)
L(vi +7) -0 yij!r(yi Pi)
The above is the probability function of the Dirichlet-compound multinomial distribution. Thus, the
route flows between a single OD pair follow the Dirichlet-compound multinomial distribution. The
link flows are given by the sum of Dirichlet-compound multinomial distributed route flows. The

sum of Dirichlet-compound multinomial distributed variables does not necessarily followi-the D
richlet-compound multinomial, because it does not have the property of reproducibility or partial

* The probability function of beta-binomially distributiorBB[ v, 7, ,xl, is as follows: g, (n)=
VIBIN +%7,v, —n + 7 A—z)1/{(v, —=n)'n!Bly 7 .y, A—7,)]} where B(xy) is the beta function, and Bjxy
Tr(WIT(x+y).
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reproducibility. It is, therefore, difficult to derive a clear form of link distribution. However, the
consistent mean travel time can directly be caledltom the route flow distribution (e.g., Nak
yama, 200Y.

Once derived, the appropriate route flow distribution may be used in Eg. (1) to solve Eq. (2) in
p, where the equilibrium process now defines a self-consigtaatthe mean route choice prolyabi
ities.

3.5 Approximate Flow Distributions
3.5.1 Multivariate normal distributed flows

If the demand is sufficiently large and the number of routes is limited, the central limit theorem
dictates that the route flows; approximate the multivariate normal distribution. We formadly e
tablish this result in Appendix A. For practical applications, it is important to examine how large the
demand is required for the normal approximation to be reasonable, and how accurate it may be as
an approximation to some other model such as those presented in secti8nis $dch a question
has been studied well. For example, according to the textbook of Hald (1952), as a rule-af-thumb
is suggested that the normal approximation to the binomial distribution will likely be adequate
when n> 36, though the required level of accuracy may differ between contexts.

Assuming that the just-described conditions hold, the vector of all route flows followsia mult
variate normal distributiony ~ &, X]. BecauseX =AY, thenX also follows a multivariate me
mal distribution N[m, §], whose mean vecton and variance-covariance matBxare given by

m=Apn (13)
S=AXAT, (14)

where we have exploited the propertyNgit,X] (Stuart & Ord, 1994, p.512). One practical diff
culty that may arise in some cases is tAaE AT may be singular if it contains sonedundarit
link variables, however these may be discarded as follows: If theand (a +1)-th links directly
connect to the (a +2)-th link, the start node of the (a +2)-th link, which is also the end node of the
ath and (a+1)-th links, is neither the origin nor the destination (the latter is described by
Xa+2= Xa+1t Xg), then the variance-covariance matrix Qf Xa+, and X+, cannot be defined. To
remedy this problem, one of the three links should be abbreviated, because the link flow can be
computed from the remaining two link flows. Otherwise, the component column (or row) vectors of
AX AT are not linearly independent. Consequemtif;AT is non-invertible and the joint prob&bi
ity density function o is undefined.

The route flow is normégt distribued when each latent demand is sufficiently larjeEqs
(6)-(8) in Classii are satisfied, the route flows approximately follow the independent norsial di
tribution given by

Yi ~ %, 004] (15)
From Egs. (13) and (14) we then have for the corresponding link flows that:
X ~ %@, S| = 2, p Adiag() A'] . (16)

3.5.2 Poisson distributed flows in large-scale networks

The probability density function & normal distribution is, of course, symmetric and aiow
negative values. An alternative that does not possess such properties is the Poisson, and so in this
section we explore the possibility to adopt this as an approximating model. As is well-known, the
binomial distributionB[n, p] is approximated by the Poisson distributldm p] if np is finite and p
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is sufficiently small. Therefore, it may be justified to assume that any route flow with low grobabi
ity of being selected is approximately Poisson distributed. The accuracy of the Poisson approxim
tion has already been studied well: the maximum difference between the binomial and limiting
Poisson probabilitiesB(n, p] andII[n p]) is given ag/’e “|1-u/2|/n + O(n?) wherey = np (Stuart &

Ord, 1994, p.171). Thus, the accuracy depends on n and p.

In practice, then, in which situations might we justify an assumption thatspffeciently smal?’
to apply the Poisson approximation? One possibility could be a case, such as a large grid network,
where there are many similar route possibilities, since in such a case the selection probabilities of
most routes should be small but non-zero because they are assigne®RbWwthdowever, the s
sumption that all route choice probabilities are sufficiently small would be difficult to justify for all
OD movements in many real life cases, given the evidence that drivers tend to select fim a rel
tively small number of routes, and given the existence of major highways which are likely to be
dominant in their proportional allocation of demand.

A second, and perhaps more plausible, case is an argument that does not rely on limiting distr
butions. In particular, the assumption of uncorrelated Poisson route flows may be justified-in an a
ternative theoretical way, following Clark & Watling (2005): if the OD demand flows are Poisson
distributed, and the route flows conditional on the demands are multinomial, then the unconditional
route flows are exactly Poisson and uncorrelated. It then follows that link flows, though correlated,
have marginal distributions which are also Poisson. The Poisson condition arises as we-are effe
tively seeing route choice as sampling from a time-homogeneous Poisson process, and e uncorr
lated property arises as we can think of stochastic demand being as if we add an addition ‘no-travel’
hypothetical route for each OD movement, with no conservation bound then required on the sum of
route flows in the extended network (conservation of total route flows by OD movement being the
reason for the negative correlation in the multinomial model of conditional route choice)eThis r
sult does not require the OD demands to be large, the network to be large, nor the route choice
probabilities to be small, as it is not a limiting result. The strongest assumption it makes is that OD
demands follow a Poisson distribution, and the reasonableness of this assumption should be verified
with actual data, on a case-by-case basis.

Since the Poisson approximation offers a simple mathematical treatment of traffic assignment,
it is therefore worthy of consideration, though of course we should keep in mind its poténtially
ited applicability. Certainly it has been a model of some interest to transportation researchers, e.g.
van Zuylen & Willumsen (1980).

In the cases when we may assumesytficiently small that the Poisson approximation to the
Binomial is valid, we may then have that approximately follows a Poissdi[n; p;] (= T1[;])
distribution In multinomial route choice, the route flows are not independent between a given OD
pair. In this case, the covariance of flows on thie §nd | -th routes between the i-th OD pair is
—ni p; P However, the covariance can be assuass@l because;p; is finite and g is sufficiently
small. In other words, each route flow can be assumed to follow an independent Poisson distribu-
tion. Then X~TI[my]= TI[X |, =}, 5aj 4], as described in Section 3.2,

3.6 Existence of Equilibrium Solutions

In the present section we consider existence of solutions to the equilibrium model (2) for each
of the models defined in the previous section.

Now, clearly the setQ as defined in Table 2 is compact, and as given by Egp({d)e Q.ln
addition, T v;(p) is continuous¢(p) is also continuous from Eq.)(Af ¢(p) is continuous, the fixed
point problem has at least one solution, according to BrgaViiged point theorem (e.g., Ortega &
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Rheinboldt, 1970). Let us assume that the travel time functipa¥ @re continuous and strictly in-
creasing on x> 0. Existence of solutions then hinges on the continuity of the mean link travel time
in p, which in turn depends on the specific link flow probability functig(xf) and on the travel
time function §(xa).

In the case that each route flasvbinomially distributed—which applies to (the marginalsdi
tributions of) the multinomial flows in Class i, the binomtalsein Class ii, and the multinomial
casen Class ii—the mean link travel time is given by:

ET]=ElL, (X)) =3 S35 a.Jt(Z_ly.a)

y11—0 ylz—o Yu =0 i= yla) yla

P (1= p, )" =, (A7)

where y, =X, s Vi and g = = J.; 5aj P Because iris given and fixed, the above is a function of

p, namely, t,(p). Because a finite sum of continuous functions is itself continuous, implying that
the route mean travel time is continuodg(p) is continuous w.r.tp. By the same reasoning, the
mean travel time is continuous w.ptif the route flows are beta-binomially distributed.

It is more complicated to examine the continuity of mean travel time with the normally distrib-
uted flow. Normally distributed flows can become negative, albeit with small probabilitys\We a
sume that{(xs) = ta(0) = 7a 0n % < 0°. The mean link travel time is given by the indefinite integral of
(1/@sa)jf°mta(x)exp[—(x—ma)Z/ZSaz]dx, and isafunction of m and g. Unlike the definite irg-
gral, [ t,(x)fx.(xX)dx is not necessarily continuous even though bgtik.f and t(x.) are contin-
uous.

If{&} (i=1,2...)is a sequence of continuous functions, and if§heniformly converge td,
then £ is continuous (see Theorem 7.12 in Rudin (1976)).4{mM)}|< @ and if £ @ converges,
then X &(m) is uniformly convergent (Theorem 7.10 in Rudin (1976)). Now set
éa(@,sa)zfgta(x) fv.(X)dx. Defined as a definite integrak®(m,,s,) is seen to be continuous
w.rt. myand § when % ~ N[m,, s Let @® = [i@®(X)dx, where

\/tﬁ()s xp{ %H if x<m, —2s andx>m, +2s,
@ (X) = v (18)
3%51 otherwise

Clearly, since €% < e “**when |x| > 1.(X) fx,(X) < @*(X) on a real field. Applying integration by

parts, and assuming that a mean travel time exists, we objfgins @®(x)dx =

t,(m, +25¢)/\/2_7ze2—e‘°°ta(oo) =t,(m, +25¢)/\/%, becausdimy .. t(X)/€° =0 since 4(x,) is a
polynomial functionSimilarly, we can confirm that the value c}[f‘o‘;’zsL @®(X)dx is finite. Being a
definite integral of a finite function,[r',‘}"*fzzgwa(x) dx is guaranteed finite-valued. According to the
above theorems, the finiteness[&f @%(x)dx implies (uniform) convergence ¢f, ta(X) fx.(X) dx.
Thus,[”, ta(X) fx,(X)dx is continuous w.r.t. yand 5. As mentioned in Section 3.5.1, the mean and
variance of approximately normal-distributed flow is equal to those of the original flows. Therefore,
m, and g are given by andX of the original distributions. The mean and variance of route flows
are determined by if the type of route flow distribution is given, as described in Sectior83L1
Accordingly, the mean travel time of normally distributed link flow is considered as a funcfon of
namely, t,(p). In conclusion, we have confied that the function of mean link travel time is con-
tinuous w.r.tp in the case of normally distributed route flows.

*We assume thaj(k,) is strictly increasing ony 0, but may not benx, < 0. The continuity of #(X.) W.r.t %, is
guaranteed on a real field.
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The negative binomial and Poisson distributes are discrete, but, unlike the binomially distrib-
uted case, the mean travel time with negative-binomially or Poisson distributed flows is given by
the infinite series ofE[T,]1 =2 % o -- > x-ot.(X,) fy.(X,). Due to the infinite series, even if each
t.(x,) fx.(x,) is continuous,E[T,] is not necessarily continuous, as described above. Although,
for the limited space, the detail of the proof is omitted, uniform convergence HmE4y be shown,
and, then the proof proceeds as for the above normally-distributed case.

From the above discussion, then, we infer that a solution eaisite fixed point problem (2)
for the model specifications presented in Section 3.

4. Convex Optimization Problem of Network Equilibrium with Stochastic Flows

The general formulation of network equilibrium with stochastic flows is given by the fixed
point problem (2) defined in Section 2. While there exist a variety of general-purpose algorithms for
solving fixed point problems in transportation networks (e.g. Liu et al, 2009; Cantarella et al, 2013),
which might be applied to problem (2), an attractive and efficient alternative for practicabapplic
tions is a formulation as a convex optimization problem. Since some of the proposed nmsdels pr
sented in Section 3 may be formulated as convex optimization problems, we discuss these below.
We do not intend to suggest these as ‘recommended models’, as opposed to the more complex
models which may not admit a convex optimization formulation, but rather we intend to point out
efficient formulations that exist for at least a subset of the models in Section 2.

4.1 Formulation

An example of models that can be reformulated as convex optimization problems are those
models that exist in Clagis when we adopt the multinomial logit model, with a utility function that
is linear in the route travel time (with scale paraméter

As mentioned in Table Z,(m,) is the function that calculates the mean travel time on the a-th
link from the mean link flowin all the models in Class ii;’s= pm, ando;® = p 4; as mentioned in
Egs. (6) and (8), and mean link travel time is a function solely,of an example, if the link flow is
Poisson distributed and ifa(ks) = z[1+0.15(0%/c2)’], the mean travel time functioris
c,(m)=r,[1+ 0.15(ma4 +6ma3 +7ma2 + ma)/ga“]; the same principle can be applied to derive
functions c,(m,) for the other (non-Poisson) models in Class ii.

The model with multinomial-logit-type deterministic route choice and stochastic demand can
therefore be formulated as the following optimization problem:

A J.
. m, _ 13
min.¢ =Y jo c.(W) dw+gz 2y 10 g4 (19)
a=1 j=1
S.t.
J;
B=>u i=1,2..1 (20)
j=1
| Ji
m=>>38,4 a=12._A (21)
i=1j=1
4 >0 i=1,2..1, j=1,2...J (22)

The above is similar to Fi&k formulation (Fisk, 1980), but uses mean link travel times and route



flows instead of deterministic link travel times and route flows. Therefore, we can confirm that the
above problem solves the stochastic network equilibrium with deterministic logit-type route choice
in the same manner of Fisk (1980), but in this case with stochastic demand.

4.2. Uniqueness of Equilibrium
4.2.1 Normally distributed flow case
Let us investigate uniqueness of the equilibrium in the optimization problem of Eq2¢)9)
Clearly, the feasible domain of this problem is convex. If the objective function of Eq. (25) is
strictly convex, the optimization problem has a unique equilibrium. To demonstrate that the obje
tive function is convex, it is sufficient to show that the Hessian matrix of the objective function is
positive definite.
The second derivative dfin Eq. (19 is given by
1 & e
52 eﬂ“ +aZ‘153',J ci(m) ifi=i'andj=j

OLt; O A
4 MJ Z aij alj a(ma) otherwise

: (23)

where C.(m,) = dca/dm , which is mentioned in the next paragraph. The above gives the compo-
nent of the Hessian matrix QT Let V2¢ denote the Hessian matrix ¢f Then,

u' [V u== ZZ 4 +Zc (ma)[zz i U Jz. (24)

_11 14 a=1 i=1 j=1
Foru = (U, Uro...Uy) ' #0, the flrst term on the right-hand side of the above equation is positive and
the second term is non-negativedf(m,) > 0. ThereforeV?( is positive definite, and is convex if
Ca(m,)>0.
In Class ii, X~ N[my, pmy] as mentioned in Eq. (16), if s sufficiently large. Becausg(xy)
is polynomial, C,(m,) < on 0<m, <m,. Furthermoreg,(m,) is continuous. The derivative of
mean travel time function is given as

é;(ma)=%E[ta(xa)]=% [ 4,00 fy (9 dw. (25)

In the region of [0, mx(—o0, x), [“_ ta(X) fx,(X)dx is uniformly convergent as mentioned ircSe
tion 3.6. Therefore, whefi*, {g[ta(X) fx.(X)]/6me} dx is uniformly convergent, we can interchange
integration and differentiation as follows (e.g. Theorem 9.42 in Rudin (1976)):

% [" .00 £, (x)dx= j";%[ta(x) f, ()]dx (26)

Because of X~ N[ma, pmy],

9 X X) [dXx = X ! e _(x—ma)z X
I [t()f ()]d j t()ama{\/zpma Xp{ 2pm, }d

(27)
1

2pm,

2 09 - (o + mm, |y (x)dlx

We can confirm thalt”, {g[ta(X) fx.(X)]/6ma}dx is uniformly convergent in the same manner of-Se
tion 3.6. Let {(X) =x°— (p + my my, and, then
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[ 4,00 [ = (o + mm ] (0

= [° 2da(0) f, s [t (a0 + (o mm, 1, (3) £, ()elx

Because 4{') is strictly increasing andy(0) = z,, ta(\/|a(X)+(p+l’na)ma)|a(X)ZTa|a(X). Thee-
fore,

(28)

[7 a0 [~ (o rmym, [t (dx= 7, [” 1,(x) fx (9dx=0 (29)

since |2 [X*—(p+m)m]fx, (X)dx = [Z x*fy, () dx—(p +m,)m, =s.2 + m2 - (p +m,)m, =0

due to & =pma. Thus, €.(m,)>0 is confirmed, soc,(m,)is strictly increasing. Therefore, the-o
timization problem of Eqgs. (29(22) is proved to have a unique equilibrium. Also, the problem is
convex.

4.2.2 Poisson distributed flow case
When the link flow is Poisson-distributed, the mean travel time function is given as

Ca(my) = D ta(k) fx (K). (30)
k=0
In addition, the derived function of the mean travel time can be written as
m, k-1 —m, k
ta(k) —— fy ()=, ™+ Dt (k) | =22 T | 31
a(ma)Z()% (k) Oe +Z‘,(){(k1)I o (31)

In terms of the Poisson distribution, the above becomes

S(M) = —,(0) fy )+ 3t () fy (k=D f, (K}
k=1 (32)

:if (k) {t,(k+1) —t,(k)}> 0
k_

Note that 4(x,) is strictly increasing as described above. Thtigm,) >0 when m> 0, whereby
the mean travel time functiary(m,) is strictly increasing. Therefore, the uniqueness of the opt
mization problem is guaranteed.

5. Numerical Examples

5.1. Simple Network Case

A simple example is first considered, with a Class i model selected so as to illustrate some ge
eral features of the stochastic flow models presented (in the following section, we shall consider
Class ii models). We consider four example networkssaaving a single OD movement joined by
parallel links/routes, but with differing numbers of routes in each case (2, 4, 10 and|20%- A
works consist of an even division between A-type routes and B-type routes; so the network with ten
parallel routes has five A-type and five B-type routes. The travel time functions of the A-type and
B-type routes arexfxa) = 10[1+ (/100¥] and & = 20[1+ 0.25(x/100¥], where k and g are the
travel times andxand x are the flows of the A-type and B-type routes, respectively. The fixed OD
demand levels in the four cases are proportional to the number of routes available, namely 300, 600,
1500 and 3000. The multinomial logit model is adopted for the random utilitelmedh scale
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paramete® = 0.5 in all cases.

The mean travel times are given By10{1+ (Xa/100Y}] = 10[1 +{Var[X a] + (E[Xa])?}/100]
and E[20{1+0.250%/100Y}] =20[1 +0.25{Var[Xa] + (E[Xs])?/100%] , where % and % are the
random variables of flows of the A-type and B-type routes, respectively.

Since all four example networks are made up of an even split between the two kinds of routes, it
is easy to ascertain that the same flow is carried on routes of the same type, regardless of the total
number of routes. Therefore, it is sufficient to consider one pair of A-type and B-type route flows,
Xa and %, in each example. Fig. 2(a) illustrates the mean flows on A-type routes in the case with
multinomial (binomial) route choice (Class i model, Section 3.1), those with the Poissoni-approx
mation (Section 3.5.2), and for comparison the conventional SUE flows. We have not illustrated the
mean of the approximate normally distributed route flow (Section 3.5.1), since it coincides with that
of the underlying multinomial model.igz 2(a) indicates that the flows in the conventional SUE
case are different from the others; this is due to the mean travel time functions including the term
for the variancen flows, which impacts on the assignment of flows when equilibrating. The mean
flows of the binomial (Class i) modalproach those of the Poisson approximation as the number
of routes (and OD demand) increases, as would be expected. In this simple example, the difference
between binomially distributed and approximately Poisson distributed fiay not be that great.

Unlike conventional SUE models, the solution of network equilibrium with stochastic flows is
influenced by the absolute levels of the flows involved, not simply the flow rates. We illustrate this
by parameterizing the demands and capacities by h >0, such that the demands in the 2-route,
4-route and 10-route networks are 300h, 600h, and 1500h, respectively, and the capacities on both
links are 100h. Figure 2(b) illustrates the resulting equilibrium solutions for wheseh& 2. The
SUE flow on the A-type route in the 2-route network is 10[1+ (300{8)0hY] = 10(1+9p),
where p is the probability of choosing the A-type route, and so the SUE flows are int@hain
the stochastic flow model, on the other hand, the mean A-type flows in the three networks are
10[1 + 3(1-p)/h + 9 ], 10[1 + 6(1—p)/h + 9 F] and 10[1 + 1501—p)/h + 9 (F], respectively, which
depend on h. These expressions (as illustrated in the figure) demonstrate that the mean binomially
distributed flows approach the SUE flow as-hoo, but that for finite h, the stochastic models in
this study have different properties from SUE.

5.2. Kanazawa Road Network Case

In this subsection, we apply both a normal approximation model (Section 3.5.1) and ia Class
model (Section 3.2) to the real-life network of Kanazawa in Japan. The network consists of arterial
roads interconnected by 140 nodes and 467 links. The time period considered is the morning peak
hour, i.e. 7:00 a.m8:00 a.m., and the mean OD demands were derived from a person trip survey in
the Kanazawa urban area. The travel time functions used are of the standard BPR-type,
ta= 7a[1 +0.150%/ca)’]. We consider first the use of the (approximate) normally distributed flow
model (as described in Section 3.5.1), before considering other more complex forms. For practical
applications, we believe this to be a starting point, since the normal approximation is relatively si
ple to implement, and so is more convenient for policy-testing; alternative, more complex distribu-
tions may then be tested to consider to what extent their equilibria depart from those of the simple
model. The parameterin Eq.(15) of the normal approximation represents an index of dispersion
(variance to mean ratio) for the OD flows. We did not have direct information on variation in OD
flows, so instead setto the average index of dispersion in flows obtained from a year of weekday
hourly link flow datd from 7:00 a.m-8:00 a.m., recorded by traffic counters. This gave rise to a

®A better method that might be explored in the future may be to reconstruct variances in the Offoffows
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value ofp = 42.0. We assume the logit scale paramgter, i.e. the objective function of the opt
mization problem in Section 4.1 consists solely of the first term on the right-hand-side of)Eq. (19
The resulting stochastic flow network equilibrium problem was numerically solved by the
Frank-Wolfe algorithm.

The resulting equilibrium solution was compared with observed link flows. The correlation co-
efficient between the observed and mean equilibrium link flows was calcaa®814, and this
shows an apparently reasonable correspondence between the two. Detailed results from the model
are illustrated in Fig. 3. Fig. 3(a) illustrates the equilibrium standard deviations in link travel times,
where a number of critical links may be observed which greatly influence variations in trip times.
Figure 3(b) presents the coefficients of variati@Vv$) of link flows in the network. Many links
with high CVs are located near Route 8, one of the main national roads in Japan. Consequently, the
demand of access/egress to/from Route 8 is large. However, the access/egress roads are of lowel
capacity than Route 8, and their travel time reliability is low. Thus the results are plausible-and sp
cific to the local details of the network, in spite of assuming a common index of dispersion across
all OD movements.

The parametep, we might expectis highly influentialin describing the variability of flows
and travel times. To examine the influence @ the variability, three other cases witk 10, 21,
and 84 are considered. Figure 3(c) shows the mean of CVs of link flows and travel times, respe
tively. We find from the figure that the mean CVs become highgriasreases. The means of CVs
of link travel times are higher than those of link flows. The travel times are more variable than the
link flows, because the roads are congested, and a slight increase in link dlolified in terms
of travel time. However, in this case there is relatively little feedback effect from the level of travel
time variation to the equilibrium mean link flows: the correlation coefficients between the observed
and calculated mean link flows in the four cases with10, 21, 42 and 84 are from 0.912 to 0.914,
ard there is no significant difference.

Now we explore the use of alternative, more complex models, and in this case we shall focus
on those in Class ii (Section 3.2). Since the parametegreater than 1, the negative binomia-di
tribution is a candidate. Fig. 4 shows the scatter plots between mean link flows of the negative b
nomially and approximately normally distributed cases. The correlation coefficient between them is
0.99994, and they are almost the same. Thus, the normal approximation is a fairly aqeurate a
proximation to the negative binomial Class ii model, in the case of the Kanazawa road network.

As discussed in Section 3.2, the mean NBd¢, f] variable isef, andp = 1+£. The mean of
the a-th link flow is i so the a-th link flow follows &B[m./f, ] = NB[m4/(p—1),p—1] distribu-
tion. The mean of the observed link flows in the netweak 879.2 (pcu/hr), and the maximum of
the observed link flow was 3,585. Fig. 5 illustrates the probability functiamegative-binomially
distributed link flow whose mean is 8798B[879.2/(p—1),p—1], with p = 10, 21, 42 and 84. Fig.

5 also includes each probability density function of the approximate normal distribution. As we can
see, the average link distribution wjih= 10 is quite close to the normal distribution. The distribu-
tion becomes skewed and diverges from the normal distributiprgats larger. Thus the accuracy

of the normal approximation depends on the parametErg. 6 shows the probability function af
negative-binomially distributed link flow whose mean is 1,600 and 3,200 pwith2. Fig. 5(c) and

Fig. 6 illustrate that the link distribution approaches the normal distribution as the mean enlarges.
Thus, we confirm that the normal approximation is reasonable for the link flows in the Kanazawa
road network.

variances in link counts, as these may be somewhat different; a method such as that developed by Hazelton (2000)
might be explored for this purpose, if extended to the case of congested networks..
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6. Conclusions

Most previous network equilibrium models, including SUE models, presuppose that network
flows are deterministic. This study examined network equilibrium models with stochastic flows.
Although several authors have considered such a problem, few have considered the issue of how to
consistently formulate network equilibrium in such a case, such that the assumptions regarding sto-
chastic variation are followed in all aspects of the equilibration process. In order to addresss this i
sue, we have set out a general framework and have proposed four classes of model that fit within
this framework. Each class is based on a different use and interpretatiorRafithan this context,
and each leads to a different (but internally consistent) representation of variability in route flows,
link flows, link travel times and route travel times. We establish formulations of these models as
fixed point problems, establish existence of solutions to the resulting fixed point problems, and
propose approximation methods that may be applicable in some scenarios. We show tmat in a li
ited number of cases, it is possible to formulate these problems as a convex optimization problem,
similarly to the optimization problem of logit-based SUE. We have applied some of the proposed
models to the Kanazawa road network, where it was seen to give rise to plausible phenomena.

In future research, it should be considered how stochastic factors other than demand and route
choice, such as random capacities, could be incorporated within such a general fkaméne
still ensuring consistency. Furthermore, we assumed independent drivers, and hence independent
demand, but as the work of Duthie et al. (2011) implies, neglecting the correlation among demands
may lead to a mis-estimation. Considering correlated demands and identifying the demand distrib
tions from the actual dalp-day data are therefore also important areas for future work. In the past,
estimating a mean OD demand matrix has proved sufficiently challenging in practice, but emerging
data sources provide the potential for more precise tracking of daily OD demands, and hence the
possibility in the future to obtain direct information on levels of OD demand variability.

In the paper, we prove uniqueness of optimization problems of the models in Class ii and with
Poisson distributed flows in all classes in the present paper, but it would be useful in the future to
extend these results so as to establish uniqueness for other models with stochastic flows. In Watling
(2002a) this was achieved for some limited cases in terms of link flow moments; a fruitful area of
work may be to consider extending this work for the wider class of models considered in the present
paper. It would also be fruitful to explore consistent formulations under other behavioura- mech
nisms, especially those related to risk, in which travellers may respond to aspects of the route travel
time distribution other than its mean.
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Appendix A: Justification of normal approximation

We consider the behavior of a single (latent) driver. Define the mean vector and var
ance-covariance matrix as follows:
ElYiok]
ElYiu]
Rig =|

ElYi k]
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Var[Y;o] Co Yo, Yine] - COV[YiOk’YiJik]
CovYiy., Yiok] Var[Yiy] o CoMYig, Yig ]

ik =
CoYy k. Yiol CoMY . Yind -+ Var[Yy]

Because each driver independently selects a rqute, > p, and X, = >y %, . If the demand is
fixed, we haveE[Yo] = Var|Yiox] = CoVv[ Yok, Yizk] = ...=Cov[ Yok, Yisk] = 0.

Assume that the mean vector and variance-covariance mati aire finite and positive.
Although the Y are independent, they need not follow an identical distribution because each driver
autonomously decides his behavior. The above behavior is general, and permits multinomial or D
richlet-compound multinomial route choice and binomially, Poisson, negative- or beta-binomially
distributed demand. Thus, it is more relaxed than the preceding subsections. jSiscbinary,

Pr[| Yo <1, | Y1 <1...|Yis| <1] = 1, and the random vectdf is uniformly bounded. In the folo-

ing proof, we introduce for convenience the weighted composite route choice varijablsst Z
Zi=Ki' Yi, wherex; = (ko, k1...x3)". Using Z, the vectorYj can be treated as a scalar. Then
E[Zik] = E[KiT Yik] = KiT Wik and Var[Z(] = Var[quYik] = KT YikK. SinceYik is uniformly bounded, iZiS
also uniformly bounded whex is in the finite sphere. Clearly, Var[_, Zi] — o as vi— o (k#0)
because Varfg>0. If the standardized random variabMs (Vo, Vi...V,)" are independent and
uniformly bounded, then(1/+/n) £, Vk— N[0, 1] as n—w (Loéve, 1977, p.289). Ag —x,

Zzik - ZE[Zik] Zzik - KiTlli
k=1 k=1 _ka

Vi - T
\/Zvar[zlk] K ZiK
k=1

becausey, =YV, and X, =3V, X, . Thereforey |, Zx— ' p; k' S ] .
According to the Cramér-Wold device (Billingsley, 1995, p380), a necessary and sufficient
condition for Yi—Z; is that T oo & Yijk— = o0 5Z; for eachk=(ko,x1...x3) " in the finite
(J +1)-dimensional sphere, where the random ve£ter(Zo, Zs...Zy3)". Thereforeasn —o, we
have

> = [0,1]

Y, =ZIYik -, 5]
k=1

Thus, the distribution of route flows between the same OD pair approaches multivariate normal
when the demand is sufficiently large.
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Table 2(a) Notation !

origin-destination (0D )paiidt 2! 1)

fotalnumberof00D pairs

route (j=1,21 1
numberofroutes between it 0D pair

J ' setofroutes between theh 0D pair,excluding thjeth route

H (single)link @=1,21 A)

A fotalnumberoflinks

4 an-route incidence variablelfy=1 ifthe a-th link is on the j-th route,
and 0 otherwise)
Iinkrouemmdencema i =)

N random variable ofthe demand betweed-thed D pair

" mean ofthe demand betweenithheOD pair=EN;

#Niz variance ofthe demand betweenitthe0 D pair=Varf

ni fixed demand of driverstraveling between thei-th 0D pairorrealized
value ofthe demand betweenitte 0D pair

N random variable ofthe demand betweenthed D pair

0w (ni) probability function ol

§ latentdemand between ihtd 0D pair

Di dependingonthespeciicmodel,theprobabi\iyotchoosinjgt
between the i-th 0D pairfora randomly-selected traveler, orthe
proportion ofdemand choosing b route, w hereclearl%.mpwi

Di vectorofroute choice probabilities/proportions forthe i-th 0D pair
=(pinpi! pul

D vectorofallroute choicprobabilities/proportions 9f,p,! puT

P random vector otrouechoicepobabwluesbelweent h 0D pair
whenthe probabilities themselvesamandom (specifict oSecmnH
Classivmodels).

selof psatisfymg/ampwJforanyiandpj 0 foranyiandj.

(il] function t hatgene ates eitherthe probability of choosing thah route
between theth 0D pairorthe proportion choosing thib route

( (] vect -va\uedtuncmnthat generates the route choice
probabi\ities/proportionwlhosecomponents alrgl )

) common probability of making a trip {trip probability)

Vi random variable thatdecides whethehthhe drivertraveling between th
hOD pairchooses thjeth route Y=t ifthe k-th drivertakes thg-th
route, and 0 otherwise] Cleasylyy Vig=t, and%y Y=Yy

Y random vector o= (Yo, Vil Vi)'

Yy random variable ofroute flow on theh route between thieth 0D pair,

i realized valug offy

Vi random vectorofroute flows betweenithle 0D pair={Yy, Vil Yy

Y random vectorofallroute flows ¥ Y, Y

)



Table 2(b) Notation 2

mean flow on thé-th route between thigth 0D pair=E)]

vectorofmean route flows betweenithe 00 pair=( i, ol )

vectorofallmean route flows =(, o )

variance of flow on thigth route between theth 0D pair=Varlfi

covariance between the flow on thieth route belween the-th 0D pair
and flow on the route between thibth 00 pair=0Cov[y Yy

variance-covariance matriv ofroute flows betweed-thd D pair

variance-covariance matrix ofallroute flows

50 5s)

fy (yi) jointprobability function o

fyaly i) jointprobability function of jconditionalom;=n

X, random variable of flow on theth link

X realized value ok,

X random vectorofalllink flows X[, X, X,

M, mean flow on tha-th link =E[X,]

n mean vectoroflink flows =nf;,m,l my)

m finite value thatis greaterthan the maximum ofmean link flows
maxmgla=120 Alem <#).

5, variance of flow on tha-th link

§ variance-covariance i of link flows

$) positive value thatis fess than the minimum of standard deviations |
oflink flows (00 < syemin[syja=1,20 AJ).Eachrandom link flow is
assumed tohasa positive variance.

fy (1) probability function ok,

T, random variable of traveltime on thdh link

ta(x ) fraveltime function on the-th link

f0p) function thatcalculates the mean traveltime on the-th link from the
route choice probabilitieps

&m,) function thatcalculates the mean traveltime on tha-th link from the
mean link flowm,; &(m, )= (m,(p)) 8 G(p) becavsa,is determined
byp.

e freg-flow fraveltime on the-th link

i, capacity on the-th link

iilp ) Utility function of thej-th route between thieth 0D pair

[ mean traveltime on thieth route between thieth 0D pair

i grrorterm of the-th route between theth 0D pair
positive parameterin the route choice model

EX] mean ofrandom variable bt Ey[X]

Var[k] variance ofrandom variablelof

Cov[X,Y] Jcovariance ofthe two random variableX ahdY

Prl] probability calculation operator
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Table 2{c) Notfation 3

[, ] normaldistribution ofmean vectand variance-covariance mafliand
crespectively

L] Poisson distribution ofmean

"In, ! binomialdistribution with parametemsand!

"] negative binomialdistribution with paramefermndd
U8 r) [beta-binomialdistribution with parametdrd, andrs

Flp.r] Dirichlet distribution with parametervectprand parameter
0 nullvector

! franspose ofvectorormatrix

% () gamma function 4, "o’ ¢

maii maximum-value operator

min{]}minimum-valueg operator
diag(!]diag[ona\malrix contai ning diagonalcomponents

Random variables are expressed in capitalrbedted vectors ormatrices are expressed
inbold font
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