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Abstract Ȃ We review and advance the state-of-the-art in the modelling of transportation systems as a 

stochastic process. The conceptual and theoretical basis of the approach is explained in detail. A variety of 

examples are given to motivate its use in the field. While the examples cover a wide range of modelling 

philosophies, in order to provide focus they are restricted to modelling a special class of problems involving 

driver route choice in networks. Our overall objective is to establish the applicability of this approach as a Ǯunifying frameworkǯ for modelling approaches involving dynamic and stochastic elements, developing 

further the ideas put forward in Cantarella & Cascetta (1995). Directions for further development and 

research are identified. 

 

1. INTRODUCTION The global economic downturnǡ the ǮArab springǯ and the turmoil in currencies are recent 
reminders that we live in an ever-changing world. Economic and social factors have 

profound influences on the level and pattern of travel demand and the choices of travellers 

within a given transport infrastructure. They also impact on the ability of responsible 

authorities to fund the maintenance and improvement of infrastructure, and to conduct 

effective travel demand management and control policies. It is just at such stages of major 

change and uncertainty that those planning future transport policies most need support in 

making their decisions, but in general this is exactly when most of the modelling tools we 

adopt fail to offer support, with their assumptions based on either an unchanging world, or 

one in which the future follows deterministically from the present. Even in periods of 

relative economic/social stability, such assumptions are increasingly difficult to support; 

this is most notable in cities where continued demand growth has outpaced the expansion 

in capacity of the transport infrastructure, with the transport system highly sensitive to 

daily and seasonal fluctuations in demand and capacities. 

 

The question then arises as to how we might develop modelling approaches to better deal 

with such situations. One approach to such problems is that of Ǯworst-caseǯ planningǡ 
whereby the models suggest actions for a planner to take so as to minimise the impacts 

under a worst-case scenario. The worst-case scenario itself may be user-defined, or for 

some methods may be itself generated as part of the modelling approach; examples of the 

latter are methods based on robust optimization (e.g. Ben-Tal et al, 2011), or on game 

theory in which a fictitious evil entity is at work (e.g. Bell, 2000).  Such approaches have 

the advantage that there is no need to define event probabilities for the factors that affect 

the transportation system performance, and one can continue to use deterministic 

methods with tractable solution approaches. Such approaches have a particular advantage 

for representing extreme but rare events, where we may not have sufficient real-life 

evidence to make reasonable estimates of the component probability distributions. An 

obvious disadvantage of such methods is that they provide no information on anything but 

the extreme-most case. For dealing with typical daily and seasonal fluctuations in demand 

and supply, it seems that a stochastic model would be much more appropriate, where we 

aim to explore the full probability distribution of network impacts, not just the extreme-
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most point. This is also arguably the case for longer term trends that have major 

transportation impacts, such as economic development (e.g. GDP) and oil prices, whereby 

a stochastic model can be used to capture the uncertainty in such future events. In 

practice, we believe that a combination of scenario-based deterministic methods and fully 

stochastic methods are appropriate, depending on the nature of the variation under 

consideration (as discussed above). In the present paper we shall henceforth focus only on 

stochastic approaches, on the basis that there is considerable empirical evidence of real-

life variation that we already routinely collect but make little use of in our modelling. 

 

With this focus in mind, the purpose of the present paper is to raise the profile of a 

particular  class of stochastic approaches to transportation system modelling which was 

first proposed more than twenty years ago (Cascetta, 1987, 1989), but which has since 

attracted relatively little attention. Indeed it is commonly misunderstood by researchers in 

the field, as well as being mistakenly described and interpreted in transportation journal 

papers, and so we feel that it is timely for a paper to clearly set out the approach and its 

possibilities, in order to raise its profile. This approach is able to deal with many aspects of 

both (a) dynamic change and (b) uncertainty/variability, representing the time-evolution 

of all relevant state variables as a stochastic process. It is very different from the well-

known Stochastic User Equilibrium model (so called after Daganzo & Sheffi, 1979), though the appearance of the word Ǯstochasticǯ in both can serve to confuse those unfamiliar with 

the method. It is also very different from the now growing body of research on 

deterministic dynamical system modelsfor recent examples see Bie & Lo (2010), Han & 

Du (2012) and He & Liu (2012)which are able to capture the dynamics in (a), but not the 

aspects of uncertainty/variability to which we refer in (b). In this context we refer the 

reader to two companion papers by the authors to the present paper, in one of which we 

focus entirely on deterministic process models (Cantarella & Watling, 2013), and in the 

other we explore the relationships between deterministic process, stochastic process and 

stochastic user equilibrium approaches (Watling & Cantarella, 2013). At its simplestǡ most Ǯstripped downǯ levelǡ the Stochastic Process ȋSPȌ approach could be 
said to comprise three main elements for representing the epoch-to-epoch changes in a 

transport system: 

1. A learning model, to describe how travellers learn from their travel experiences in past 

time epochs. 

2. A decision model, to describe how travellers make decisions, given their learnt 

experiences in 1. 

3. A supply model, to describe the experiences of travellers in a particular time epoch. 

Some or all of these elements are described by probability statements or probability 

distributions, and when brought together they provide a single, self-consistent framework 

for representing the mutual interactions between the uncertain components of the 

transport system. Just as we demand of equilibrium transportation analysis, we can ask to 

what extent this combination of elements may produce a well-defined and unique Ǯoutputǯ 
(if the long-run is indeed what interests us), but whereas in equilibrium systems we refer 

to a unique flow state, in the SP approach we refer to a unique probability distribution of 

flows. That is to say, the result of the modelling approach is to provide the planner with 

probability distributions, not with single point estimates.  

The description given above is deliberately rather general, in that it does not specifically 

say what we mean by a traveller choice (e.g. which route, which departure time, whether 
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to travel, where to live), what we mean by a time epoch (e.g. an hour, a day, a week, a 

month, a year), and what particular combinations of assumptions might make up the 

learning, decision and supply models. So, at one extreme we might be considering the 

year-to-year dynamics of residential location choice and the impact of and on the transport 

system, and at another we might be considering the day-to-day dynamics of route choice 

and traffic congestion. However, in keeping with the primary focus of most work on this 

topic to date, we shall focus heavily in our examples (section 3) on the class of problems 

concerned with the day-to-day dynamics in route choice (though in section 2 we explain 

the wider context of this work). In some respects this class defines an especially challenging ȋand therefore interestingȌ contextǡ since it is subject to both the wider Ǯglobalǯ 
variations described in the opening of this abstractǡ and the more Ǯlocalǯ variations that are 
always seen between days-of-the week and seasons.  

 

The paper is structured as follows. In section 2 we address a key issue in understanding 

and applying the approach, namely the possible choices for representing elements of the 

transportation system, and the implications of these choices, particularly in terms of the 

state-space representation and the proper specification of probability statements about 

this system. In section 3 we illustrate these various forms of representation with a range of 

example models that sit within the stochastic framework. To provide some focus, section 3 

considers only the sub-class of problems concerned with driver route choice in networks, 

in contrast to the rather general treatment of section 2. The transition functions governing 

the stochastic dynamics are explicitly derived for simple examples of these models. The 

purpose of these examples is also to illustrate the possibilities for the approach to link to 

different fields (and philosophies) of transportation modelling, be that behavioural 

dynamics, dynamic traffic assignment or micro-simulation. In section 4 we address the issue of how such models might be used in a planning environmentǡ either in Ǯdynamicǯ or Ǯstationaryǯ modeǡ the latter being an analogue of existing equilibrium methods of 
planning. For the latter mode, theoretical conditions are set out to guarantee existence and 

uniqueness of the relevant stationary distributions, as well as indicating efficient 

computational shortcuts. In section 5, a rather general family of stochastic process models 

is presented for analysing the class of day-to-day dynamic route choice problems, and the 

properties of this class analysed. Finally, we conclude by identifying future applications, 

practical issues and research directions. 

 

 

2. REPRESENTATION & BASIC NOTATION 

 

At its broadest level, the stochastic process approach allows the modeller many choices as 

to how to represent the features of the underlying transportation system, how to 

represent the interactions between these features over space and time, and even how to 

represent space and time themselves. The ability to represent all these possibilities in a 

consistent framework is one of the advantages of the approach, giving the modeller a wide 

range of opportunities depending on the available data/evidence and problem at hand. 

The purpose of the present section is to give a flavour of these possibilities in a quite 

general context, illustrating some of its potential as a complete protocol for modelling 

transportation systems under uncertainty. As we shall show, we have many options for the 

way in which the system is represented, and so the step of choosing a particular 

representation is a key part of the modelling process. As we shall see in subsequent 

sections, the particular form of representation chosen can have important ramifications 



 4 

for the theoretical properties that may be established for the model, among other things. 
Table 1 specifies the elementary components that we shall and shall not permit in the present 
paper. In the remainder of this section we shall explain in detail the meaning of each of these 
attributes. 
 

Attribute Possibilities 

Time Discrete Continuous Dual-scale 

State Discrete Continuous Mixed Function 

Space Discrete Continuous Mixed 

Users Disaggregate Aggregate Segmented 

   Table 1: Possible representation of basic elements (shaded cells are the possibilities 

permitted within the theoretical framework of the present paper) 

 

2.1 Representation of time 

 

Perhaps the most fundamental decision to be made in representing transportation system 

dynamics is how to represent time. In order to understand this issue we need first to 

define the application context of the class of modelling problems we shall consider, namely 

to problems of transport planning over some given future planning horizon of weeks or 

years (though often it may not be explicitly defined). This application domain distinguishes 

them in particular from operational models that be used for optimizing short-term system 

performance over a periods of a few minutes or hours.  Within this context, a central 

element of the models we shall consider will be the adaptive behaviour of travellers over 

time, as they repeat the requirement to make certain travel decisions. For example, this 

may be a traveller, or group of travellers, deciding on a residential or work location (a 

decision perhaps reviewed over periods of years). Alternatively, the traveller may be a 

commuter choosing a mode and route/service to work each morning, a decision which 

might be reviewed over days or weeks; even if this choice is stable, the decision to 

continue with a previous choice is then also being made, at least in our models if not 

consciously by travellers. In the latter (commuting) exampleǡ Ǯday-to-day dynamicsǯ has 
been suggested as a term to capture this idea of repeated decision-making and adaptation. 

 

Therefore, we shall argue, Ǯtimeǯ in some sense naturally divides into discrete Ǯepochsǯ of 
time (be they individual days, weeks or years) over which travellers review their travel 

decisions. Cascetta (1989) when introducing the notion of an epoch in this context noted: 
‘... epochs can have either a “chronological” interpretation as successive reference periods 
of similar characteristics (e.g. the a.m. peak period of successive working days) or they 
can be defined as “fictitious” moments in which users acquire awareness of path attributes 
and make their choices’. 

This Ǯnaturalǯ discretisation of time is therefore still more evident when one considers that 

it is quite unusual to model travel over a complete day, but rather only a portion of the day 

containing the most congested periods. Therefore, the term day-to-day dynamics is often 

used to describe the dynamical adjustments between days of drivers who travel in this 

sub-period of the dayǢ in this respectǡ Ǯtimeǯ is then ontologically discrete. On the other 

hand, there are other kinds of interaction—such as the interaction of congested traffic, and 
the en route revisions to plans/strategies made by private or public transport users—for which 
there are no such natural reasons and ‘units’ for a discrete division of time. Of course, for 
computational ease we may choose to discretise time in some way, but this is a later 
consideration; our point here is that there is no such natural discretisation on what might be 
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called the ‘within-day scale’ (or, more generally, the ‘within-epoch scale’), in contrast with the 
comments above on the ‘between-day’ or ‘between-epoch’ scale. 
 
Thus, unless we do truly model 24 hours of each day, our argument will be that it is natural to 
restrict attention to models in which the between-epoch scale is discrete, and for this reason we 
only consider such processes in the present paper. This is not a necessary restriction, and indeed 
there exist counterpart results for continuous-time stochastic processes that we could have 
considered (see: Fan & Liu, 2007; Hofbauer & Sandholm, 2007). The within-epoch scale is 
somewhat different, and in this case we might argue either for a discrete- or continuous-time 
representation, but to simplify the exposition, we suppose the within-epoch time-scale is also 
discrete. Again, this is not necessary, and we could in principle specify stochastic processes with 
a ‘dual-scale’ of mixed discrete/continuous for between/within-epoch time respectively, but we 
would pay significantly in terms of mathematical complexity in that the random state variables 
we introduce in section 2.2 below would all then be random functions of time. 
 

 

2.2 Representation of state & distributions 

 

Having restricted attention to discrete time processes, as explained in section 2.1, we move 

on to the second element of Table 1, namely the definition of Ǯstateǯ, and at this stage we 

can begin to introduce some notation. We denote the discrete time epochs (ǲbetween-epoch timeǳ or ǲday-to-day timeǳȌ by the letter t (for t = 0, 1, 2,...), the state vector 

describing epoch t as x(t), and the state-space to which any state must belong as a set ࣭, i.e. 

x(t)  ࣭ (for t = 0, 1, 2,...). This compound state vector may contain several different kinds of Ǯentityǯsuch as choices and memories of travellers, and experiences of travel 

timesmeasured at some chosen level of aggregation, and describing within-epoch ȋǲwithin-day timeǳȌ variations in time and space. The details are important, and we shall 

delve into them in the remainder of the paper, but for the moment the key issue is that x(t) 

is a sufficient description in two respects:  

A1 if we know x(t) then we know (or can infer) everything we might want to know from 

the model for the purposes of design or evaluation; and 

A2 if we know x(t) then we have sufficient information to write down a probability law 

that determines the probabilities of all future states of the modelled transportation 

system for times t +1, t + 2, ....   

  

Assumption A1 implies that model outputs are sufficient for the intended purpose, both in 

terms of what they measure and their level of aggregation, but does not preclude the 

subsequent application of sub-models to infer further outputs; for example, it may be that 

x(t) itself does not contain a pollution level variable, but contains information on 

explanatory variables (flows, speeds, etc.) that might subsequently be fed into a pollution 

sub-model for evaluation purposes. On the other hand, assumption A2 implies that if the 

future evolution of the transport system were somehow dependent on the pollution levels 

(e.g. affecting the choice of residential location), then they would need to be in x(t). 

However, the most important point to take from these assumptions is that from A2, it is 

only time t (and not earlier states) that affects times t +1, t + 2, .... the so-called Markov 

property. This property is important for establishing theoretical results, as well as being 

attractive for computation, but brings with it various restrictions, especially as we shall 

wish to restrict attention to fixed, finite-dimensional state spaces S. In particular, this 

combination of requirements rules out the possibility of us simply defining one component 
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of x(t) to be the Ǯhistoryǯ h(t)  (x(t Ȃ 1), x(t Ȃ 2), ..., x(0)) in order to preserve the Markov 

property, since then our state space is either finite-dimensional but evolving as the size of 

h(t) (and hence x(t)) expands with time t, or is infinite-dimensional in order to incorporate 

a priori all histories of any dimension (including as t  ). We shall see that aside from the 

standard device of requiring any such histories to have a fixed, finite length, we can also 

(by appropriate choice of state variables) also incorporate what are apparently infinite 

histories by a judicious choice of state variable. We return to illustrate this with examples 

in section 3, but for the moment our purpose is simply to highlight the key nature of 

Assumptions A1 and A2, and the care needed in ensuring that they are satisfied. 

 

A quite separate issue is what kinds of variables might be in the space ࣭. We shall assume 

that either ࣭ is finite and formed from integer n-tuples (i.e. ࣭ ك Ժn), or that ࣭ is part of m-

dimensional Euclidean space (࣭ ك Թm), or that ࣭ is a combination of these two kinds of 

variable (i.e. ࣭ = ࣭1  ࣭2 ك Ժn  Թm). Thus we permit discrete, continuous and mixed 

discrete/continuous state-spaces; we provide examples of each of these later, in section 3. 

 

The assumptions made thus far allow us to introduce some basic, general notation to 

describe the evolution of the stochastic system. In order to allow different kinds of 

(discrete, continuous or mixed) state-space, we adopt a particular form of notation that 

might apply to either case. In particular: 

 at any given time epoch t, let {q(t)(x) : x  ࣭} denote the (epoch t) joint probability/ 

probability-density function across the possible states x  ࣭ (for t = 0, 1, 2...) (we shall refer to this as ǲthe state probability distribution at time tǳȌ; and  
 

 for any given state y  ࣭ and given parameter vector   , let {(x, y; ) : x  ࣭} 

denote the conditional joint probability mass/density function across possible 

states x  ࣭ in the current time epoch, given that y was the state in the previous time epoch ȋwe shall refer to this as the ǲtransition functionǳȌǤ 
 

It should be noted that we assume the transition function  to be time-independent, and 

the parameter vector     to be fixed and time-independent. Together, these imply that 

the resulting process is time-homogeneous.  The assumptions above imply that the joint 

probability/ probability-density function of x varies in time only due to one factor, namely 

due to the state y in the previous time epoch. While this assumption may seem somewhat 

restrictive, we shall illustrate in section 3 how it can accommodate just about any form of 

model that has been proposed to date in the transportation literature, and provides a 

framework for many more not yet proposed. As we show in section 3 (e.g. example 3.2), 

we can easily accommodate a dependence on a finite number of past states (i.e. not just ǮyesterdayǯȌǡ by making a component of the state variable a Ǯfinite history up to that dayǯǡ 
and by judicious choice of state variables can even in some cases include apparently 

infinite histories (e.g. section 3.3).   

 

Although in the present paper we shall not consider control/information systems, we note 

that these may also be represented in such a framework by including the 

decisions/recommendations of the control/information system as a component of the 

state variable. These decisions/ recommendations, even if they concern predictions or 

plans for the future, must be based on historic information, and it seems reasonable to 

believe that such systems themselves follow a time-homogeneous law; given the same 

sequence of past information and the same predictions of future events, they will provide 
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the same decisions/recommendations regardless of the current clock-time t. This is true 

even for so-called Ǯanticipatory systemsǯ since even they cannot know the future, they too 

must be driven by forecasts of or plans for the future, based on historic information. For 

the interested reader, examples of a stochastic process model in interaction with some 

responsive control systems (signal control and demand-responsive bus operations) are 

discussed in Watling (1996). 

 

Based on the assumptions made to date, we may then write our stochastic process as one 

of the following1, depending on the nature of the state-space: 
 

   For any given initial distribution {q(0)(x) : x  ࣭}, then for t = 1, 2, ...: 
 

   i) Markov Process: 
  

  q(t)(x) =  y  ࣭  (x, y; ) q(t Ȃ 1 )(y)  dy  (x  ࣭ ك Թm;   ) 
 

   ii) Markov Chain2: 
 

  q(t)(x) = y  ࣭  (x, y; ) q(t Ȃ 1 )(y)    (x  ࣭ ك Ժn;   ) 

 

   iii) Markov Process/Chain 
 

q(t)(x)  q(t)((x[1],x[2])) =  

 y[1]  ࣭[1]   y[2]  ࣭[2]  ((x[1],x[2]),(y[1],y[2]); ) q(t Ȃ 1 )((y[1],y[2]))  dy[2]  
 

   (x  (x[1],x[2]), x[1]  ࣭[1] ك Ժn; x[2]  ࣭[2] ك Թm;   ). 

 

All cases require a distribution {q(0)(x) : x  ࣭} to initialise the process, and this may arise 

from one of several sources. One possibility is that it has been estimated by observation of some ǲcurrentǳ  conditions (if t α Ͳ is ǲthe presentǳȌ. In this way, it acts more like an 

additional set of parameters, and indeed we may even choose to parameterise the initial 

distribution itself, with the task then to estimate the parameters of the initial distribution 

from observation. A second possibility with discrete state-space is to specify {q(0)(x) : x  ࣭} by setting all probability at a single point in the state-space; the justification might be that Ǯthe past is certainǡ the future is uncertainǯ. A third possibility is that {q(0)(x) : x  ࣭} is generated by Ǯthe end-pointǯ of an earlier application of the stochastic process approach 

(where Ǯend-pointǯ may mean the distribution at some given time t = T or an ǲinfinite-timeǳ 

stationary distribution). This idea of using an earlier application sits particularly well with 

the idea of a before-and-after study of some hypothetical scheme, for example, whereby 

the process is first used to replicate the time prior to the implementation of the scheme, 

and the resulting distribution then used to initialise a model of the situation after the 

scheme implementation. 

 

Aside from the initial distribution, the three specifications given also have the common 

feature that each includes the functions  and q, and in each specification these functions 

perform the same role: in simple terms we might say that   is ǲthe modelǳ and ȋfor time t = 

1, 2, ...) then q is ǲthe unknownǳǡ as we now explainǤ The function   is parameterised by the 

                                                        
 

1 Note that we could combine these cases as a single case by use of a Riemann-Stieltjes integral. 
2 If our interest had only been in models with a discrete, finite state space, then a simpler, standard 

specification would be as q(t) = Pq(t Ȃ 1), with the states in ࣭ labelled 1, 2, ..., |࣭|, the transition probabilities in a 

|࣭||࣭| matrix P, and the time-dependent state probabilities in a |࣭|1 column vector q(t) .  
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vector  which we assume to be constant3, and something that the modeller specifies at the 

start of the process; it is a collection of all parameters across all sub-models. (x, y; ) also 

depends on the vector yǡ ǲyesterdayǯs stateǳǡ and whenever we apply  in the formulae 

above, we do so in a recursive way in which y is effectively known as we consider all the 

possible yesterday states in ࣭. In this way, y also acts as a kind of parameter, although we 

do not assign it a particular value but consider all its values across ࣭.   (x, y; ) may then 

effectively be thought of as a function of x only, given knowledge of y and , a function that 

expresses the spread of likely values of x for ǲtodayǳ when we are given that y occurred ǲyesterdayǳ ȋand assuming that the model parameters are given in ). In order to specify 

this spread of likely values (formally, conditional probabilities), we shall typically specify a 

series of sub-models, so that the function  is a rather complex, composite function that 

arises from the combination of these sub-models. Typically we will not want or need to 

actually write down  but will instead specify it by implication, by setting out a series of 

conditional statistical assumptions for the model components, as we shall see in the 

examples in section 3. 

 

In this way, like the initial distribution {q(0)(x) : x  ࣭}, the function  is also something 

that is assumed to be known and specified by the modeller, before application of the 

equations above. What the equations above allow is for {q(0)(x) : x  ࣭} to be combined 

with  to produce {q(1)(x) : x  ࣭}, and then for {q(1)(x) : x  ࣭} to be combined with (the 

same function)  to produce {q(2)(x) : x  ࣭}, and so on. Thus the objective of the modelling 

process can be viewed to be that of recursively generating a sequence of probability 

distributions {{q(t)(x) : x  ࣭} : t = 1, 2, ... }, given knowledge of {q(0)(x) : x  ࣭} and . This sequence of probability distributions is the Ǯmodel outputǯǡ in theory at leastǡ although in 
practice we may find it sufficient to only store/record some summary measures of the 

distribution, or indeed (in a spirit similar to equilibrium analysis) may not refer to the 

temporal evolution at all Ȃ an issue to which we shall return later (see section 4.2). 

 

2.3 Representation of space 

 

Given the possibilities presented in sections 2.1. and 2.2 for how to represent time and 

state, the modeller then has several choices for how to represent the detailed elements of 

the transportation system, within the framework of possibilities given by section 2.1/2.2. 

In Table 1, we have suggested that the third such element is the question of how to 

represent space. To be clear, we are not intending to suggest that the question of spatial 

representation is something unique to adopting a stochastic process approach, rather  the 

particular issue faced is deciding on the type of representation in conjunction an 

appropriate state representation, since this may have profound effects on the theoretical 

properties that may be established for the chosen model. 

 

Discrete space models are undoubtedly the most proliferous in the transportation 

literature. In public and private transport models, the dominant representation of the 

                                                        
 

3 At this stage this is not a necessary assumption, and in fact we may wish to consider models in which 

endogenous factors vary over the time of the process, e.g. economic factors, seasonal changes in demand. The 

theoretical properties described later (section 4.2) are established under the assumption of a constant 

parameter vector (leading to a time-homogenous process with time-independent transition probabilities), 

but it is certainly possible to consider and model time-inhomogeneous processes. This is an interesting 

possibility left for future research to consider. 
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physical infrastructure is through a discrete graph. On the other hand, diachronic 

networks may be used to represent feasible temporal connections, especially in the case of 

public transport services (Wilson & Nuzzolo, 2009). A different spatial question is how 

vehicles move within the infrastructure. For ease of implementation we may choose to 

approximate the dynamic movements in continuous space along the arcs of a discrete 

spatial graph, by adopting a further discretisation scheme as in the cellular automaton 

(Rickert et al, 1996) or cell transmission (Daganzo, 1994) approaches. In spite of the 

dominance of discrete-graphs, alternatives based on a continuous representation of space 

have existed for many years (e.g. Dafermos, 1980), and may be justified as an 

approximation to discrete infrastructure needing less parameters or less data. For cases 

such as pedestrian route choices the available space within which routes are chosen is 

ontologically continuous (and so there is no obvious discrete graph with which to begin), 

meaning that a continuum model is an obvious option to consider (Wong, 1998; 

Hoogendoorn & Bovy, 2004; Huang et al, 2009). For many land-use/transport interaction 

problems a continuum representation is also rather natural, for example given the 

continuous nature of new residential locations (Ho & Wong, 2007). A third possibility is a 

mixed spatial representation, such as one in which a continuum representation of demand 

is combined with a discrete graph of the infrastructure, or where different levels of detail 

are appropriate for different parts of a street network (Guo & Liu, 2012). A particularly 

familiar, mixed spatial approach is one in which vehicles are moved continuously in space 

(though discretely in time) along a discrete street network, as in car-following-type micro-

simulation models (see the example of section 3.6).  

 

 

2.4 Representation of users 

 

Completing our consideration of Table 1, the final issue of representation is concerned 

with the users of the transportation system. In a similar way to the treatment of space, at 

least some of the issues in representing users are familiar ones faced in all transportation 

modelling exercises, and in such cases the key point is again to be aware that the choice of 

representation may imbue the process with particular theoretical properties. However, the 

representation of users differs to that of spatial representation in that there are special 

modelling considerations that only arise because we are adopting a dynamic process 

approach (be it deterministic or stochastic). So the purpose of the present section is also to 

indicate these special considerations, and the options that are available in those cases. 

 

The most familiar issue to consider in the representation of users is the level of detail at which we represent aȌ usersǯ decisionsǡ and bȌ the stimuli that motivate those decisionsǤ )n 
the study of transportation networks, for example, aggregate approaches dominate, 

though even within this class one can distinguish models where all users think alike 

(Wardropian approaches) from models incorporating diversity (proportionate splits in 

behaviour) through expectations of statistical distributions, e.g. distributed values-of-time 

(Leurent 1998), stochastic user equilibria (Sheffi, 1985). Though these approaches are 

familiar, subtle conceptual issues arise when incorporating these latter ideologies within a 

stochastic process approach, in terms of how one interprets the underlying distributions 

from which conventional approaches take only expected values. For example, when we 

aim to incorporate Random Utility Models (RUMs) into a stochastic process framework, is 

the statistical variability and the notion of probability in RUMs describing a kind of day-to-

day variability in the behaviour of individuals? Or are individuals not so variable in their 
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behaviourǡ and Ǯprobabilityǯ is a device for describing the uncertainty of modellers in explaining individualsǯ behaviourǫ Aside from these conceptual points, we have a 

possibility commonly used in traditional models of some kind of fixed segmentation of 

users, applying the models described above within a segment/user-class. 

 

As noted at the outset, there are also special issues that arise in representing users within 

a dynamic process framework. These concern the dynamics of how users remember and 

learn from their experiences in order to make predictions (upon which their choices are 

made), and also the extent to which they display inertia/habit in their propensity to 

reconsider previous choices. In the present section we are not concerned with the detailed 

assumptions of these model components (such details will emerge in the remainder of the 

paper, and the references therein), but rather to indicate that exactly the same issues of 

aggregation/disaggregation/segmentation arise for these elements as were identified 

above for the modelling of the decision behaviour. While we might typically expect the 

same level of aggregation to be chosen for all such elements (experience, learning, habit, 

choice), there may be also be cases in which different levels of aggregation are 

appropriate. For example, in modelling the longer-term impacts of driver information 

systems, we might models users making choices and gaining personal travel experiences at 

the individual level, but part of the effect of the information system might be represented 

by pooling the experiences of all users after journeys have been completed.  

 

 

3. MOTIVATING ILLUSTRATIVE EXAMPLES  

 

Having introduced a rather general framework for stochastic process modelling in a 

transportation systems context, it is now possible to move on to specifying particular 

families within this framework in section 5, but before moving on to these general families, 

we provide in the present section some deliberately simple examples. We will derive 

explicit transition functions (as defined in section 2.2) for particular models. While it 

would be possible to implement the models without explicit derivation of the transition 

function (e.g. through Monte Carlo simulation), we wish to highlight here the theoretical 

equations behind the model rather than its implementation. As we shall see in later 

sections, understanding the transition function is the key to establishing overall 

theoretical properties of the modelling approach. A further objective is to demonstrate the 

generality of the stochastic process approach in its possibility to link to fields such as 

dynamic traffic assignment and micro-simulation; it should not be considered as a 

particular model, but rather a way of modelling which encompasses many particular 

models and approaches.  

 

All the examples are readily generalised to networks of arbitrary size and complexity; such 

generalisations can be found in the citations given in each section, and we explicitly 

demonstrate how such a generalisation is made later in the paper, for a particular model 

family. However, the notation for such cases is sufficiently complex that it can mask the 

features that we wish to illustrate here. Therefore in all the examples, we consider the 

simplest possible network of a single origin-destination movement connected by two 

parallel arcs, and make simplifying assumptions that allow explicit transitions functions to 

be derived using standard statistical distributions. We shall imagine that we wish to 

examine the evolution of a system over days, and so we shall refer to an epoch as a dayor 

better, a given peak-period of the day.  
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3.1  Example 1: Myopic learning with discrete state space 

Cascetta (1989) introduced a family of discrete state space stochastic process models to 

the transportation field. The simplest example within this family is that of a network 

consisting of two parallel arcs/routes serving a given integer OD demand d, such that we 

may represent the state of the network by an integer scalar x denoting the flow on arc 1 

(with the flow on arc 2 then clearly d Ȃ x). Thus, in this example our state space ࣭ ك Ժ is 

given by ࣭ = {0, 1, 2, ... , d}, and we are appealing to specification ii) in section 2.2, that of a 

Markov Chain.  Let ci(; ) be the performance function on arc i (i = 1,2), parameterised in 

total by the vector , with the performance function denoting the cost to traverse the arc 

as a function of the flow on that arc only4. Thus, given state x, the arc costs are c1(x; ) and 

c2(d Ȃ x; ), and for ease of notation it will be convenient to define a scalar function for the 

difference in actual arc costs: 

 c(x; ,d)  c1(x; ) Ȃ c2(d Ȃ x; ) . 

Suppose that drivers as a group remember only the costs experienced (as a group) on the 

previous day. Then, on any given day, conditionally on the remembered costs, each of the d 

drivers is supposed to choose between the routes independently and at random according 

to a logit choice probability (with scale parameter  > 0) evaluated at the remembered 

costs. The parameters of the overall model may be collected together in the vector  

 = (, d, ). The assumptions together imply that the transition functioni.e. the 

conditional probability distribution of the flow x on arc 1 on any one day, given that the 

flow on arc 1 was y yesterdayis given by the Binomial expression: 

   (x, y; ) = {d!/(x! (d Ȃ x)!)} . {1/{1 + exp(c(y; ,d))}}x . {1 Ȃ {1/{1 + exp(c(y; ,d))}}}d Ȃ x  

          (for x = 0,1,...,d; y = 0,1,...,d;  = (, d, )). 

with the expression above we have all that is needed to generate the state probability 

distributions for times t = 1, 2, ..., given an initial t = 0 state distribution. Denoting the 

initial state probability distribution is {q(0)(x) : x = 0, 1, 2, ... d}, then the state probability 

distribution at time t = 1 is (applying the Markov Chain expression in section 2.1): 

q(1)(x) =  y  {0,1,2,...,d} (x, y; ) q(0)(y)    (x = 0, 1, 2, ..., d) . 

That is to say, it is a mixture distribution of Binomial variables with mixture probabilities 

given by the initial state distribution. Given q(1)(x), we may then compute q(2)(x) by the 

same process, and so on. 

 

3.2  Example 2: Learning processes and retaining the Markov assumption  

While Example 1 may be extended in many ways, a basic limitation it has is the assumption that drivers remember only the previous dayǯs travel costsǡ which was later termed Ǯmyopic behaviourǯǤ From early evidenceǡ the assumptions regarding how drivers Ǯlearnǯ 
was known to be both (a) highly influential on the plausibility of predictions of the overall 

model (e.g. Horowitz, 1984) and (b) something for which there was evidence of non-

myopic behaviour (e.g. Chang & Mahmassani, 1988; Iida et al, 1992). The simplest 

extension of Example 1 within the discrete-state framework proposed by Cascetta (1989) 

is to assume that drivers now remember some finite number of previous daysǯ costs, and 

form their predictions of costs for the forthcoming day based on a weighted moving 

average. As a simple example, suppose that drivers remember only costs on the previous 

                                                        
 

4 In fact this is trivially generalised to non-separable cost functions if desired. 
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two daysǡ weighting yesterdayǯs costs by  and the costs from two days ago by 1 Ȃ , for 

given 0 <   1. Our state variable now is extended to be a two-dimensional vector x with 

x1 and x2 respectively denoting the flow on arc 1 that occurred today and yesterday. Thus, 

now our state space ࣭ ك Ժ2 is given by ࣭ = {(x1, x2) : xi  {0, 1, 2, ... , d} for i =1,2}, and again 

we are able to appeal to (the Markov Chain) specification ii) in section 2.2. Retaining all 

other assumptions made in Example 1, the parameters of the overall model may now be 

collected together in a slightly extended vector  = (, d, , ). 

Now we aim to write down the transition function. For example, we must describe how a 

pair of states on days 1 and 2 transforms into a pair of states on days 2 and 3. Now, given 

knowledge of the states on days 1 and 2, then there is no uncertainty regarding the state 

on day 2, and so the only pairs of days 2/3 states with non-zero conditional probability of 

being transformed into are those that have the same given state on day 2. Now in general 

in the notation given, the sequence of consecutive states that interest us (i.e. give non-zero 

conditional probability) are over a period of 3 consecutive days: y2, y1 = x2, x1 

(corresponding respectively to the day before yesterday, yesterday and today). The 

conditional probability that the states (today, yesterday) are (x1, x2) given that the states 

(yesterday, day-before-yesterday) were (y1, y2) is therefore zero if x2  y1 , and is otherwise equal to the conditional probability that todayǯs state is x1 given that the states (yesterday, 

day-before-yesterday) were (y1, y2). Overall, this implies that the transition function, while 

now a function of vector states, turns out to be a quite simple modification of that given in 

Example 1, namely the combination of a Binomial expression and an indicator function: 

   (x, y; ) = {d!/(x1! (d Ȃ x1)!)} . {1/{1 + exp( ( c(y1; ,d) + (1 Ȃ ) c(y2; ,d)))}}x1 .  

                               {1 Ȃ {1/{1 + ( ( c(y1; ,d) + (1 Ȃ ) c(y2; ,d)))}}}d Ȃ x1 ( x2 , y1) 

         (for x  ࣭; y  ࣭;  = (, d, , )) 

where (a,b) is the Kronecker delta function: 

 (a,b) = 1 if a = b 

= 0 if a  b . 

As well as having a difference from Example 1 in the manner that state transitions are 

defined (in that we must consider pairs of states), there is also a difference in the state 

distribution, which likewise pertains to pairs of states on consecutive days. So our initial 

state probability distribution at time t = 0 is now actually a specification of the joint 

probability distribution of the arc 1 flow at time t = Ȃ 1 and time t = 0.  

A point often misunderstood is that this truly is a joint distribution, and so we may have 

correlations between the same variable on consecutive days (so-called auto-correlations). 

These auto-correlations persist and evolve as the process evolves, just as the marginal 

probability distributions evolve of the flows on any one day; looking ahead to section 3, 

they persist even when the process is stationary (an issue we shall discuss later).  

The initial state distribution5 is thus now denoted {q(0)(x) : x  ࣭ = {(x1, x2) : xi  {0, 1, 2, ... , 

d} for i =1,2}}, each element giving the joint probability that the day 0 arc 1 flow is x1 and 

the day Ȃ1 arc 1 flow is x2.  However the initial joint state distribution is generated, the 

                                                        
 

5 In practice, we may wish to simplify the specification by using a model of the form given in Example 1 to 

generate the flow on day 1, given the flow on day 0, and then apply the model given here starting from day 2, 

given knowledge of the probabilities of the pair of states on days 0 and 1. 
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state distribution on day 1 (a bivariate distribution of the flows on days 1 and 0) is 

generated according to: 

 q(1)(x) = y  ࣭  (x, y; ) q(0 )(y)    (x  ࣭) 

and so on for the state distributions on days 2 and beyond. 

 

 

3.3  Example 3: Exponentially-weighted learning with continuous state space 

While the formulation in Example 2 can be extended in the obvious way to weighted 

moving average learning processes of any finite order, or indeed many other forms of 

learning process that need not be based on averages, ultimately there has to be a finite 

limit specified on the number of days of remembered experiences. This is in order that the 

process has a fixed state-space and retains the Markov assumption, which (as we shall see 

later) becomes a key element in establishing important theoretical properties. A negative 

aspect to moving average processes of high order, however, is that they are relatively 

computationally expensive to implement, since one must retain and update a moving 

window of experiences. In this respect, an exponentially-weighted process is much more 

attractive, but if analysed within the framework of Cascetta (1989) it yields a problem of 

infinite memory. This is a particular case in which being able to adopt different forms of 

state-space becomes especially convenient. The simplest example of this arises from an 

instance from the family considered by Cantarella & Cascetta (1995), a model used for 

analysing a deterministic dynamical system by Watling (1999). We consider the same 

example as Example 1, except that now we suppose that drivers using an updating process 

for their predicted costs for their forthcoming journey. Indeed these predicted costs 

become so central that we define a scalar state variable x now to be the difference in 

predicted cost given by the predicted cost on arc 1 minus the predicted cost on arc 2, with 

our state space now ࣭ = ԹǤ Given that yesterdayǯs predicted cost difference was y, and 

given that yesterdayǯs actual cost difference was zǡ then we suppose that todayǯs predicted 
cost difference x would simply be a weighted average of these two, x = z + (1 Ȃ )y for 

some parameter  typically assumed to satisfy 0 <    1. (It is noted in passing that the 

special case  = 1 corresponds to the simple model considered in Example 1.) 

Now, given that yesterdayǯs predicted cost difference was y, then according to the 

assumption that drivers choose independently and at random according to logit choice 

probabilities based on the predicted costs, we know the probability distribution of yesterdayǯs flow on arc 1: 

    Prȋyesterdayǯs arc ͳ flow α f  ȁ yesterdayǯs predicted costs were y) =  

   {d!/(f ! (d Ȃ f)!)} . {1/{1 + exp(y)}}f . {1 Ȃ {1/{1 + exp(y)}}}d Ȃ f   (for f = 0,1,...,d; yԹ). 

and so this also gives a distribution of the actual cost differences conditional on y: 

    Prȋyesterdayǯs actual cost difference α cȋf)  ȁ yesterdayǯs predicted costs were y) =  

   {d!/(f ! (d Ȃ f)!)} . {1/{1 + exp(y)}}f . {1 Ȃ {1/{1 + exp(y)}}}d Ȃ f   (for f = 0,1,...,d; yԹ). 

Thus the actual cost differences are discrete variables, and thus so are the predicted cost 

differences, since they are weighted sums of actual cost differences. However, the 

discretisation becomes unwieldy to keep track of as t grows, since the number of possible 

states for the predicted cost multiplies at a rate of d per time step; indeed the 

discretisation is on a limiting path towards a continuous representation. Instead, then, we 

shall seek a continuous representation from the outset. There are several ways this might 
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be achieved, but the most convenient to illustrate in the present context is one in which we 

begin by making the flow variables continuous. 

 

In particular, we assume that d is sufficiently large and that the probability of choosing any 

arc is sufficiently far from 0 or 1, that we may use the Normal approximation to the 

Binomial distribution, so that if F and Y denote the random variables corresponding to f 

and y, then: 

 F | Y = y   ~  Normal( d/{1 + exp(y)}, {d/{1 + exp(y)}}{1 Ȃ {1/{1 + exp(y)}} ) . 

For the sake of this simple example, let us also suppose that the travel cost functions are 

affine, leading to an actual cost difference function of:  

 c(f; ,d)  c1(f; ) Ȃ c2(d Ȃ f; ) = (1 + 2 f ) Ȃ  (3 + 4(d Ȃ  f ))  

   = (1 Ȃ 3 Ȃ 4d) + (2 + 4) f  . Thusǡ as an affine transformation of a Normal random variableǡ yesterdayǯs actual cost difference conditional on yesterdayǯs predicted cost difference is also Normal ȋusing Z to 

denote the random variable corresponding to z as introduced earlier): 

 Z | Y = y   ~  Normal( (1 Ȃ 3 Ȃ 4d) + d(2 + 4)/{1 + exp(y)},  

      {d(2 + 4)2/{1 + exp(y)}}{1 Ȃ {1/{1 + exp(y)}} ) . )t follows finally that todayǯs predicted cost difference X = Z + (1 Ȃ )Y, when conditioned 

on Y = y, is also Normal: 

 X | Y = y   ~  Normal({(1 Ȃ 3 Ȃ 4d) + d(2 + 4)/{1 + exp(y)}} + (1 Ȃ )y ,  

      {d2(2 + 4)2/{1 + exp(y)}}{1 Ȃ {1/{1 + exp(y)}} )  

and so our transition function can finally be defined in the Markov Process form i) from 

section 2.2, as the Normal density: 

 (x, y; ) = (2{d2(2 + 4)2/{1 + exp(y)}}{1 Ȃ {1/{1 + exp(y)}})Ȃ0.5  

                                   exp(Ȃ0.5{x Ȃ {{(1 Ȃ 3 Ȃ 4d) + d(2 + 4)/{1 + exp(y)}} + (1 Ȃ )y}2/ 

     {d2(2 + 4)2/{1 + exp(y)}}{1 Ȃ {1/{1 + exp(y)}} ) 

         (for Ȃ < x < ; Ȃ < y < ;  = (, d, , )) . 

Thus we have managed to retain the Markov property with a complete representation of 

the stochastic process over Թ, in contrast with Examples 1, 2 which were defined over ԺǤ 
The state distributions {q(t)(x) : Ȃ < x < } generated by this process, as well as the initial 

state distribution at t = 0, are then clearly probability density functions as opposed to 

probability mass functions as they were in Examples 1 and 2. Note also that in the special 

case  = 1 we obtain a continuous approximation to the discrete model presented in 

Example 1.  

 

3.4  Example 4: Modelling user habit with a mixed state space 

The examples above provide illustrations of the usefulness of state space representations 

in Ժn and Թn; in the following example, we illustrate the usefulness of the final, mixed 

representation iii) specified in section 2.2, again referring to a simple example from the 

family proposed by Cantarella & Cascetta (1995). In particular, starting from the two-route 

example so far consideredǡ we now introduce the notion of Ǯhabitǯ, given the quite strong 

evidence that such inertia can be observed in practice (e.g. Chen & Mahmassani, 2004). As 

a highly simplistic model of such behaviour, we suppose that with probability  travellers 
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reconsider their previous dayǯs choiceǡ and make choices according to a logit model, as in 

earlier examples, with a -type learning model (as used in Example 3) used to update the 

predicted travel costs. With probability 1 Ȃ   travellers choose between the available 

routes with probabilities equal to the fraction of travellers that actually chose each of 

those routes on the previous day. Unlike Example 3, we shall retain the discrete nature of 

the flow variables (and so not make a Normal approximation to the Binomial). However, 

we will face a similar difficulty effectively in how to generate continuously-distributed 

actual costs from discrete flows, but here we shall adopt a different strategy of assuming: 

a) the travel cost functions provide a mean for a given level of flows, and that the 

actual cost for a particular day, given the flows for that day, is distributed according 

to a continuous random variable about that mean; and 

b) the predicted travel cost for the forthcoming day also has a random residual term 

associated with it, with mean equal to the learning filter based on the actual costs 

above. 

As an example of assumption a), we specifically assume stationary Multivariate Normal 

random errors for the actual arc costs, and this will imply a univariate Normal random 

error in the actual cost difference between the two arcs/routeslet us suppose that this 

resulting, univariate Normal random error has mean 0 and variance 2. By a similar logic, 

in view of assumption b) we shall assume that the predicted travel cost is distributed 

about the learning filter according to a stationary Normal distribution with mean 0 and 

variance 2. We note that exactly the same strategy of introducing these error terms could 

have been adopted in Example 3, avoiding the need for the Normal approximation; the 

only reason to adopt the Normal approximation and affine cost functions in that case was 

in order to choose an example that allowed us to illustrate an analytic form for the 

transition function. (It is noted in passing that in the degenerate case  =  = 0, the 

corresponding normal density functions appearing in the transition function below are 

replaced by Kronecker delta functions.) 

In the present example, we shall adopt a three-dimensional, mixed discrete/continuous 

state variable x = (x1, x2, x3), where x1  {0, 1, 2, ... , d} is the flow on route 1, x2  Թ is the 

predicted cost difference (at the beginning of the day) and x3  Թ is the actual cost 

difference experienced (on that day). Now our aim will be to write down the joint 

conditional probability mass/density function of the random variable X = (X1, X2, X3), given that yesterdayǯs state was Y = y = (y1, y2, y3), It is first worth noting that there is conditional 

dependence between the component variables in X given Y, and therefore we cannot 

simply hope that the joint distribution of X | Y is the product of the marginal distributions 

of X1 | Y, X2 | Y and X3 | Y. On the other hand, we can see there is logical sequence 

(dependence structure) in considering the components of X. This can be seen since X2 | Y 

depends only on Y (and not additionally on X1 | Y and X3 | Y), X1 | Y depends only on Y and 

X2 | Y (not additionally on X3 | Y), and X3 | Y depends only on X1 | Y (not additionally on X2 | 

Y). Therefore we may instead write ሺwithǡ by a slight abuse of notationǡ ǮPrǯ denoting 
probability density or probability mass function as appropriate): 

 Pr((X1, X2, X3)| Y) = Pr(X2 | Y) . Pr(X1 | Y, X2) . Pr(X3 | Y, X1) . 

We may determine each of the component distributions in this product. Considering firstly 
X2 | Y = (y1, y2, y3), then this distribution has two influences. On the one hand, its mean is 

determined by the learning filter as a weighted combination of yesterdayǯs predicted cost 
difference y2 and yesterdayǯs actual cost difference y3, such that: 
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 E[X2 | Y = (y1, y2, y3)] = (1 Ȃ ) y2 +  y3 . 

The second influence is the assumed error distribution of the predicted cost about this 

mean, yielding: 

 X2 | Y = (y1, y2, y3)   ~  Normal((1 Ȃ ) y2 +  y3 , 2). 

Now we move on to consider the distribution of X1 | Y = (y1, y2, y3), X2 = x2 .  With the 

extended behavioural model, travellers now are assumed to have two reasons for choosing 

route 1 (over route 2): either they choose it out of habit based on a probability of y1/d (the 

fraction of drivers that actually chose that route yesterday), or they choose it according to a logit model based on todayǯs predicted cost difference x2. The probability of choosing for 

the first reason is 1 Ȃ  and for the second reason is  . This combination of assumptions 

implies: 

 X1 | Y = (y1, y2, y3), X2 = x2   ~ Binomial( d , {(1 Ȃ ) y1/d} + /{1 + exp(x2)} ) . 

Finally we consider the distribution of X3 | Y = (y1, y2, y3), X1 = x1 . In an analogous way to 

the predicted cost difference, the distribution of the actual cost difference was two 

influences: its mean is determined by the link performance functions and its variation 

about the mean by a stationary Normal random error term. Assuming as in Example 1 that 

the mean arc cost difference is given by a difference in performance functions denoted by 

c(; ,d), then we have: 

 X3 | Y = (y1, y2, y3), X1 = x1   ~  Normal(c(x1; ,d), 2) . 

Thus we are in a position to construct the complete transition function (i.e. the complete 

conditional joint probability density/mass function) as a product of the three component 

distributions derived above: 

 (x, y; ) = {d!/(x1! (d Ȃ x1)!)} . {{(1 Ȃ ) y1/d} + /{1 + exp(x2)}}x1 .  

                         {1 Ȃ {(1 Ȃ ) y1/d} Ȃ/{1 + exp(x2)}}d Ȃ x1  .  

                                                    (2)Ȃ0.5 exp(Ȃ0.5((x2 Ȃ (1 Ȃ ) y2  Ȃ  y3)/)2 ) . 

                                                                           (2)Ȃ0.5 exp(Ȃ0.5((x3 Ȃ c(x1; ,d))/)2 )  

     (for x1 = 0,1,...,d; Ȃ < x2 < ; Ȃ < x3 < ; y1 = 0,1,...,d;  Ȃ < y2 < ; Ȃ < y3 < ;  = (, d, , , , , ) ). 

To  derive the state distributions we now must use formulation iii) in section 2.2, in which 

the state space is split into a discrete and continuous component Ȃ in this case, the discrete 

component corresponding to x1 and the continuous component to (x2, x3). Thus, the state 

distributions that arise for t = 1,2, ..., {q(t)(x) :  x1 {0,1,2, ...,d}; Ȃ < x2 < ; Ȃ < x3 < }, as 

well as the initial t = 0 distribution, have both a discrete and continuous component. In 

order to facilitate the specification of the initial joint distribution, a decomposition strategy 

analogous to that carried out above should be performed. 

 

3.5  Example 5: Dynamic traffic assignment in a stochastic process context 

In the analysis so far we have presumed that the within-day scale is unimportant, and have 

used only steady-state link performance functions to represent congestion. Such an 

assumption is not necessary, and indeed any of the models so far described can be 

extended to permit within-day dynamic interactions (see, for example, Cascetta & 

Cantarella, 1991; Balijepalli & Watling, 2005). For example, let us consider the simplest 

example we considered so far, namely Example 1, and now suppose that traffic flows are 

propagated along each link according to a Cell Transmission Model (CTM, Daganzo, 1994), 
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based on a discretisation of the origin time-period modelled within each day into n 

departure periods, for some given n. Assuming first-in-first-out to hold, then a travel time 

may be imputed for each departure period, by comparison of the cumulative in-flows to 

each link with the cumulative out-flows from that link. Let us suppose that the origin-

destination demand flow in each departure period i is given by the constant integer di for i 

= 1,2,...,n, and let xi denote the flow that choose to use route 1 when departing in time 

period i, for i = 1,2,...,n. Let x = (x1, x2, ..., xn) thus be the state vector, with state space: 

 ࣭ = {(x1, x2, ..., xn) : xi  {0, 1, 2, ... , di} for i =1,2, ..., n} . 

For any given x the flow profile entering route 2 is d Ȃ x , and so given x we may apply the 

CTM as described above to obtain a unique travel time for each route for each entry period 

(forming a weighted average across the entry period when traffic exits in different exit 

time periods). For each entry period, suppose that we record the travel time on route 1 

minus the travel time on route 2. The relationship between x and these travel time 

differences may therefore be represented as a vector function c(x ; ,d), where c: ࣭  Թn  

and where  denotes the vector of parameters of the CTM across both links. Assuming thatǡ as in Example ͳǡ drivers consider only the previous dayǯs travel time 
relevant to the departure period in which they are travelling, that for simplicity we simply 

assume all parameters hold for all time periods, and that conditionally on the past drivers 

choose independently between time periods, then the transition function for this model is 

a simple extension of that presented in Example 1: 

   (x, y; ) = i{1,2,...,n} {di!/(xi! (di Ȃ xi)!)} . {1/{1 + exp(ci(y; ,d))}}xi . 

                                           {1 Ȃ {1/{1 + exp(ci(y; ,d))}}}di Ȃ xi     (for x, y  ࣭;  = (, d, )). 

 

The fact that such an apparently simple model arises is due to the conditional 

independence assumption, yet this is not such a strong assumption; effectively it means 

that while drivers travelling at the same time and at different times of day will have had 

commonalities and correlations in their past experiences, that once this experience is 

gained they do not then collude in making decisions on any particular day (analogous to the Ǯselfish routingǯ principle behind the Wardrop equilibrium conceptȌǤ Certainly travel 

times do not separate by time-of-departure (note that ci above depends on the vector y). 

Indeed when this transition function is used within the Markov chain model ii) in section 

2.2, the resulting state distributions {q(t)(x) :  x  ࣭} will in general be joint distributions 

that are correlated across departure time periods, and for more general learning models 

auto-correlated over between-day time (see Balijepalli et al, 2007).  We remark that the 

same approach could be used for extending examples 2, 3 and 4 given earlier. 

 

3.6  Example 6: A theoretical basis to micro-simulation 

The examples considered so far all assumed drivers to act as an aggregate, but we may also 

disaggregate drivers to any desired level. At an extreme, we may model individual drivers 

with their own individual-specific attributes, thus providing a theoretical basis for the 

computational method known as (discrete) micro-simulation. For illustration, we shall 

adapt Example 4 (simplifying to no habitual effect, i.e.  = 1 in the notation of Example 4) 

to follow the spirit of a model presented in Liu et al (2006). We shall suppose three inter-

related aspects to the micro-simulation: in the propagation of individual vehicles through 

the network along given routes, in the way in which individuals learn from their own (but not othersǯȌ experienceǡ and in the individual-specific attributes that motivate the decision 

to select a route. The OD demand of d is thus split into individual drivers. 
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Let f = (f1, f2, ..., fd) be a vector of 0/1 indicator variables, with fi = 1 only if individual i 

selects route 1 (rather than route 2) for i = 1,2,...,d. Suppose that each individual possesses 

a vector of individual-specific, traffic-related behavioural parameters which determine factors such as that individualǯs preferred departure timeǡ their Ǯaggressivenessǯ in 
accepting gaps when car-following or lane-changing, and the performance characteristics 

of the vehicle they drive. Suppose that all such parameters are collected together across all 

individuals in a single parameter vector . All of these factors account for drivers having a 

systematically individual-specific experience of travel time on the route that they choose 

to follow. Let ci(f; ) denote the mean travel time individual i would experience on their 

chosen route (i.e. on route 1 if  fi = 1 in the argument f or on route 2 otherwise), when the 

population of drivers choose routes according to f and when the population has individual 

traffic-related behavioural parameters given by . Suppose that the actual travel time 

experienced by each individual i is a random variable given by ci(f; ) + i (for i = 1,2,...,d), 

where (1, 2, ..., d) are independent and identically distributed Normal random variables 

with mean 0 and variance 2. (In realistic micro-simulation models the randomness would 

have a more complex source, but we adopt these simplistic assumptions here purely so we 

can write down an analytic expression for illustration.) 

Now an important distinction from the aggregate models considered earlier is that when 

drivers learn, they learn only of the travel time on the route they actually chose, whereas 

for the unchosen alternative they leave their prediction of travel time unchanged 

(presumably in the real world an intermediate behaviour occurs). The fact that individuals 

learn individually means that we cannot utilise the strategy used in the aggregate 

examples, whereby only the difference in travel time between the routes is updated, but 

instead must separately record/update the predicted travel time for each route, for each 

individual. We shall use a weighted average learning model for the chosen route, as was 

used in Example 4, but here applied to each individual. This learning model provides the 

mean predicted cost for each route for each individual i, and to this we add a zero mean, 

Normally distributed and individual-specific error term, that is independent and 

identically distributed across individuals with  variance k
2 for route k = 1,2. Based on 

these predicted costs, each driver chooses a route based on a logit model with common 

scale parameter  . 

 

In order to represent this model we shall use a state variable x  ࣭ = ({0,1}Թ3)d which 

contains four items of information for each individual, stacked in order of individual 

number. Thus individual iǯs variables are the elements  x4iȂ3 , x4iȂ2 , x4iȂ1 and x4i  (for i = 

1,2,...,d) denoting: 

x4iȂ3 = 1 if individual i chose route 1, and = 0 if route 2 chosen 

x4iȂ2 = individual iǯs actual travel time on their chosen alternative 

x4iȂ1 = individual iǯs predicted travel time on route ͳ 

x4i     = individual iǯs predicted travel time on route ʹ Ǥ Conditional on yesterdayǯs state y, then we can first compute the new mean predicted 

travel times on each route. We do this by first noting that we may use y4iȂ3 and 1 Ȃ y4iȂ3 for 

routes 1 and 2 respectively as a form of indicator variable, each equal to 1 only if that route 

was the chosen route, and equal to 0 otherwise. Thus our learning model only updates the 

route that was chosen. For each individual i = 1,2,...,d  we then have: 

 x4iȂ1 =  y4iȂ1 +   y4iȂ3 ( y4iȂ2 Ȃ y4iȂ1) 
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 x4i      =  y4i +   (1 Ȃ y4iȂ3)( y4iȂ2 Ȃ y4i) . 

Thus, when we consider the predicted travel times as random variables (by adding the iid 

error terms to the mean predicted travel times above) we obtain the two sets of 

conditionally independent distributions: 

        X4iȂ1| Y= y  ~ Normal(y4iȂ1 +   y4iȂ3  ( y4iȂ2Ȃ y4iȂ1) , 1
2)   independently for i = 1,2,...,d  

         X4i | Y= y   ~ Normal(y4i +   (1 Ȃ  y4iȂ3) ( y4iȂ2Ȃ y4i) , 2
2)  independently for i = 1,2,...,d. Given these predicted costsǡ each driverǯs choice of route for the present day is a Bernoulli 

trial, for each individual i = 1,2,...,d  independently: 

 X4i Ȃ 3 | X4iȂ1 = x4iȂ1, X4i = x4i , Y = y    ~ Bernoulli(1/{1 + exp((x4iȂ1 Ȃ x4i))}) . 

Finally, based on the choices made by all individuals, the actual cost for each individual on 

their chosen route is the sum of an individual-specific systematic component, and an 

individual-specific iid random error, such that for each i = 1,2,...,d  independently: 

           X4i Ȃ 2 | {X4iȂ1 = x4iȂ1, X4i = x4i , X4i Ȃ 3  = x4i Ȃ 3 , Y = y}   ~  Normal(ci(x4i Ȃ 3 ; ), 2). 

Collected together our joint conditional probability mass/density function leads us to an 

overall transition function of: 

   (x, y; ) = i{1,2,...,d}  {1/{1 + exp((x4iȂ1 Ȃ x4i))}}x4i Ȃ 3 . 

                                      (21)Ȃ0.5 exp(Ȃ0.5((x4iȂ1 Ȃ y4iȂ1 Ȃ  y4iȂ3 ( y4iȂ2 Ȃ y4iȂ1))/1)2 ) . 

                                      (22)Ȃ0.5 exp(Ȃ0.5((x4i Ȃ y4i Ȃ  (1 Ȃ y4iȂ3)( y4iȂ2 Ȃ y4i))/2)2 ) . 

                                           (2)Ȃ0.5 exp(Ȃ0.5((x4iȂ2 Ȃ ci(x4i Ȃ 3 ; ))/)2 )  

          (for x, y  ࣭;  = (, d, , , 1, 2,)) . 

As for Example 4 earlier, we have a mixed discrete/continuous state-space, and so we use 

formulation iii) of section 2.2 to model the state transitions. 

 

3.7 Example ǣ Incorporation of Ǯrule-basedǯ approaches 

Some micro-simulation models are based on a series of Ǯif ǥ thenǯ logical rulesǡ rather than 
smooth, continuous response functions, and it is interesting to see that these also may be 

incorporated within the framework proposed. As an example, we examine a behavioural 

rule that has received some considerable attention in the research literature, namely that 

of bounded rationality (e.g. Hu & Mahmassani, 1997; Guo & Liu, 2010). As a simple 

illustration, we shall adapt the model presented in section 3.6. 

Specifically we will adapt the learning process presented in section 3.6, by assuming that 

drivers only update their predicted travel times if their latest experience of travel time is 

significantly different (in absolute terms) from the travel time they anticipated. This 

provides the following rule: 

 If  |y4iȂ1 Ȃ y4iȂ2| <  then                    

 x4iȂ1 =  y4iȂ1  

 x4i      =  y4i 

else  

x4iȂ1 =  y4iȂ1 +  y4iȂ3 ( y4iȂ2 Ȃ y4iȂ1) 

  x4i      =  y4i +   (1 Ȃ y4iȂ3)( y4iȂ2 Ȃ y4i) . 
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Here, we assume a simple case of a deterministic threshold , though more generally it 

may be stochastic; also, we put no constraint on the relative improvement, only the 

absolute improvement is considered in the rule.  

This rule can be written more concisely by introducing the heavy-side function h(.) given 

by: 

 h(z) = 0 if z < 0  

         α ͳ if z η Ͳ 

and then we can subsume these cases with the expressions: 

x4iȂ1 =  y4iȂ1 + h(|y4iȂ1 Ȃ y4iȂ2| Ȃ )  y4iȂ3 ( y4iȂ2 Ȃ y4iȂ1) 

  x4i      =  y4i + h(|y4iȂ1 Ȃ y4iȂ2| Ȃ )  (1 Ȃ y4iȂ3)( y4iȂ2 Ȃ y4i) . 

The remainder of the model presented in section 3.6 is unaffected by this modification, and 

so using the results of that section we are able to write down the new transition function 

of the model as a slightly modified form of that given in section 3.6: 

   (x, y; ) = i{1,2,...,d}  {1/{1 + exp((x4iȂ1 Ȃ x4i))}}x4i Ȃ 3 . 

             (21)Ȃ0.5 exp(Ȃ0.5((x4iȂ1 Ȃ y4iȂ1 Ȃ  h(|y4iȂ1 Ȃ y4iȂ2| Ȃ ) y4iȂ3 ( y4iȂ2 Ȃ y4iȂ1))/1)2 ) . 

            (22)Ȃ0.5 exp(Ȃ0.5((x4i Ȃ y4i Ȃ  h(|y4iȂ1 Ȃ y4iȂ2| Ȃ ) (1 Ȃ y4iȂ3)( y4iȂ2 Ȃ y4i))/2)2 ) . 

                                           (2)Ȃ0.5 exp(Ȃ0.5((x4iȂ2 Ȃ ci(x4i Ȃ 3 ; ))/)2 )  

          (for x, y  ࣭;  = (, d, , , 1, 2,, )) . 

 

3.8 Example 8: Capturing stochasticity through Brownian motion  

As well as constructing stochastic processes through what are essentially adaptations of 

traditional transport modelling methods, we may also look to the wider literature of 

stochastic processes and consider ways in which the general techniques developed therein 

might be applied to transportation problems. It is rather difficult to find examples of 

transportation papers that have followed such an approach, but one exception is that of 

Friesz et al (2008). This paper exploits the theory of stochastic differential equations to 

propose a model based on Brownian motion, which distinguishes separate notions of 

deterministic change and stochastic variation. Unfortunately for our purposes of 

constructing a simple illustrative example, the transportation application it considers is 

extremely complex, quite aside from the main feature that we wish to illustrate here. 

Moreover, the model finally produced is effectively a deterministic (rather than stochastic) 

process, since conditionally on the past at any one time, complete statistical expectations 

of the relevant stochastic variables are used. Therefore in the present section we present a 

much simpler example which is motivated by many elements of the Friesz et al paper, but 

which considers a highly-simplistic pricing mechanism, defined as a stochastic process. In 

keeping with the presentation so far, we also convert their continuous-time formulation 

into a discrete-time process with Ǯsimpleǯ state variables ȋiǤeǤ the state variables are not 

functions of within-day time, but are discretized by within-day time). 

As in all examples in this section, we suppose that drivers are travelling on a single origin-

destination movement with two parallel routes available. As noted above, we maintain the 

focus of the present paper on discrete-time (day-to-day) systems in which the state 

variables are simple variables rather than functions of (within-day) time, and so modify 

and the continuous-time approach of Friesz et al (2008). Thus we suppose that within-day 

time is divided into n discrete time periods, with travellers assumed to make a joint choice 

of route and departure time among the 2n alternatives therefore possible in our two-route 



 21 

network. In fact, we add a further no-travel alternative, which Friesz et al use to represent 

the decision to telecommute. We suppose that one of the routes (route 1) is subject to 

paying a price which varies between and within days, and is a price that users do not know 

with certainty until the end of their journey.  

Our state variable x  Թn [0,)2n + 1 will be defined as: 

 xj = price paid at destination to use route 1 when departing in interval j (j = 1,2,...,n) 

xr n + j   = travel time experienced on path r  when departing in interval j 
(r = 1,2 and j = 1,2,...,n) 

x3n + 1 = number of users who telecommute . 

We suppose that the total origin-destination demand flow on any one day is given by the 

constant d (0, ), and that   [0,1] is a constant parameter defining an upper bound on 

the fraction of telecommuters permitted on any one day (say, defined by the employer at 

the destination).  

 

Then, as throughout this paper, using y to denote the Ǯyesterdayǯ version of the state 
variable x , the number of telecommuting travellers are assumed to vary according to a 

simple deterministic dynamical system with transitions given by: 

       x3n + 1 = max{min{y3n + 1 +  ((2n )-1(j{1,2,...,n} r{1,2} yr n + j ) Ȃ ), d }, 0} 

where  (0, ) is a parameter representing a congestion threshold and where  [0, ) is 

a parameter controlling the rate of adjustment. The term inside the inner parentheses, 

against which  is comparedǡ is simply yesterdayǯs average experienced travel time across 
all paths and departure times. The min and max operations simply ensure that the result is 

constrained to be on the interval [0, d], where the parameter   was defined above. Thus 

we have defined the first component of the overall model, namely the telecommuting sub-

model. The second component of the model concerns the congestion pricing element of the 

model, and is the component in which the stochastic elements arise. This is the place in 

which we depart most from the source paper, representing only a highly simplistic pricing 

system. We suppose that only one of the routes (route 1) is priced; the other route is free. 

For the priced route, the probability distribution of the price Xj paid (at the destination) 

when departing in departure interval j (given the travel time yn+j on route 1 and departure 

time j on the previous day) is constructed recursively across departure intervals according 

to a discretised form of geometric Brownian motion:  

Xj = XjȂ1 +  j + Bj j(yn+j; )    Bj ~ Nor(0, j
2)    (j α ͳǡ ʹǡǥǡ n; X0 = 0) 

for constant parameters , 1, 2, ǥǡ n and 1, 2, ǥ n , and for functions j( . ; ) (j = 1  ʹǡǥǡ n) which are parameterised in total by the vector . The three characteristic 

components of this Brownian model are: the parameters 1, 2, ǥǡ n which capture the 

deterministic drift that depends on time of day through j (Friesz et al proposed a simple 

linear relationship with time); j(yn+j; ) which is the volatility which depends on both time 

of day j and the particular day ȋthrough the previous dayǯs travel time yn+j); and Bj which 

represents white noise with variance j
2. This way of constructing the prices provides a 

simple mechanism for implicitly defining correlation across time periods, through a series 

of conditionally independent statements, i.e: 

Xj | XjȂ1 ~ Nor(XjȂ1 + j, (j j(yn+j; ))2 )  (independently for j α ͳǡ ʹǡǥǡ n; X0 = 0). 
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Thus the joint probability density function f(.) of the prices (X1, X2ǡ ǥǡ Xn) is given by the 

product of these conditionally independent distributions: 

 f(x1, x2ǡ ǥǡ xn; , , , , x0 = 0, {yn+1, yn+2, ǥǡ y2n}) = 

          j{1,2,...,n} (2)Ȃ0.5 (jj(yn+j; ))Ȃ1  exp(Ȃ0.5((xj Ȃ xj Ȃ1 Ȃj)/(jj(yn+j; )))2). 

The final element of the model is to describe how travellers respond to the prices. This 

could be captured through learning processes of the kinds described in sections 3.2 and 

3.3, whereby over time travellers build up their perceptions of the mean prices; but for 

simplicity of illustration we will adopt the simple myopic learning rule of section 3.1, and 

leave it to the reader to imagine the quite simple extension to more realistic learning 

behaviour. Thus we assume drivers base their route and departure time choice decisions 

on the prices incurred at the destination on the previous day. In keeping with the spirit of 

Friesz et alǯs approach ȋand unlike the other models described aboveȌǡ we shall assume 
that given the price signal, drivers are able to organise themselves on any one day into a 

Dynamic User Equilibrium (DUE) route and departure time pattern. The DUE model is 

based on assuming utility for any (route, departure time) combination is a linear 

combination of the schedule disutility, the travel time and the price. We suppose our DUE 

model is parameterised by some parameter vector , and (by the logic above) is a function 

of the departure-time-dependent prices on the priced route in the previous day, {y1, y2ǡ ǥǡ 
yn} ȋiǤeǤ the Ǯyesterdayǯ counterpart of the state variables ȓx1, x2ǡ ǥǡ xn}). We assume there to 

be a unique DUE solution for any given  and {y1, y2ǡ ǥǡ yn}. At this unique solution we may 

compute the travel times on any route and departure time combination. We thus introduce 

the functions grj: Թn  Թ to be the DUE mapping from (yesterdayǯsȌ route ͳ prices {y1, y2, ǥǡ yn} to ȋtodayǯsȌ DUE travel time xrn + j  for route r and departure time j (for r = 1,2; and j = 

1,2,...,n), i.e.: 

 xrn + j  = grj(y1, y2ǡ ǥǡ yn; )                                               r = 1,2; j = 1,2,...,n . 

 

Combining the expressions above, with state space ࣭ = Թn [0,)2n + 1, the resulting 

transition function for the process is: 

   (x, y; ) =  j{1,2,...,n} (2)Ȃ0.5 (jj(yn+j; ))Ȃ1  exp(Ȃ0.5((xj Ȃ xj Ȃ1 Ȃj)/(jj(yn+j; )))2) 

 j{1,2,...,n} r{1,2} (xrn + j , grj(y1, y2ǡ ǥǡ yn; )) 

 (x3n + 1, max{min{y3n + 1 +  ((2n )-1(j{1,2,...,n} r{1,2} yr n + j ) Ȃ), d }, 0}) 

         (for x, y  ࣭;  = (, , , , x0 = 0, , , , , d)) 

 

where as earlier (.,.) denotes the Kronecker delta function. 

 

 

4. PLANNING CONTEXT & THEORETICAL PROPERTIES 

 

4.1 Dynamic Planning 

 

So far in the paper we have defined a theoretical basis for modelling stochastic dynamics 

in transportation systems (section 2), and have illustrated this theory by describing 

particular models consistent with this theoretical basis (section 3). The approach traces 

the change over time in a joint probability distribution (state distribution) that fully 

describes the transportation system, when given an initial state distribution, and we have 

discussed (in section 2.2) how such a state distribution might be defined in practice. By the 

way we construct the method, we know that from any given initial state distribution at 
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time t = 0, there will exist a unique future trajectory of state distributions at times t = 1, 2, 

3, ..., provided that we can associate a transition function with the defined model. We have 

shown in section 3 how such transition functions may be explicitly derived. Therefore, we 

have a basis for suggesting this approach as a planning tool, e.g. to test hypothetical 

scenarios or anticipated future events. In conventional dynamic or static equilibrium 

analysis we might hope to guarantee the existence of a unique solution for any given 

scenario, and in the stochastic process context we might claim that the analogy is the 

existence of a unique time trajectory of probability distributions given the combination of 

any scenario and an initial state probability distribution.  

 

In terms of numerical estimation, carrying out the computations to recursively calculate 

the state distributions (from the equations in section 2.2) might appear cumbersome for 

realistic scale networks, especially given the potential dimension of the state vector and 

size of the state space. However, one approach that could be said to circumvent such 

problems is Monte Carlo simulation. In the present context this would involve pseudo-

random sampling of a particular initial state, and then subsequent pseudo-random 

sampling from the conditional distribution given by the transition function. This would 

provide a single trajectory of particular states. By replicating this process a number of 

times with different random number seeds, we would build up a collection of trajectories, 

and as the number of replications grows so the relative frequencies with which particular 

trajectories occur provide increasingly precise, unbiased estimates of the theoretical 

probability of such trajectories occurring in the underlying model (by the strong law of 

large numbers). Therefore, from these replicated Monte Carlo draws, we can compute 

summary statistics which can serve as estimates of the means and variances in flows and 

travel times at any particular time t, as well as examining temporal correlations and 

changes in such measures across time. 

 

Therefore, in principle at least, we have both a theoretical basis and a solution method 

(suitable for large scale applications) for analysing the impacts of alternative scenarios, e.g. 

the impact of new infrastructure, or a driver information system, or the consequences of a 

hypothetical failure/incident in the network. In this context we might draw parallels with 

the approaches commonly used in short-term traffic forecasting (Okutani & Stephanedes, 

1984; Vlahogiannia et al, 2004; Ghosh et al, 2007), where historical information is used to 

calibrate stochastic models in order that near-term forecasts can be made, and control 

measures derived to influence future traffic states in a desirable way. The analogy in the 

present context might be with a planner making short-term decisions on a day-to-day 

basis; this may be useful, for example, in the days immediately following some major 

planned or unplanned event that leads to capacity reductions over a period of days.  

 

We may also draw parallels at an entirely different temporal scaleǡ with the Ǯtime-marchingǯ models used in dynamic land-use/transport interaction models (Wegener, 

2004; Shepherd et al, 2006; Pfaffenbichler et al, 2008). While generally deterministic 

rather than stochastic processes, these models nevertheless operate over scales of perhaps 

20-30 years, and in making appraisals of hypothesised measures must take into account 

the transient dynamics of the modelled system from some given initial conditions. An 

analogous a problem of how to appraise and plan with transient systems has also been 

considered on the day-to-day scale, Friesz et al (2004) proposing techniques by which 

dynamic congestion pricing may be designed and implemented in such an environment. 

Indeed there exists a whole range of techniques developed for application fields such as 
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financial planning, which have only just begun to be considered in transportation (Zhao et 

al, 2004; De Palma et al, 2009), and transferring more such insights into the field must 

surely be a fruitful area for future research. 

 

Therefore, there are promising possibilities for utilising the models so-defined in a 

dynamic planning environment. Indeed, we might argue that such a direction is not only 

promising but necessary, given empirical evidence suggesting that many of the choice 

processes we typically consider stabilise rather too slowly for the assumptions of steady-

state analysis to hold (Goodwin, 1998).  However, while we would wish to promote this as 

a research agenda, we believe a twin-track approach should be pursued, with the 

alternative approach one that we shall term Ǯstationary planningǯ ȋas defined in detail in 
section 4.2). This suggestion is based on several reasons: 

 

1. Adopting a dynamic planning approach places great emphasis on the assumptions 

made about the assumed behavioural adaptation of travellers and the rates of 

adjustment implied by the parameter values. Any evaluation (such as cost-benefit 

analysis) performed with such a model will be potentially highly sensitive to such 

assumptions, especially during transient periods. However, our empirical 

understanding of such processes is still in its infancy, and the technology that might 

yield the fidelity and quantity of data available to inform such understanding (e.g. from 

mobile communications traces) is only just becoming available.  

  

2. Linked to point 1, a dynamic planning approach places great emphasis on what we 

actually mean by ǮtimeǯǤ For exampleǡ although there is a growing literature on day-to-day dynamic modelsǡ it is typically less clear what the Ǯdaysǯ actually representǢ 
invariably, a simulation of 60 days is not intended to represent (say) a particular 12-

week period of weekdays, but rather the days are meant to represent the kinds of travel 

experiences faced by commuters on  daily level. Except in the case of very short-term 

responses over a few days, we would have difficulty conceptually matching a model 

run of n days with any particular n days; again this is a serious problem for any 

evaluation performed with the model, which would be sensitive to the value of n.  
 

3. It is impossible to ignore the fact that there has been enormous experience in using 

equilibrium analyses for planning real-world transportation systems, and many 

measures and policies were justified in the past on the basis of such analyses. It would 

be naïve to believe that planners have no political investment in approaches; therefore, 

one cannot expect them to immediately alter their appraisal methods to use such 

dynamic, stochastic methods. Rather, some kind of transition in methodology is 

needed, whereby equilibrium analyses can be seen to play a part.  
 

4. Point 3 suggests that understanding the connection of stochastic process methods to 

equilibrium analyses is a practical necessity, but also we can hypothesise that there can 

be useful theoretical and methodological issues to learn from equilibrium analyses. An 

example, though admittedly connected with deterministic dynamical systems, is the crossover between certain more Ǯbehaviourally-motivatedǯ algorithms for estimating 
equilibrium, and the stability analysis of dynamical adjustment processes (e.g. Smith, 

1984). A second example is the study of Jacobian asymmetry in non-separable cost 

functions for equilibrium models, which has been found to be indicative of certain 

kinds of pseudo-stable convergence behaviour in Monte Carlo simulation of stochastic 

process systems (Watling, 1996). 
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5. From a purely computational point of view, it is desirable to seek more efficient 

methods for implementing such processes. As noted earlier, a dynamic planning 

analysis would potentially need a large number of Monte Carlo replications to estimate 

the state distributions over time. This is not a unique problem faced in transportation, 

and in this respect there appears to be potential in transferring more ideas from other fieldsǡ such as Ǯscenario generationǯ ȋDi Domenica et al, 2007). Nevertheless, avoiding 

the need to replicate Monte Carlo simulations is highly desirable, and we shall explore 

non-dynamic planning situations where this is feasible. 

 

Therefore for these reasons, in the remainder of the paper we shall focus on an alternative 

interpretation of the stochastic process approach, which is indeed the interpretation that 

has been adopted in virtually all transportation research papers on this topic to date. This 

is not to suggest, however, that we advocate it as the only approach; we believe that both 

dynamic planning and stationary planning should be considered for their possibilities. 

 

 

4.2 Stationary Distributions as a means for ǮStationary Planningǯ 
 

In this section we define concepts that utilise the techniques described in sections 2 and 3, 

but within a context that is more akin to traditional equilibrium analysis. In order to do so, 

we first must define some standard notions from stochastic process theory, which we will 

then relate to the theory described in earlier sections (and notably the theory and notation 

for the three types of stochastic process defined in section 2.2). For more details of the 

theory the reader is referred to Stokey & Lucas (1989), and for its application to 

transportation systems to Cantarella & Cascetta (1995). 

 

Definition 1 

Let ू ك ࣭ be a minimal subset of the state-space with the property that there is zero 

probability of leaving it once entered, and where minimal means that ू does not contain 

any proper subset with this property. Then ू is called an ergodic subset. 

 

This definition implies that, if we neglect the steps by which a process arrives at some 

ergodic subset, then we can consider ergodic subsets in isolation, since always the process 

will transform back into states into the same subset. It gives the opportunity to think in 

terms of something analogous to a fixed point of a deterministic dynamical system within 

any such ergodic subset, but instead here in probability terms: 

 

Definition 2 

A state distribution {q(x) : x ू ك ࣭} is termed a stationary distribution over an ergodic 

subset ू if any only if (as appropriate 

 q(x) = y  ू   (x, y; ) q(y)  dy  ( x  ू;   ) [Markov process, ࣭ ك Թm] 
 

 q(x) = y  ू  (x, y; ) q(y)    ( x  ू;   ) [Markov chain, ࣭ ك Ժn] 

q(x)  q((x[1],x[2])) =  y[1]  ू[1]   y[2]  ू[2]  ((x[1],x[2]),(y[1],y[2]); ) q((y[1],y[2]))  dy[2]  
 

 (x  (x[1],x[2]), x[1]  ू[1]; x[2]  ू[2]; ू = ू[1] ू[2];    )        

       [Markov process/chain, ࣭ ك Ժn  Թm] . 
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A stationary distribution is thus a kind of invariant point in the (infinite-dimensional) 

space of probability distributions, since whenever the process takes on the 

probabilities/probability-densities from a stationary distribution at some time t , then the 

transition function will map it to exactly the same probabilities/probability-densities at 

times t + 1, and so on for all future times. 

 

We are then in a position to make a definitions which apply to the whole state space of a 

stochastic process. 

 

 

Definition 3 

A stochastic process is called stationary if at least one stationary probability distribution 

exists (existence), ergodic if stationary and exactly one stationary probability distribution 

exists (uniqueness), and regular if ergodic and its probability distribution converges6 to 

the one stationary probability distribution whatever the initial state distribution (global 

convergence). 

 

That is to say, for a regular stochastic process there exists a unique stationary distribution 

{q(x) : x  ू ك ࣭ } over a unique ergodic subset ू  of state-space ࣭, for which {q(t)(x) : x  ࣭}     {q(x) : x  ू ; with q(x) = 0 for x  ू} as t  , regardless of the initial state 

distribution {q(0)(x) : x  ࣭}. Therefore it is very interesting to know what conditions on 

the process might be sufficient to guarantee regularity, which the theorem below 

summarises.  

 

Theorem 1 

Let {(n)(x, y) : x, y  ࣭} denote the n-step transition function of a Markov process or chain, 

namely the conditional joint probability mass/density function for the possible states x  ࣭ 

in the current time epoch, given that y was the state that occurred n time epochs 

previously. 

(a) Markov Chain: 

Let (n) =  y  ࣭ min{(n)(x, y): x  ࣭}. Then the stochastic process is regular if for some 

integer N  1, (N) > 0. 

(b) Markov Process: 

The stochastic process is regular if there exists   0 and an integer N  1 such that for any 

subset ࣛ ك ࣭, 

either:    y  ࣛ (n)(x, y) dy        for all x  ࣭   

or:      y  ࣛ (n)(x, y) dy        for all x  ࣭  . 

 

Proof: See Theorem 11.4 of Stokey & Lucas (1989, pp 332-333) for Markov Chains, and 

Theorem  11.12 (pp 350-351) for Markov Processes. 

 
                                                        
 

6 For general Markov processes or Markov chains/processes, the notion of what we mean by convergence is 

a study in itself, since we may define a variety of norms over which convergence may be studied. The results 

established here concern what is termed strong convergence (see Stokey & Lucas, 1989, pp 338-344). 
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Since the Theorem only requires there to exist some N  1 where the property holds, then 

it is a natural first step to consider whether it holds for N = 1, i.e. by checking whether it 

holds for the defining transition function of the process. In all of the examples considered 

in section 3 the properties can be seen to hold, since the transition function associates 

positive probability mass/density for transitions between all pairs of states across the 

entire state space. Thus in all these cases, by construction, we can associate a unique 

stationary distribution with the model, to which the process will converge regardless of 

the initial conditions.  

 

This existence of a unique stationary distribution holds not only theoretical interest, since 

for a regular process, all the relevant statistics for the single stationary distribution can be 

computed from just one pseudo-realization of the process, whatever the starting state, 

since clearly by definition any stationary distribution we obtain is the only one that can 

arise. We no longer face the problem noted with dynamic planning of needing to simulate 

replicated pseudo-random realizations of the process, and so stationary distributions also 

hold great interest from the viewpoint of computational tractability. 

 

The possibility, then, to guarantee the existence of a unique and readily-computable 

stationary distribution provides an obvious opportunity to use such a distribution for 

appraising hypothetical policies. To be clear, this distribution contains rather rich 

information, not only means, variances and covariances of flows, travel times and other 

factors, but also between-day covariances (autocorrelations) which occur even in the stationary regimeǤ )t provides the basis for what we might call Ǯstationary planningǯǡ a 
stochastic process analogue of familiar methods used with equilibrium models. 

 

 

4.3 Relationships between SP, DP and equilibrium models 

 

A proper treatment of the relationship between deterministic process, stochastic process 

and equilibrium models would require a paper in its own right, and such a treatment is not 

the focus of the present paper. However, as was remarked in section 4.1, there are 

compelling practical and theoretical reasons for seeking a full understanding of such 

relationships, and so in this section we briefly note some of the main issues that are 

understood in this relationship. 

 

Intuition would suggest that a likely relationship between the models might run thus. 

Imagine first that a stochastic process model is specified with transition function (x, y), 

and to pick an example let us imagine this is on a discrete state space, so that our process 

is: 

  q(t)(x) = y  ࣭  (x, y) q(t Ȃ 1 )(y)    (x  ࣭ ك Ժn) . 

 Let us now Ǯdeterminiseǯ this process by taking expectations with respect to the 
conditional distribution given by the transition function at a particular given value of y. 

This amounts to constructing the vector function (.) given by: 

  (y) = x S   x (x, y) . 

   

Now consider the deterministic dynamical system:   
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  x(t) = (x(t Ȃ1))        (t = 1,2,....) . 

 

Actually we are being somewhat informal here since the state space will no longer be 

discrete, and so it is not entirely clear that we are permitted to apply  in this way, but for 

the purposes of this informal discussion this is not a critical issue. 

 

Now consider a stationary point of this dynamical system, i.e. a state x* such that: 

 x*= (x*)  . 

 

Thus we have a connection between an equilibrium state x*, a deterministic dynamical 

system defined by , and the original stochastic process with transition function  . It is 

tempting then to imagine this construction process in reverse, i.e. to ask what does the 

deterministic dynamical system add to a study of equilibrium, and then what does the 

study of a stochastic process add to a stochastic process? In this case, a natural line of 

reasoning would be that the deterministic system adds a description of transient, non-

equilibrium or pre-equilibrium behaviour, and the stochastic process essentially adds Ǯnoiseǯ to this process to reflect some uncertaintyǤ 
 

Tempting as such logic might be, the difficulty with such reasoning is that the dynamics 

generated by the stochastic process are of rather complex form, especially given the 

nonlinear nature of the processes involved. For example, even when the process is 

stationary it is not the case that each Ǯdayǯ is then like an independent random sampleǢ 
even when stationary, complex dynamics persist in terms of the auto-correlations between 

days. Furthermore, it is not the case that such a determinised system would correctly 

predict the mean evolution; neglecting variability not only affects variance but affects the 

mean evolution of the process. On the other hand, if the deterministic system evolves 

towards a periodic or a chaotic attractor, it also has a variance and a correlation structure 

whose relationship with their stochastic counterparts is not pre-determined. In this case, 

the flow distribution can be expected to exhibit several modes for both deterministic and 

stochastic processes, and the auto correlogram of the stochastic process will show the 

same structure as the deterministic one but with less extreme values.  

 

For such reasons relationships between deterministic and stochastic process models are 

an open research field in the theory of non-linear dynamic systems, and we cannot expect 

general results to connect any such processes. On the other hand, some special results 

exist for the kinds of model we consider here (and will consider further in section 5). Davis 

and Nihan (1993) show that a particular form of stochastic process model converges, as 

both the OD demands and capacities grow in tandem, to the sum of a deterministic non-

linear process (with mean equal to a stochastic user equilibrium) and Gaussian white 

noise (that is a non stationary linear stochastic process defined by a 0-mean normal 

vector). From the practical point of view, then, it can be concluded that if O-D demand and 

capacity values are large enough, deterministic and stochastic descriptions of system 

evolution should be, according to the law of large numbers, increasingly similar. Hazelton Ƭ Watling ȋʹͲͲͶȌ built on Davis Ƭ Nihanǯs result to develop a practicalǡ analytic 
approximation method for estimating the stationary distribution of such a process without 

needing to simulate its evolution, but only given an SUE solution. This approximation was 

developed for within-day static cost-flow functions, but was later extended to the within-

day dynamic case by Balijepalli & Watling (2005).  
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Cascetta (1989) also analyzed the relationships between equilibrium and stochastic 

stationary distribution for a simplified model, confirming that the equilibrium link or path 

flows are generally different from corresponding expected values of the stochastic process.  

Moreover, if the deterministic process converges to a fixed-point attractor coincident with 

an equilibrium state and the system dimensionality is large enough, the same can be said 

for the stochastic process; in this case, flow variances should be increasingly small and 

average stationary values should become close to those of equilibrium. 

 

On the other hand, in cases where the conditions for existence of a unique stationary 

distribution almost break down, examples can be found of ill-conditioned, seemingly 

paradoxical behaviour. Watling (1996) studied a series of simple examples of problems 

which were known to produce multiple equilibria in conventional models, but which 

nevertheless theoretically satisfy the conditions for existence of a unique stationary 

distribution in a stochastic process sense. It was found that, depending on the behavioural parameter assumed in the modelǡ the process could nevertheless exhibit kinds of Ǯpseudo-stableǯ behaviourǡ where it was trapped within a region of stable point equilibriumǤ Thusǡ 
in practical simulations, the link between the stochastic process, deterministic process and 

equilibrium approaches could be stronger than might be anticipated from the theory. 

 

In summary, a growing body of evidence is emerging that establishes connections between 

the stochastic process, deterministic process and equilibrium approaches, but these 

connections are rather complex in nature and would benefit from more theoretical and 

empirical investigation. For further discussion and insights into this issues, see Watling & 

Cantarella (2013). 

 

 

5. A GENERAL FAMILY OF STOCHASTIC PROCESS TRAFFIC ASSIGNMENT MODELS 

  

In section 3 we presented a variety of simple examples on a network consisting of only two 

arcs, though as we noted at the time all of the examples provided in that section may be 

extended to general networks. In the present section we explicitly set out such a general 

network approach, with a family of models that incorporate many of the features set out in 

those examples. For this family we will derive the transition function for a particular state 

representation, and (based on the results set out in section 4.2) identify the assumptions 

on the underlying sub-models that guarantee the existence of a unique stationary 

distribution. 

 

The context is a single (private car) mode, with constant demand based on a segmented 

aggregate model of choice, behaviour and learning, with the supply-side restricted to 

within-day static cost-flow relationships. Unlike with the examples in section 3, in general 

networks it would be unwieldy to attempt to use the notation x to describe all state 

variables. Instead the notation follows, for the most part, that in Cascetta (2009). Since 

demand flows are assumed constant, path choice is the only user choice behaviour affected 

by network performance, or more properly by congestion. Users travelling between a 

common origin-destination pair with common behavioural features are grouped into N 

user classes, with each user class i assumed to have a set of (elementary) available paths ࣥi (assumed non-empty and finite) and a constant, integer demand flow di  0, di  Ժ. That 
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is to say the user class index is used both to distinguish different types of user and also to 

distinguish different origin-destination movements. 

 

5.1 Modelling transportation supply 

Transportation supply is modelled through a network with a transportation cost ca and a 

flow fa associated to each arc a. Let: 

c  0 be the vector of arc costs, with entries ca  for a = 1,2,...,n ; 

f   0 be the vector of arc flows, with entries fa  for a = 1,2,...,n ; 

i be the arc-path incidence matrix for user class i (for i = 1,2,...,N), with entries iak = 1 if 

arc a belongs to path k and kࣥi, otherwise iak = 0; 

wi  0 be the vector of path costs for user class i, with entries wk, k  ࣥi ; 

hi  0, with 1
T
 hi =  di, be the vector of path flows for user class i, with entries hk, k  ࣥi . 

Omitting the possibility of path-specific costs ȋfor simplicityǯs sakeȌ, the arc-path cost 

consistency condition is expressed by: 

 wi = i
T c   i . 

Moreover, the arc-path flows consistency condition is expressed by: 

 f = i  i hi  ऐ  Ժn  

where the feasible arc flow set is given by 

     ऐ = {f  Ժn : f  = i di hi  where hi  Ժmi, hi  0 and 1
T
hi  = di i = 1,2,...,N} . 

Let us now consider the role of day-to-day random variation. In order to avoid 

misunderstanding, it should be made clear that the random variation we consider here is entirely different from the ǲinter-personalǳ random variation posited in random utility 
models, such as logit and probit. This inter-personal variation is considered later, in 

section 5.3t. In the present section we consider a different source of variation, namely the 

kind of real variation from day-to-day that travellers may experience in their travel times. 

This kind of variation is something that happens in real-life (it is not only a model 

construct), in the sense that we may observe it on street, and indeed it may form part of 

some evaluation of the actual performance of the network, We assume that part of this 

daily variation in travel times is demand-related and is explained by variation in the flows, 

and that the remaining daily variation in travel times (e.g. due to weather affecting free-

run speeds) acts as an additional, additive component, Specifically, conditionally on the arc 

flows Ft = ft on any day t, there are assumed to be two components to the arc costs Ct for 

that day. On the one hand, congestion is simulated assuming that mean arc costs depend 

on the given arc flows, through the arc cost function c(f; ) (f  ऐ), a vector function 

assumed to take non-negative values, where  is the vector of all relevant supply-side 

parameters, such as capacity and sensitivity to congestion. Thus, E[Ct | Ft = ft] = c(ft; ). The 

second component to the arc costs Ct is the random variation about the mean. While there 

is no great restriction on the assumptions, we shall adopt a quite simple model, namely 

that the random arc cost disturbances are independent between links, with the 

disturbance for arc a following a Normal distribution with mean 0 and constant variance ɐa
2 (a = 1,2,...,n). 
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5.2 Modelling memory, learning and forecasting 

Generally users do not know in advance the costs they will actually incur during their trip. 

Thus it is assumed that they make their choices according to forecasted path costs, 

resulting from their memory and learning processes, and generally different from actual 

path costs not yet known. Personal experience is usually complemented by information 

exchanged with other users and possibly provided by an information system. As was noted 

in section 2.4, such learning processes may be modelled at different levels of aggregation. 

In the example in section 3.6, the learning and forecasting processes of each individual 

were explicitly modelled by weighting differently the information relative to experienced 

and non-experienced path costs (disaggregate memory). While the specification given so 

far could permit such an approach, here we shall restrict attention to the aggregate 

memory case. That is to say, the distribution of forecasted arc costs across users is 

obtained following an approach in which individual differences among users of the same 

class are taken into account in the choice behaviour model through random residuals with 

respect to common, average forecasted path costs.  

 

Generally, forecasted costs depend on costs incurred on previous days. Hence, learning 

and forecasting processes can be modelled through filters applied to costs incurred on 

previous days. In the following, forecasting filters will be assumed time-invariant, that is 

their functional form and parameters are independent of day t. In an analogous way to the 

treatment of actual costs in the previous subsection, the (random) forecasted arc cost 

vector Zt is assumed to have two components. On the one hand, the mean of Zt conditional on the previous dayǯs state is assumed to be a function of the previous dayǯs actual arc 

costs c(ftȂ1;) and the previous dayǯs forecasted arc costs ztȂ1, through the cost updating 

recursive equation: 

 E[Zt | CtȂ1 = ctȂ1, ZtȂ1 = ztȂ1] = ɔ(ctȂ1, ztȂ1)         (t = 1,2,...) 

where ɔ: Թ2n Թn is the learning filter. A simple example of such a learning filter is the 

exponential smoothing filter, in which  ]0,1] is the weight given to yesterdayǯs actual 

costs when forecasting todayǯs costs, whereby:  

 ɔ(c, z) =  c + () z     with z0 = c(f0; ), f0 ऐ. 

However, many other types of filter may be cast within this framework, such as those 

described in Chang & Mahamasani (1988), Iida et al (1992), Cascetta & Cantarella (1993) 

and Davis & Nihan (1993).  

 

The second component to the forecasted arc cost vector Zt is the random variation about 

the mean. As for the actual costs, there is no great restriction on the assumptions, and for 

ease of explanation we shall again adopt a quite simple model, namely that the random 

forecasted arc cost disturbances are independent between links, with the disturbance for 

arc a following a Normal distribution with mean 0 and constant variance a
2 (a = 1,2,...,n). 

 

 

5.3 Modelling user choice behaviour and habit 

A final and very important element to the model is to specify the stochastic mechanism by 

which users are assumed to choose between the available paths for their user class. Since 

habit is a little tricky to represent, let us first consider a simpler case where there are no 
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habitual effects, and then secondly we will generalise this so as to be able to include 

habitual factors. 

 Nowǡ usersǯ choices are basically related to pathsǡ and in general these paths may be 

physical or they may be fictitious (in a hyper-network sense, useful in some cases only) 

representing other choice dimensions such as mode, or whether to travel. The fraction of 

users of class i following path kࣥi on day t is modelled through random variables with 

expected values given by choice probabilities.  Let: 

pt
i,k = probability a user of class i chooses path kࣥi on day t  

and let pi
t denote the vector of such probabilities for user class i on day t, with 1

T
pi

t = 1.  

 

In the first, simplest model, we assume that pi
t depends only on the forecasted path costs 

izt for class i on day t, but not additionally on factors such as the choice a user actually 

made on the previous day. In such a case path choice behaviour can be modelled through a 

random utility model. Such a model assumes that each user in class i associates to each 

path kࣥi a perceived utility, the vector of such perceived utilities modelled by a vector 

random variable that depends on the forecasted path costs izt and with a distribution 

parameterised by i (say). This distribution represents several sources of uncertainty from 

the perspective of both the users and the modeller. Under a random utility model, pt
i,k is 

then equal to the probability that path k ࣥi has the maximum perceived utility among all 

the paths in ࣥi. To reflect these dependencies in the notation we may write: 

 pi
t = Ƀ(izt; i)   

where the function Ƀ may be used to represent (for example) a logit or probit choice model 

(NB: in the case of logit, Ƀ is not itself a logit choice function with argument the systematic  

utility, yet we may represent a logit model by defining Ƀk(c;) = exp(Ȃck)/(j exp(Ȃcj))). 

Assuming that, conditionally on the forecasted costs, individuals choose independently 

and at random according to the probabilities above, then the random path flow vector Hi
t 

for each class i on day t is distributed as: 

 Hi
t | Zt = zt   ~ Multinomial(di , Ƀ(izt; i))    independently for i = 1,2,...,N . 

 

In the second, more complex model we consider how to generalise this approach to 

represent user habit. In the simple model above, the whole demand of di was treated the 

same (i.e. followed the same distribution), regardless of the choices made in time t Ȃ 1.  

However, in practice the fact that they made different choices yesterday may affect their 

prevalence to choose alternative routes today. Although we describe this generically as Ǯhabitǯǡ in fact we may capture several real-life aspects of behaviour by considering such a 

dependency on past choices, not only habit in the sense of conservative behaviour in 

disliking change. For example, the converse to habit might be a desire for variety, which 

still suggests a form of dependence on past choices. Alternatively, the dependence on past 

choices might be through the information available to the user. In all such cases the 

probability to choose a path may depend additionally on previous choices and/or previous 

experiences, over and above the dependencies reflected in the predicted path cost vector.  

 

Looking to the literature there have been several approaches proposed for capturing such 

effects (more than we mention here). In deterministic or stochastic threshold models, 
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users following boundedly rational behaviour may base their switching choice 

probabilities on the difference between ȋaȌ todayǯs forecasted cost on their maximum 

utility alternative and (b) the actual or forecasted cost of the alternative chosen the 

previous day (Chang & Mahamassani, 1988). In so-called Ǯextra utility modelsǯǡ the path 

chosen on the previous day is given an extra utility, expressing the so-called transition cost 

to a different alternative (Cascetta and Cantarella, 1991). In addition to such features 

motivated by previous choices, there may also exist a kind of general inertia to change. For 

example, Cantarella & Cascetta (1995) proposed a simple model in which users each day 

have a constant probability  ]0,1] of reconsidering yesterdayǯs choices; those that do 

not reconsider simply follow the choice made on the previous day, regardless of any actual 

or predicted costs. 

 

We thus aim to capture all such possible approaches through a generic approach, in which 

the choice probabilities of a user in class i at the start of day t depend on: 

 the forecasted path costs i zt for class i on day t; 

 the forecasted path costs i zt Ȃ1  for class i on day t Ȃ 1; 

 the actual path costs i ctȂ1 experienced by class i on day t Ȃ 1;  

 the path actually chosen by that user on day t Ȃ 1; 

 a vector of parameters i relevant to class i. 

 

To consider the dependence on the path previously chosen we first amend our 

consideration of path choice probability, to focus on the conditional path choice 

probabilities: 

pt
i,k| j = probability a user of class i chooses path kࣥi on day t given that they chose 

path jࣥi on day t Ȃ 1  

and we collect these probabilities together across all paths for user class i in vectors pi|j
t 

(jࣥi). 

To reflect the dependencies of these conditional path choice probabilities on the factors 

identified above, we introduce functions j: 

 pi|j
t = j(izt, iztȂ1, ictȂ1; i)    (jࣥi; i = 1,2,...,N). 

Conditional on the choices made by users on the previous day, we are now able to apply 

these distinct probabilities to each subset of class i, depending on the path they followed 

on day t Ȃ 1, yielding: 

 Gi|j
t | {Zt = zt, Zt Ȃ1 = ztȂ1, CtȂ1 = ctȂ1, Hi

tȂ1 = hi
tȂ1} ~ Multinomial(hij

tȂ1
 , 

j(izt, iztȂ1, ictȂ1; i))    independently for each jࣥi; i = 1,2,...,N  

 Hi
t = jࣥi

Gi|j
t  . 

 

 

5.4 The transition function 

Recall that c denotes the vector of actual arc costs (actually experienced on a particular 

day), that z denotes the vector of forecasted arc costs (predicted at the start of a particular 

day), and that hi denotes the vector of path flows for user class i (i = 1,2,...,N), then we 

consider the following state variable: 
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x = (c, z, h1, h2, ..., hN) 

with mixed continuous/discrete state space ࣭ = ԹnԹnऒ1ऒ2... ऒN where ऒi = {hi  Ժmi : hik   0 kࣥi , kࣥi hik  = di }      (i = 1,2,...,N) . 

For the most general model defined in sections 5.1Ȃ5.3, the transition function is a 

somewhat messy to write down, so let us first consider the simplified model presented at 

the start of section 5.3 in which they are not habitual factors. 

 

Denoting the state we transform from ȋyesterdayǯs stateȌ byǣ 
y = (cǯ, zǯ, hǯ1, hǯ2, ..., hǯN) 

we find: 

 (x, y; ) = i=1,2,...,N { {di!/(hi1!hi2!... !)} kࣥi {Ƀk(iz; i)}hik  } . 

                     a=1,2,...,n {2a)Ȃ0.5 exp(Ȃ0.5((caȂ ca(ii hǯi; ))/a)2 ) . 

    a=1,2,...,n {2a)Ȃ0.5 exp(Ȃ0.5((zaȂ ɔa(cǯ, zǯ))/a)2 )  

    (for x, y  ࣭;  = (1, 2, ...,N , d, , ) ). 

 

Provided the random utility model Ƀ(.) assigns positive probability to all alternatives (as is 

the case for regular random utility models Ȃ see Cantarella & Cascetta, 1995), and 

assuming well-behaved learning filter and cost functions, then the transition function 

assigns positive (one-step) probability mass/density across the whole state space, and so 

by the results of section 5.2 a unique stationary distribution is guaranteed to exist.  

 

For the most general model presented in section 5.3, the explicit transition function is 

somewhat tedious to set out, primarily as we will have to consider a combinatorial problem for assessing the probability of todayǯs path flows from combinations of transfers 

from routes chosen yesterday. But even without writing down the explicit function, it can 

be inferred that again, following the same regularity conditions, there will be some 

positive probability assigned to one-step transitions across the entire state-space, and so 

again we are guaranteed a unique stationary distribution. 

 

6. CONCLUSIONS & FUTURE DIRECTIONS 

 

Transportation system modelling has traditionally been dominated by modelling 

paradigms that postulate a stable, deterministically-predictable, unchanging world, or at 

least one in which change only occurs due to the intervention of a policy measure. 

However, the theoretical and practical tools now exist to model transportation systems as 

dynamic stochastic processes, providing the opportunity for our models to better reflect 

the real-world change and uncertainty that frequently occurs. 

 

In our conclusions we would like to highlight several areas of practical and research 

interest where we believe this approach can make a particular contribution, and which 

warrant further research attention: 

 

1. Modelling variability and uncertainty of various kinds in an internally consistent 

manner, while providing a complete statistical description. For instance, SP models 

provide estimates of variance in any relevant measuressuch as travel times, flows or 
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benefits. They also allow us to understand the skewness in factors such as the 

distribution of travel times, which is important for computing measures of travel time 

reliability and in understanding user responses to the risk of arriving late at their 

destination. The variances produced are a composition of many internal elements of 

uncertainty and variability. SP models are also able to identify distributions with 

multiple modes, for which standard measures of central tendency and dispersion are 

not so useful, and which are known to arise theoretically in cases where conventional 

models would give multiple equilibriaǤ )n this case SP models also provide a ǲbasin 
analysisǳ useful to understand how a given equilibrium may be reachedǡ avoiding the 
others. Some initial work towards this objective may be found in Watling & Cantarella 

(2013), though there is considerable potential for further research to be done beyond 

this paper. 

  

2. Modelling transient situations. SP models allows us to model the adaptive behaviour 

of travellers, the transient dynamics of the demand-supply interactions, and dynamics 

in the underlying internal and external driving forces. In this way, SP models allow us 

to look at transient situations, not just stationary systems, which is especially relevant for decision processes that do not adjust fast enough for an Ǯequilibriumǯ to be relevantǤ 
Analysis of transients becomes even more relevant when multiple equilibria may occurǡ to support ǲdynamicǳ policies ȋsee previous commentsȌǤ  

 

3. Modelling adaptation over multiple time scales. The SP approach allows various 

decisions that travellers make to be reviewed and adapted over different embedded 

time-scales, e.g. mode choice reviewed less often than route choice. One reason that 

mobility choices (e.g. car licence/ownership, generation, distribution) and transport 

choices (mode, route, etc.) occur over different time-scales is that the socio-economic 

and demographic driving forces for mobility choices change over a different time-scale 

to the level-of-service driving factors for transport choices. This multi-scale adaptation 

may also be extended to the transport authorities and operators, who may (say) adapt 

traffic signal settings every week, while bus frequencies might only be adjusted every 

month.  
 

4. Incorporating alternative theories and levels of aggregation within a unified 

framework. The approach is equally valid whether the various decision models and 

traffic model components are specified at the aggregate level, the individual level or 

some intermediate. The ability to model disaggregation down to individuals if needed 

may be particularly relevant, for example, to modelling ATIS and providing personal 

information to users. In addition, the approach provides a single consistent framework 

for incorporating and testing alternative theories of traffic flow, user behaviour or 

other factors. 
 

5. Supporting project appraisal/design in a variable environment, e.g. selecting a project with small varianceǡ defining a ǲdynamicǳ traffic control policy aimed at 

influencing the system toward a preferred stable regime. This connects to robust 

planning, where both the mean and variance of relevant factors are pertinent to the 

planning process. An important point is that SP variance is not neutral to policy 

decisions; we cannot just specify it exogenously, and then assume it to be constant, 

invariant to any policy measure. 
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A final point we would make is that the whole topic of inter-periodic dynamics should be 

carefully re-considered from the empirical point-of-view. While relatively limited, the 

empirical evidence that exists seems to support the existence of significant day-to-day 

dynamics in usersǯ behaviourǤ However, stronger evidence is needed to support the assumed models of learning and habitǤ Alsoǡ further work is needed to consider the Ǯwhole systemǯ effect of change and Ǯshocksǯǡ and to understand the nature of seasonal and other 
forms of systematic and non-systematic sources of variability. Technological advances in 

tracing individual movements, and the widespread instrumentation of our highways, both 

promise a rich future source of data for a better understanding of such phenomena. 
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