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MODELLING ROAD TRAFFIC ASSIGNMENT AS
A DAY-TO-DAY DYNAMIC, DETEMINISTIC PROCESS:
A UNIFIED APPROACH TO DISCRETE AND
CONTINUOUS TIME MODELS

G.E. Cantarella and D.P. Watling

Abstract - We consider the modelling of road transport systems as a day-to-day
dynamic, deterministic process. The main contribution is to present a unified treatment
of discrete-time and continuous-time approaches, these two classes of approach having
been developed in two parallel streams of research which have had little connection
made between them. In doing so, we aim to clarify the usefulness of these alternative
approaches. We pay particular attention to: the specification of such models; the
conditions which characterise the various forms of emergent behaviour; and the
relationship between the model assumptions and real-world phenomena. The proposed
framework is heavily focused, in the first instance, on a probabilistic approach to user
choice modelling, though we also review and analyse the limiting case of deterministic
choice model.

Acknowledgments. This work was partially supported by Italian UNISA local grants
ORSA091208 (financial year 2009) and ORSA118135 (financial year 2011), and by UK
EPSRC grant ref. EP/100212X/1 (2011-15).



EJTL-D-12-00064R2 - page 1

1. Introduction

The focussed study of day-to-day dynamics has only recently begun to gain
momentum, even though there is a long history of papers that have at least considered
in passing the issue of dynamic adaptation in transportation networks. In his seminal
paper, Wardrop (1952) alluded to the role of such dynamics when providing a
justification for the introduction of the equilibrium concept, by stating:

‘It may be assumed that traffic will tend to settle down into an equilibrium situation.’

Indeed, in the monograph that motivated the whole research field of traffic network
equilibrium analysis, Beckmann et al (1956) reported a study of ‘stability’ noting that

‘In our model we shall assume simply that those road users who do not just continue
in their previous choices will choose their routes and the number of trips by road on
the basis of the traffic conditions that prevailed in the preceding periods.’

They went on to illustrate with numerical examples some potential characteristic
patterns of inter-period adjustment. Much later Smith (1979), in his landmark paper for
equilibrium analysis, posited several mechanisms for dynamic adjustment such as:

‘Consider a single driver who has travelled at least once today. He may use the same
routes tomorrow. However if he does change a route then he must change to a route
which today was cheaper than the one he actually used today.’

before considering a weaker version of this rule in order to formally establish conditions
for a stable equilibrium.

Horowitz (1984) was the first to explicitly describe day-to-day dynamics, proposing
models for a two-link transportation network derived from discrete-time non-linear
dynamical system theory. These models are now better known as deterministic process
models. The proposed models were also used to analyse the stability of stochastic
equilibrium.

But perhaps more than anyone, it was Cascetta (1987, 1989) who truly was the
catalyst for work in this field to begin, proposing models derived from stochastic process
theory. In previous work it had generally been the case that the focus was on
‘equilibrium’ as the model, and the dynamic process was defined primarily to justify the
plausibility of equilibrium as a predictor. The significance of Cascetta’s work was that he
effectively reversed these roles; for the first time, it was the dynamic process that was
the primary entity of interest, it was ‘the model’, and any interest in notions of
equilibrium was justified only to gain an insight into features of the dynamic process.

Since this early work, the field has grown—albeit rather slowly—to potentially
encompass a rather wide range of approaches, including deterministic and stochastic
processes, discrete- and continuous-time models, and deterministic and probabilistic
choice models.
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To better understand the nature of time in day-to-day dynamics, or what might be
called more correctly (and more generally) epoch-to-epoch dynamics, the following
quote is useful to have in mind:

‘... epochs can have either a ‘“chronological” interpretation as successive reference
periods of similar characteristics (e.g. the a.m. peak period of successive working days)
or they can be defined as “fictitious” moments in which users acquire awareness Of
path attributes and make their choices’. (Cascetta, 1989)

‘Time’ in the sense described above is thus ontologically discrete, but still we may
choose to represent it as continuous as an approximation. This can often be convenient
for obtaining analytical/theoretical results, which may be easier to establish in the
continuous-time case. On the other hand, for numerical solution or computer simulation
discrete-time is more convenient, and so even if the model is specified originally in
continuous-time, it will typically be discretised for computational purposes at least.
Although it may not seem such a great distinction, it turns out that the properties of the
resulting non-linear systems can be rather different in the two cases, some qualitative
phenomena evident in one and not in another.

In the present paper we consider the modelling of road transport systems as a
deterministic process (stochastic process models are widely discussed in Watling &
Cantarella, 2013a, 2013b). The main contribution is to present a unified treatment of
discrete-time and continuous-time approaches, these two classes of approach having
been developed in two parallel streams of research which have had little connection
made between them. In doing so, we aim to clarify the usefulness of these alternative
approaches. We pay particular attention to: the specification of such models; the
conditions which characterise the various forms of emergent behaviour; and the
relationship between the model assumptions and real-world phenomena. The proposed
framework is heavily focused on a probabilistic approach to user choice modelling,
though we also discuss the limiting case of deterministic choice.

The paper is structured as follows. In section 2 we describe the fundamental essence
of a day-to-day dynamic model, and go on to describe the various alternative generic
forms of such a process. Section 3 first introduces a brief summary of basic definitions,
notations and equations commonly used in literature, together with fixed-point models
for equilibrium assignment; then it describes two simple dynamic process models based
on exponential smoothing, which however simple are useful to develop considerations
about fixed-point stability. Section 4 reviews more general (discrete-time) deterministic
process models, together with tools, theorems and methods that may be used to analyse
them, and connections to existing equilibrium approach. Section 5 reviews and analyses
some continuous time deterministic process models based on Wardropian user path
choice behaviour. Section 6 analyses the strengths or weaknesses of these approaches,
looking to potential applications that are particularly suited to dynamic process models.
In doing so, we identify open issues and research questions for future investigation.
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2. General deterministic process models

With the comments above in mind, then, let us begin to define the components of our
specification. Two sets will play an important part in the specification, namely the time-
space and the state-space. The time-space is denoted by T and defines the set of time-
instants over which we wish to consider the process. For a continuous-time process we
thus would have T € R, and typically taking time 0 as a start-point would have 7" = [0, )
(which we shall denote R+ for brevity). For a discrete-time process we typically define
the discrete time points over a constant mesh, and so it is natural to index time by the
non-negative integers 77 = {teZ & t > 0}, which we shall denote by the natural number
symbol N for brevity.

The process itself will be described through the state vector x(t) at time teT, and the
state-space S is the constant, time-independent ‘universe’ to which any such state must
belong, i.e. x(t)eS for any teT. The state vector itself is defined variously according to
particular day-to-day models; it might be the flows on the arcs (or links) or on the paths
(or routes) of a network, but may alternatively be the travel times, or may be a
compound vector containing several different kinds of ‘entities’. The details are
important, and as we introduce each model later it will be a key first issue to specify
what the state-vector actually represents. A common element is that x(t) is a sufficient
description in two respects:

A1 if we know x(¢t) then we know (or can infer) everything we might want to know from
the model for the purposes of design or evaluation; and
A2 x(t) contains sufficient information of the history of the process up to time ¢ that we
are able subsequently to write down a mathematical law/model to forecast all future
modelled states.
So assumption A1l essentially says that, as the process evolves, we ensure that we record
in the state vector all of the relevant variables that we may need at the end of the
modelling process. Assumption A2 is a key theoretical one, and means that we can
appeal to a whole range of theoretical results to establish properties of the processes
concerned. Technically, this is known as the Markov property; often it is described as a
‘memoryless’ property, but actually this term is potentially confusing in the present
context, since a key element of many day-to-day dynamic models is the way in which the
‘memory’ or ‘learning process’ of the travellers is represented, and (as we shall see) the
Markov property certainly does not require that the travellers are memoryless in the
sense of only reacting to their most recent temporal experiences. Rather, the Markov
property is better understood as a requirement on the way we construct the process and
define the state variable; namely, we aim to define these in such a way that the relevant
‘memories’ of travellers up to time t are encoded in x(t), we do not need to know
additionally about x(s) for s€T where s < t. In other words, systems with long finite
memory may still be formulated as Markovian systems, with a duly specification of the
system state X. However, this construction process requires some craft and may be non-
trivial, and we cannot guarantee to be able to achieve it for all learning models. In
particular, it should be noted that we cannot simply define a component of x(t) to be the
complete history of the process since time t = 0, since then our state-variable will be
ever-expanding in time, and we violate the requirement to have a constant, time-
independent state-space S.
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According to the non-linear dynamic system theory, in the case of a continuous time,
T = R4, it is natural to define the deterministic process through differential equations in
which the state is described as a continuous-only variable. Thus, a time-homogeneous,
Markovian, continuous time deterministic system with continuous state-space is
expressed as (with a dot denoting derivative with respect to time):

x(t) = y(x(0) (teRy; x(t)eS) (2.1)

for some time-independent function y : § x Ry+— §, called transition function.
Observing the system each At unit of time, we have the case of a discrete time the
state-space § may be continuous, discrete or mixed. Thus we may write:

x(t) = (x(t —At), At) (teR+; AteRy; x(8) €95)

for some time-independent function @ : § x T— §, still called transition function. In this
case, it is worthwhile to consider an integer time index k = t / At € N, thus, we may
write:

x(k) = o(x(k -1)) (keN; x(k)es)

where the meaning of x(k) = x(t = k-At) and ¢@(x) have slightly changed with respect to
the above equation. Anyhow, in the following we will use notation t instead of k and x*
for x(t) as commonly used, reserving x(t) for continuous time systems only. Thus a
time-homogeneous, Markovian, discrete-time deterministic process may be
specified as:

xt=@(xt'1) (teN; xtes) (2.2)

where today state, xt, depends on yesterday state, xt"1.. As already noted, any time-
discrete system with long finite memory may still be formulated as a Markovian system,
with a duly specification of the system state x, to include (finite) memory of the past
states.

In some case it may occurs that today state also depends on itself. This condition may
occur for instance when the system state is the result of aggregation and/or averaging
over sub-periods of the day/epoch ¢, or at idealized systems which cannot exist in the
real-world but act as ‘benchmarks’, such as idealized traveller information systems
where the ITS and/or travellers can see perfectly into the future. Model (2.2) becomes:

xt = @(xt1, xt) (teN; xtes) (2.3)

Quite often the following approach may be followed to express model (2.3) as (2.2).

The implicit function method. Let us express equation (2.3) as y = @(X, y), assuming
f(x,y) =y — o(x, y) it yields f(x, y) = 0. Thus, if the hypotheses of the implicit function
theorem hold [briefly: if f(x, y) is continuously differentiable and the Jacobian matrix
Vy f(x, y) = I — Vy @(x, y) is invertible, then there exists a unique continuously
differentiable function y = g(x), from an open set X to an open set Y, such that for any
given X € X,y = g(x) € Y is a solution in y to f(x, y) = 0], then the following equation,
formally consistent with (2.2), can be obtained for a properly defined function g(-):

xt = g(xt1) (teN; xtes)

where Vx g(x) = —(Vy (X, ¥)ly=ex)) ! - (Vx f(X, ¥)ly=gx))- This expression of Jacobian is
remarkably useful when analyzing the evolution over time close to a fixed-point state
x* = xt = xt1, that is x*= @(x*, x*), since it does not require to know function g(-).



EJTL-D-12-00064R2 - page 5

If the transition function in equation (2.3) is separable with respect the two
arguments another approach is also available as described below. This approach,
applied in Bifulco et. (2013), can be proved a particular instance of the previous one.
Anyhow it is outlined below for comparison’s purpose.

The inverse function method. If the transition function @(:, -) in equation (2.3) is
separable with respect the two arguments: @(xt?, xt) = @1(x*1) + @2(x¢), equation (2.3)
may be rewritten as:

X — @2(x1) = @1(x*1) (2.4)

Let us express equation (2.4) as 'y — @2(y) = @1(x), assuming f(y) = y — @2(y) it yields
f(y) = @1(x). Thus, if the hypotheses of the global inverse function theorem hold [briefly:
if f(y) is continuously differentiable and the Jacobian matrix Vy f(y) = I — Vy @2(y) is
invertible in an open set Y, then there exists a unique continuously differentiable inverse
function h(z) = f1(z) for z € f(Y), where f(Y) denotes the image of the set Y], then the
following equation, formally consistent with (2.2), can be obtained for a properly
defined function h(-):

X' = h(@1(x*1))

where, since the Jacobian matrix of function h(z) is Vz h(z) = (I — Vy @2(y)|y=n)1, the
Jacobian matrix of function h(@1(x)) is Vx h(@1(x)) = (I - Vy@2(y)|ly=01(x)) 1 - (Vx01(Xx)).
[The same result may be obtained by applying the implicit function method expressing
equation (2.4) as: —(y — @2(y)) + 91(x) = 0.] This expression of Jacobian is remarkably
useful when analyzing the evolution over time close to a fixed-point state x* = xt = x*1,
that is x* — @2(x*) = @1(x*), since it does not require to know the inverse function h(:).

Relationship between continuous- and discrete-time deterministic process models
can be exploited as follows. Without any loss of generality, let function y in equation
(2.1) be specified as y(x) = v (n(x) — x) for a duly defined function n(x) and a strictly
positive scale parameter y > 0, then any continuous-time deterministic process (2.1)
may also be specified as:

X(t) =y mx(2)) —x(1)) v>0 (te Ry; x€S)
In small interval At the above equation can be expressed as :

x(t + At) - x(t) = Aty (m(x(8)) — x(¢)) + o(Al) (te Ry; xtes)
Thus the continuous time deterministic process may be approximated as:

x(t+ At) = Aty (m(x(?)) —x(8) +x(¢) (te Ry; xtes)

The above finite difference equation may be considered as a discrete-time deterministic
process based on exponential smoothing filter with p = Aty > 0, o(x!) = B (n(xt) — xt) + x¢

xt =B n(xt?) + (1 - B) xt1 (teN; xtes)
or

xt- xt1 = 3 (m(x+1) —xt1) (teN; xtes)
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3. Simple deterministic process models for traffic assignment

In this section a discrete- and a continuous-time simple deterministic process models
based on exponential smoothing are presented. These models are quite simple, so as to
carry out explicit stability analysis, but also rather effective since they allow singling out
the role of each of the main parameters of the system. Moreover, they are consistent
with user equilibrium with probabilistic choice functions, and may be formulated with
respect to arc or path variables leading to consistent evolutions over time and same
stability conditions. Some basic definitions and notations are first introduced.

3.1 Basic definitions, notations and equations

In this section, main definitions, notations and equations for travel demand assignment
to transportation networks are reviewed. Demand flows are assumed constant and one
transportation mode is considered, hence path choice is the only user choice behaviour
affected by network performances, or more properly by congestion.

User travelling between the same origin-destination pair with common behavioural
features are grouped into a user class i, with a set of (elementary) available paths
(assumed non-empty and finite) K;. Let

d; > 0 be the demand flow for user class i,

Pri = 0 be the vector of path choice probabilities for user class i, with 1’ pi=1;
h be the vector of path flows for user class i;

v[i] be the vector of path systematic utilities for user class i;

wii] be the vector of path costs for user class i.

Demand conservation for user class i can be expressed as:
hyiy = dippi Vi (3.1)

[t assures that flows of all paths connecting the user class i sum up to demand flow d..

Path choice behaviour can be modelled through a random utility model assuming that
each user of class i associates to each path k in set Ki a value of perceived utility U,
modelled by a random variable with mean vi, and chooses the maximum perceived
utility path. When the perceived utility co-variance matrix is non singular, probabilistic
choice models are obtained, leading to a probabilistic path choice function for each user
classi:

P = P (vi; 6) Vi (3.2)

where 0 > 0 is the dispersion parameter related to the perceived utility standard
deviation; this parameter models several source of uncertainty regarding both the
users and the modeller. It also plays the role of utility scale parameter. In the
following it is assumed common to all users. In multi-user assignment it (and possibly
the choice function) may vary with the user class i. The choice function may well
include others parameters, not explicitly introduced for simplicity’s sake

The choice function is continuous and continuously differentiable for all usually adopted
probabilistic choice models. If parameters of perceived utility distribution do not
depend on path systematic utility values the resulting choice model is called invariant,
and the path choice function is monotone increasing with respect to systematic utility
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with symmetric (semi-definite positive) Jacobian (Cantarella, 1997); in this case path
choice probabilities depend on differences between systematic utility values only.

The systematic utility values depend on the corresponding path costs through the
path utility function, generally through an affine transformation. In the following, for
notation simplicity the scale parameter (which it assumed included in the dispersion
parameter 0), and the constant are not explicitly shown leading to:

V[i] = —W[j] Vi (3.3)

Transportation supply (in within-day steady-state regime) is usually modelled
through a network with a transportation cost ¢, and a flow f; associated to each arc a.
(Node costs can be considered by duly modifying the graph). Let

c be the vector of arc costs, with entries cg;

Byi) be the arc-path incidence matrix for user class i, with entries bq = 1 if arc a belongs
to path k, bax = 0 otherwise;

f be the vector of arc flows, with entries f..

The arc path cost consistency is expressed by (omitting path specific cost for simplicity):
Wi = B[i]T C Vi (3.4)
Moreover, the arc path flows consistency is expressed by (omitting base flows for
simplicity):
f=2i By hy (3.5)
Let n be the number of arcs, arc flow vectors belong to the feasible arc flow set:
Sp={f =2idiBpp : p =0, 17 pi =1Vi}c R,

which is non-empty (if the network is connected), compact (since closed and bounded),
convex. By combining equations (3.1-5) the arc flow (vector) function can be defined:

f(c; d, 0) = X di By pra(-Bp' ¢; 0) € S (3.6)

where d > 0 is the vector of demand flows d;. It is worth noting that the arc flow function
is homogenous of degree 1 with respect to demand flows:

f(c; d, 0) = f(c; x-d, 0) VK> 0

The arc flow function is continuous and continuously differentiable for usually adopted
probabilistic choice functions. For invariant probabilistic choice functions it is also
monotone decreasing with respect to path cost (as it also occurs for the Wardrop choice
function), and has a symmetric (negative semi-definite) Jacobian matrix: J¢(c).

Congestion is simulated assuming that arc costs depend on arc flows, through the arc
cost (vector) function, with non-negative values for mathematical convenience:

c=c(f;p)>0 vie S (3.7)

where p is the vector of all relevant parameters, such as capacity, sensitivity to
congestion, ....

In the following, the arc cost function will be assumed continuous and continuously
differentiable with respect to arc flows, f, with Jacobian matrix J(f).
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The user equilibrium (UE) assignment searches for mutually consistent arc flows and
costs, as introduced by Wardrop (1952) with deterministic path choice behaviour.
Wardrop (or deterministic) path choice behaviour model is not dealt with here, since it
leads to a path choice point-to-set map. It may be considered the limit case of any
probabilistic choice model when dispersion goes to zero. User equilibrium with
probabilistic path choice functions was introduced by Daganzo and Sheffi (1977), who
called it stochastic user equilibrium (SUE). [For a comparison between UE and SUE see
the appendix] In this case, equilibrium assignment can effectively be expressed by fixed-
point models given by the arc cost function and the arc flow function:

c*=c(f5 ) € c(S)c R, (3.8a)
f*=f(c* d, 0) € S,c R, (3.8b)

Other equivalent models can be formulated with respect to path variables. An equivalent
formulation with respect to flows (or costs) only is often used in literature (Cantarella,
1997; a different one in Daganzo, 1983), which can be obtained by explicitly including
equation (3.8a) into equation (3.8b):

f*=1(c(f;n);d,0) € Src R,
or vice versa
c*=c(f(c*;d,0); u) €c(Sp) R, (3.9)

Existence is guaranteed if both the arc cost function and the arc flow function are
continuous (and the network is connected), through Brouwer theorem.

For monotone decreasing arc flow function, as for invariant probabilistic path choice
functions (Cantarella, 1997), if the arc cost function is monotone strictly increasing
uniqueness is guaranteed; if the Jacobian matrices of both the arc flow function, f(c), and
the arc cost function, c(f), are well-defined, uniqueness is guaranteed by positive definite
Jc(f) and negative semi-definite J¢(c). Uniqueness conditions can be weakened for strictly
positive invariant probabilistic path choice functions only requiring that arc cost
function is monotone increasing (but not necessarily strictly monotone). Anyhow
uniqueness of arc flows also guarantees uniqueness of arc costs as well as path flows
and costs. Weaker (sufficient) conditions for uniqueness have been recently derived (a
comprehensive review of uniqueness conditions is in Cantarella et al., 2010); a full
discussion of this topic is out the scope of this paper, it suffices mentioning that
monotonicity of the arc cost function is not needed to assure uniqueness.

3.2 A simple discrete-time deterministic process model

A deterministic process model based on exponential smoothing is presented below.
This model is quite simple, so as to carry out explicit stability analysis, but also rather
effective since it allow singling out the role of each of the main parameters of the system.
Moreover, its fixed-point states are equivalent to user equilibrium with probabilistic
choice functions (as defined by 3.9), and it may be formulated with respect to arc or path
variables leading to consistent evolutions over time and same stability conditions. Let

xt be the vector of arc forecasted costs at day ¢, which are the values of costs that affect
today user choice behaviour;

ft be the vector of arc flows at day ¢;

c(f5; p) be the vector of arc costs occurred at day t.
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The arc forecasted costs generally depends on yesterday actual and forecasted costs,
through the cost updating recursive equation:

xt= B c(frL; ) + (1-B) XL € ¢(S) with X0 = ¢(f%; p), e S (3.10)

where 3 € ]0,1] is the weight given to yesterday actual costs when forecasting today
costs, assumed time invariant and common to all users. Dispersion among users is
modelled through perceived utility distribution with respect to adopted path choice
functions.

Remembering equation (3.6) : ft'1 = f(x*1; d, 0) € S; we get:
xt=f c(f(xt1; d, 0); p) + (1-B) x+1 with x0 = ¢(f; p), foe S (3.11)
implying (see end of section 2):

xt-xt1 = (c(f(x*%; d, 0); p) - x+1)
xt-xt1 =B y(xt1;d, 0, n) withy(x; d, 6, p) =c(f(x; d, 6); p) -x

Equation (3.11) tries to model how each user make forecasts mixing own experience,
experience shared with other users, as well as any other source of information.
Forecasted costs provided by equation (3.11) are a convex combination of costs
occurred on all the previous days until day t = 0, with weights B, B:(1-B), B:(1-B)?, ...,
respectively. The weight given to any of the previous days becomes rather small after
some days, for instance with  =0.64, it is 0.5% after 6 days, and with 3 =0.42, after 9
days. (According to some results for a moving average filter, the length of user memory
seems rather short generally including few days only.)

The recursive equation (3.11) defines a (discrete-time) deterministic process model,
for demand assignment to a transportation network. The state at day t is defined by the
vectors of arc forecasted costs, xt. On one hand the proposed DP (3.11) is a rather
simple model of complex user behaviours; on the other hand, it allows for theoretical
analysis of fixed-point stability described in next sub-section 3.4. DP (3.1) is suitable for
large scale application (through brute force approach), since the computer resources
needed to run the deterministic process model (3.1) are comparable to those for most
solution algorithms for equilibrium model (3.8).

Some system states of DP (3.11) are worth of in-depth analysis, in particular fixed-
points, where the evolution over time of the ‘system stops’: xt = xt"1 = x*, This condition
combined with equations (3.11) yields:

x* = c(f(x*; d, 0); W) e c(S) (3.12)

A fixed-point state described by above equations (3.12) is equivalent to the user
equilibrium, as defined by equations (3.9) or (3.8); hence, the already discussed
equilibrium existence and uniqueness conditions still apply. Thus, definition, existence
and uniqueness of fixed-point states of DP (3.11) depend on cost function parameters p
(including arc capacities), dispersion parameter 6 (and possibly other parameters of the
choice function), and demand flows d, but are not affected by the values of updating
parameter .

A deterministic process may evolve towards fixed-points as well as other kind of
attractors, such periodic, quasi-periodic, and a-periodic (chaotic) attractors (attractors
may be indentified through Lyapunov exponents, as shown in Cantarella & Velona,
2003), or may not converge at all, as it can be observed by running it with different
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values of parameters (and/or starting states). Thus even if a fixed-point state exists and
is unique the system may not converge towards it. Conditions for fixed-point (local)
stability can be used to check whether the fixed-point is an attractor, without running
the underlying deterministic process model, as discussed in sub-section 3.4.

We conclude by remarking that an equivalent model with respect to path costs is
given below, using the same state variable even though with a different meaning:

Xt = B Bpy' ¢(Z;d; By pry(—xgth 0) ; w) + (1-PB) Xt Vi (3.12)

where x|t is the vector of path forecasted costs for user class i at day t, which are the
values of costs that affect today user choice behaviour.

This equivalence is something that is not so remarkable for probabilistic choice models,
but which breaks down in the limit case of deterministic choice, leading to a range of
new issues that are special to such limit cases — we deal with this issue later, in section 5.

3.3 A simple continuous-time deterministic process model

In order to understand the relation between, and implications of, the discrete- and
continuous-time formulations, it is convenient to examine essentially the same
underlying model for both cases. However, if the aim were to be representative of the
existing body of literature on this topic, then this would be somewhat difficult to
achieve, primarily since existing analyses of continuous-time systems have almost
exclusively examined dynamics with respect to the deterministic / Wardrop user
equilibrium model, where the analyses of discrete-time systems has focused on
dynamics about a probabilistic user equilibrium. An exception is the work of Watling
(1999), who considered both discrete- and continuous-time models for the same
system; this paper therefore provides a useful bridge, even though it is not
representative of the main bodies of work (especially on continuous-time systems).

Following Watling (1999), then, let us begin by considering the simple discrete-time
model given by (3.11), which by defining:

v(x; d, 6, p) =c(f(x; d, 0); p) -x (3.13)
we showed to be expressible in the form:
Xt-xt1=Fy(xt1;d,0,n). (3.14)

This gives the adjustment to the process in a time increment of length 1, and thus it
would be logical to assume that, in a fractional time increment of length At the process
would adjust (from time ¢t to t+At) by an amount B y(xt1; d, 6, u) At + o(At), i.e.:

x(t+At)-x(t) =B y(x5d, 0, u) At + o(At) (teR4).

Taking the limit as At — 0 then yields the standard form of a continuous time process, as
a differential equation:

x(t) =B y(x(t)) (teR+; x(H)eS) . (3.15)

As in the discrete-time case, several kinds of system evolution may emerge from
(3.15). One kind of system behaviour of special interest emerges from the counterpart to
a ‘system stop’ as considered for the discrete-time model, namely those feasible points
at which x(t) = 0. That is to say, the fixed points which are solutions to:

w(x*) =0 (x*eS). (3.16)
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From (3.13) and (3.16), it is trivial to see that the fixed points of the continuous-time
system coincide exactly with those of the discrete-time system, as given by (3.12), and
that these fixed points coincide with the probabilistic user equilibria (3.8)/(3.9). Thus
we have a bridge between discrete-time processes, continuous-time processes and
equilibrium models.

Furthermore, just as noted in the discrete-time case, entirely equivalent
representations exist of the above-defined model for the continuous-time case. Watling
(1999) considered two such alternative possibilities. In the first, the path costs rather
than arc costs were used as state variables, yielding a continuous-time system
equivalent to (3.12) following the same construction logic as above. In the second, under
the assumption that the path choice model (3.2) is given by a regular random utility
model, an equivalent system may be developed in which, for each OD movement, we
choose one ‘reference path’, and then consider the difference in all other path costs
relative to the cost of the reference path. It is worth emphasising a key distinction with
the work on deterministic / Wardrop user equilibrium models (as reviewed in section
5), where there has been a significant recent interest in distinguishing the properties of
arc-based and path-based models; in the case of the present model, no such distinction
occurs, the two representations are entirely equivalent. The advantage to the analyst of
having such alternative representations is that some may be more amenable to deducing
theoretical properties than others; Watling (1999), for example, made considerable use
of the formulation in terms of path cost differences.

3.4 Stability analysis for a simple discrete-time deterministic process model

As noted above provided that exactly one fixed-point exists the system evolves towards
it only if it is stable. Local stability conditions, from discrete-itme non-linear dunamic
system theory, are based on a spectral analysis of the Jacobian matrix of a DP. Let

n be the state dimension (say the number of arcs);

J(xt) be the (n x n) Jacobian matrix of the DP at point (xt);

Aa be one of the n (not necessarily distinct) eigenvalues of matrix ] (omitting
dependence on xt).

Conditions for the (local) stability of a fixed-point (x*) of a DP requires that the spectral
radius p*, that is the maximum modulus | A,* | among all the eigenvalues, of the Jacobian
of the DP (at the fixed-point, J(x*), is less than one:

p*=maxq {| A |} <1 (3.17)

[It is noteworthy that, according to (3.17), null eigenvalues are not relevant to assess
stability conditions. Moreover, the Jacobian matrices based on path variables have the
same non-null eigenvalues of the Jacobian matrices with respect to arc variables, thus
the very same results are obtained if path variables are considered.]

Applying some results of matrix algebra, Jacobian matrix J(x) and its eigenvalues A4
may be expressed highlighting the role of updating parameter 3, which greatly affects
the fixed-point stability:

J(x9 = (1 =) In+ B Je(f(xY) - Ji(xY) (3.18)
ha=(1—P)+Pwa=1+p (a—1) Va=1,..,n (3.19)

where ®q = 0q(Xt) is one of n eigenvalues of matrix Jc(f(xt)) - J¢(x1).
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Equation (3.19) also allows us to compute the determinant of the Jacobian of DP
(3.11) since | J | = 14 A Its absolute value may be out of the range [0,1], thus the system
DP may not be dissipative, that is it may not converge to an attractor (this issue may
deserve further analysis).

The (local) stability conditions (3.17) may be expressed with respect to the
eigenvalues m,* of matrix J(x*) and updating parameter 3 using equation (3.19):

((Re(wa®) - 1) + 1/B)2 + Im(w:*)? < 1/p? VYa=1,..,n (3.20)

The stability region for eigenvalues w.* is the inside of a circle on the Argand plan with
radius (1/B) and center at ((1 — 1/B), 0). The lower the value of parameter B, the greater
the area of stability region is.

The stability region is located between the two points on real axis ((1 —2/B), 0) and
(1, 0). Thus, if there exist at least an eigenvalue m,* that have real part greater than one,
Re(wa*) > 1, the fixed-point is always non-stable whatever the values of updating
parameter 3; in this case multiple fixed-points can be found. Vice versa if all the
eigenvalues w,* have real less than one, Re(m.*) < 1, or maxa {Re(w.*) — 1} < 0, there
always a small enough value of parameter B such that the fixed-point is stable.

Condition (3.20) allows us to clearly distinguish the role of updating parameter £,
which only affects the size of the stability region, and that of all the other parameters,
which only affects the eigenvalues w.*. Hence, the effect of any change of updating
parameter B3 can be analyzed without re-computing the eigenvalues m,*.

Condition (3.20) is to be verified at the fixed-point only. On the other hand, it only
assures local stability: that is there is an attraction domain of the fixed-point state such
that from any starting state in the attraction domain the system converges towards the
fixed-point, otherwise the system may converge to other fixed-points, other kinds of
attractors, or may not converge at all. Generally the attraction domain is only a subset of
the state space. Thus, global stability conditions are still an open issue. (Bie & Lo (2010)
addresses the relevant issues of attraction domain definition and analysis.)

If the arc flow function has a symmetric negative semi-definite Jacobian, J¢(x), as it
occurs for invariant choice functions, the stability condition (3.20) can be further
exploited as described below.

e If the Jacobian, J¢(fY), of the arc cost function is positive semi-definite (for real vectors
at least) then it can be proved that all the eigenvalues of matrix J(xt, ff) have non-
positive real part, Re(w,) < 0.

e If the Jacobian J¢(f(c)) of arc cost function is symmetric, it can be proved that matrix
J(xt) has only real eigenvalues, w.* = Re(w.*), thus the stability conditions (3.20)
becomes:

wa* e J(1-2/p), 1] Va=1,..,n (3.21)

e Thus, if the Jacobian, J¢(ft), of the arc cost function is both symmetric and positive
semi-definite then all the eigenvalues of matrix J(xt ft) are non-positive real
numbers, ®.* = Re(wa) < 0; in this case the stability condition (3.21) becomes:

maxa{| os* [} <—-1+2/B (3.22)
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Equation (3.22) gives an upper bound for the absolute values of the eigenvalues w.*.
Function (-1 + 2/B) always gets values greater than or equal to 1 for B in the range ]0,1],
and goes to infinity as B goes to zero. The value of the function is to be considered an
input data, since it depends on updating parameter 3, which is an input data resulting
from the calibration of the model or the design scenario. On the other hand knowing all
the eigenvalues ®,* equations (3.22) provides an upper bound for parameter B to
assure stability:

0< B<Bmaxz 2/(maxa{|@a* |}+1)

3.5 Stability analysis for a simple continuous-time deterministic process model

In section 3.4, we noted how stability properties of fixed points of the discrete-time
system given by (3.14), based on (3.13), are greatly affected by the value of the
parameter B. Therefore any such result on stability effectively amounts to a network-
specific test as to whether some particular value of § will lead to stable or unstable
system behaviour. In the corresponding continuous-time system, given by (3.15) based
on (3.13), a rather different picture emerges.

In continuous time systems, the local stability of a fixed point may again be
determined by analysis of the eigenvalues of the system Jacobian of (3.15), evaluated at
the fixed point state. From inspection, it is easy to see that if J(x*) is the Jacobian of the
discrete-time system (3.14) at fixed point x*, then the Jacobian of the continuous-time
system (3.15) at point x*is given by J(x*) - L. Thus, if the eigenvalues of J(x*) are
{Ad* : a =1,2,..n}, then those of J(x*) - I are {A;* - 1: a = 1,2,...,n}. For the continuous-
time system, the corresponding necessary and sufficient condition for local stability is
that the real parts of any such eigenvalues are all negative, which we may thus write as:

maxq { Re(As*-1) } <0. (3.23)
However, using (3.23), we note that (cfr 3.19):

A¥-1=(1-B)+P ot -1=P (0 -1) (a=1, .., n) (3.24)
and since 3 > 0, condition (3.23) is equivalent to:

max, { Re(ws*-1) }<0. (3.25)

The significance of (3.25) is that w,* is independent of f; in contrast to the
deterministic time system, the adjustment parameter 3 plays no part in determining
stability of the fixed point. This illustrates that the two ‘stability’ properties of
continuous and discrete time systems are not interchangeable, and they may be
referring to quite different phenomena.

Due to the fact that neither the fixed points nor the stability properties of the
continuous-time system depend on [3, a natural simplification is then to consider system
(3.15) in the special case of B = 1:

x(t) = w(x() (teRy; x(H)eS). (3.26)

We can then deduce an interesting relationship between stability of fixed points of
(3.26) and the stability of fixed points of (3.14), when we have the extra ‘degree of
freedom’ of choice of the value of 3 in the latter system.
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In particular, suppose the fixed point x*is stable with respect to the continuous time
system (3.26). By inspection, if J(x*) is the Jacobian of the discrete-time system (3.14) at
fixed point x*, then the Jacobian of the continuous-time system (3.15) at point x*is given
by B'(J(x*) - I) = (J¢ Jc — I). Then, if the eigenvalues of J(x*) are {\* : a = 1,2,....n}, then
those of B'(J(x*) - I) = (Jc(f(x*)) - Js(x*) — I) are {y* = p"'(Ma* - 1) = 0¥ - 1, a = 1,2,..,n}.
Thus As* = 1 + Bys* (a = 1,2,...,n). Now, the stability of x* with respect to (3.26) implies
that max, {Re(y.*)} < 0, and so may write:

va* = Re(ys™) + i Im(y.™*) (a=1,2,..n).
Hence (fora=1,2,...,n):

Ma*|2 =11+ B ya*?= |(L + B Re(ya*)) +i P Im(ya*)|? = (1+ B Re(ya*))2 + B Im(ya*)? =
=1+2 B Re(ya*) + B* (Re(ya*)? + Im(ya*)?)

which (for B > 0) is less than 1 if and only if:

2 B Re(ya*) + B ((Re(va*)? + Im(v*)?) < 0 &
< 0<p<2[Re(va")] / (Re(ya™)? + Im(ya*)?)

Thus the discrete time system (3.14) is stable for:
0< B < Pmax = ming {2|Re(va*)|/(Re(ya*)? + Im(ya*)?)} .

That is to say, if x* is stable for the continuous-time system (3.26), max, {Re(®w.*)-1} <0,
then it is also stable for the discrete-time system (3.14) for sufficiently small values of
the learning parameter B (as already noted in sub-section 3.4).

The converse is also true; this is readily seen by proving the contrapositive statement,
namely that if x* is unstable for (3.26), then for any value of B it is also unstable for
(3.14). From the proof above, this can be seen by noting that if x* is unstable for (3.26)
then there exists some eigenvalue y,* where Re(y,*) < 0, and for this eigenvalue it must
be that |A.*| > 1; this implies that x* is unstable for (3.26), since it is both a necessary
and sufficient condition that all eigenvalues of the relevant Jacobian are inside the unit
circle.

Therefore, while stability in discrete-time is a somewhat different property to that in
continuous-time, there are useful relations between the two that may be exploited.
Having said this, for the particular simple family of models we are presently considering,
there have yet to be any general conditions (paralleling the discrete-time case) that
establish stability of the continuous-time system (3.26). On the other hand, we may test
for stability of any continuous-time system in any particular numerical setting by using
tools such as the Routh-Hurwitz criterion; see Watling (1999) for such an illustration.

As was noted at the start of section 3.3, our decision to analyse the particular
dynamical model considered here was based on a desire to compare properties of
discrete- and continuous-time systems, and in this sense we have chosen what we
believe to be the most suitable example for illustrative purposes. On the other hand,
virtually all analyses of continuous-time network problems have been performed with
respect to dynamical processes related to the deterministic user equilibrium model, and
in this case a series of general stability results exist. We review these papers in section 5;
some quite distinct issues arise in what is effectively a limit case, as the variance in
drivers’ perceptual differences/errors tends to zero, and for this reason we believe it
more suitable to treat these in a separate way.
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Before leaving this section, we should also note that, just as for the discrete-time case,
the stability analysis above requires only that the relevant conditions be verified at a
fixed point, and as a result they assure only local stability, namely stability with respect
to systems that are initialised within some attraction domain about the fixed point. As
we also discuss in section 5, rather more is known about global stability properties in
the limit case of deterministic choice models, even if for rather idealized cases and/or ad
hoc specifications.
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4. Extended discrete time models and research perspectives

In this section some extended discrete-time deterministic process are briefly discussed
together with some research perspectives. The general specification of a deterministic
process requires the explicit modelling of

e user learning and forecasting: how users forecast the level of service that they will
experience today, from experience and other sources of information;

e user habit: how users make a choice today, possibly repeating yesterday choice to
avoid the effort needed to take a decision, or reconsidering it according to forecasted
level of service.

In a simple extension of DP (3.11), user learning and forecasting behaviour is
modelled through an exponential smoothing filter giving the cost updating recursive
equation already described by the recursive equation (3.10) repeated below:

xt= B c(f; ) + (1-B) xt1 € ¢(S)) with X0 = c(f%; p), e S (4.1a)

In addition, users may also review yesterday choice with a fixed probability, and their
choice behaviour after reviewing can be simulated through a probabilistic path choice
function. Let

a € ]0,1] be the probability of reconsidering yesterday choices; thus each day ¢, (1-a) d[;
users simply repeat yesterday choice, assumed time invariant and common to all
users.

f(x5 ad, 0) = af(xt d, 0) be the vector of arc flows at day t due to the a d users who
have reconsidered yesterday choices, and behave according to forecasted costs xt.

Thus, an exponential smoothing filter gives the flow updating recursive equation:
ftf=oaf(x5d, 0) + (1-a) fr1 € S5f with f0 € S¢ (4.1b)

Comments made above for cost updating parameter 3 about multi-user assignment and
calibration, as well as on numerical interpretation, apply to the flow updating parameter
o too; in this case values in the range [0.4, 0.6] seem likely.

The recursive equations (4.1a) and (4.1b) define a (discrete-time) deterministic
process model (DP), for demand assignment to a transportation network. The state at
day t is defined by the vectors of arc forecasted costs and arc flows, (x4, ft). On one hand
the proposed DP (4.1) is a rather simple model of complex user behaviours; on the other
hand, it allows for theoretical analysis of fixed-point stability described in next sub-
sections. DP (4.1) is suitable for large scale application (through brute force approach),
since the computer resources needed to run DP (4.1) are comparable to those for most
solution algorithms for equilibrium model (3.8).

Some system states of DP (4.1) are worth of in-depth analysis, in particular fixed-
points, the evolution over time of the system stops: (xt, ff) = (xt1, f+1) = (x* £*). This
condition combined with equations (4.1) yields:

x* = c(f 1) e c(S) (4.2a)
f=f(x*d, 0) €S (4.2b)
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A fixed-point state described by above equations (4.2) is equivalent to the user
equilibrium, as defined by equations (3.8); hence, the already discussed equilibrium
existence and uniqueness conditions still apply.

Definition, existence and uniqueness of fixed-point states of DP (4.1) depend on cost
function parameters pu (including arc capacities), dispersion parameter 6 (and possibly
other parameters of the choice function), and demand flows d, but are not affected by
the values of updating parameters o and 3. On the other hand, provided that exactly one
fixed-point exists the system evolves towards it only if it is stable, and stability of a
fixed-point state is greatly affected by the values of updating parameters o and f, as
discussed below.

The analysis carried out in sub-section 3.4 may be quite straightforwardly be applied
to DP (4.1) clearly distinguishing the role of updating parameters o and [3, which only
affects the size of the stability region, and that of all the other parameters, which only
affects the eigenvalues w,*. This approach cannot be followed for more general models.

Conditions for fixed-point (local) stability can be used to check whether the fixed-
point is an attractor, without running the underlying deterministic process model. These
conditions are based on a spectral analysis of the Jacobian matrix of DP (4.1). (For more
details see Cantarella and Cascetta, 1995; Cantarella and Velona, 2003; Cantarella,
2013).

It is worth noting that DP (4.1) is, dissipative, that is it converges anyway to some kind
of attractor, over the whole state space, that is from any starting state, and any
combination of parameters. Since DP (4.1) is dissipative only three types of bifurcations
may occur:

¢ a Pitchfork bifurcation, in this case several fixed-points exist, only some of them being
stable, and the system evolves towards a stable fixed-point that depends on the
starting state, unless the starting state is exactly a non-stable fixed-point;

¢ a Flip bifurcation, and the system evolves towards a periodic attractor, then possibly
to an a-periodic one.

¢ a Neumark bifurcation, and the system evolves towards a quasi-periodic attractor.

Assuming that the arc flow function has a symmetric negative semi-definite Jacobian
matrix, J¢(X), as it occurs for invariant choice functions, the following results hold.

e If the Jacobian matrix, Jc(f), of arc cost function is symmetric, Pitchfork or Flip
bifurcations only may be observed. Hence quasi-periodic attractors may only occur
with arc cost function with asymmetric Jacobian.

e [f the Jacobian matrix, Jc(f), of arc cost function is symmetric positive semi-definite,
Flip bifurcations only may be observed. Hence, multiple fixed-points may not occur.

A relevant research perspective regards multi-user class assignment to model
distribution of updating parameters, as well as of dispersion and possibly other
parameters among users. In this case, the extension of explicit stability analysis is by no
means straightforward. This way e.g. systematic vs. non-systematic users or ATIS-
equipped vs. non-equipped users might be differentiated, this extension is rather
straightforward, but does not allows explicit stability analysis.
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Most other approaches to user learning and forecasting are based on moving average
filters (eg lida et al., 1992), possibly with respect to differences between actual and
forecasted costs in previous days. Other approaches to modelling user inertia to change
and how much users are prone to review their habit are briefly described below; they
are not suitable for the explicit stability analysis carried out in sub-section (3.4)
distinguishing the role of each parameter, unless otherwise stated.

In aggregate approaches based on extra utility models for conditional path choice
model where the path chosen the previous day is given an extra utility, expressing the
so-called transition cost to a different alternative (an example of such an approach is in
Cascetta and Cantarella, 1991).

In aggregate approaches to modelling the effect of reliability of (possibly different)
information sources the flow updating parameter a depends on the aggregate reliability,
thus may change over time. Examples of this kind models, often called bounded-
rationality models, are mostly based on probabilistic (or deterministic) threshold filters
with respect to differences between actual and forecasted costs; in this case the flow
updating parameter a is the results of a switching choice model. Modelling effects of an
ATIS reliability is addressed by Bifulco et al. (2009) through a modelling approach
consistent with this paper; the analysis is further developed in Bifulco et al. (2013)
requiring deterministic process models where today state depends on today state too
apart the yesterday one (the inverse function method described in section 2 has been
applied in this case, as already noted.). Still, embedding this approach in a (complete)
multi-user framework allowing for the explicitly stability analysis is still an open issue.

In disaggregate approaches (examples are reported by Cascetta & Cantarella, 1993;
Chang & Mahamassani, 1988, 2004), a flow updating parameter a is defined for each
path separately depending on the difference between experienced and forecasted arc
costs. The use of probabilistic thresholds leads to path choice switching models. This
approach is rather effective when only two paths are available between each O-D pair,
since there is no need of any path choice function. Indeed, when more than two paths
are available, a conditional path choice function should be applied to model path choice
behaviour of users who decide to reconsider their yesterday choice. This approach
seems better suited for disaggregate assignment through stochastic process models,
which are out of the scope of this paper.

More general models are given in Cantarella & Cascetta (1995), for instance a matrix
is used for the convex combination underlining the exponential filter. But, in more
general models, not based on exponential smoothing filters, fixed-point states may not
be equivalent to the user equilibrium; in this case ad hoc existence and uniqueness
conditions should be developed.

The deterministic process model (4.1) is suitable for large applications, as already
stated. On the other hand, the application of stability conditions as such to a large scale
network seems quite hard, since it requires the computation of the eigenvalues of large
matrices; in this approximation through matrix norms may be applied. This expression
of stability conditions may be included as a constraint in optimization models for
Transportation Supply Design with equilibrium assignment. This approach has been
applied by Cantarella et al. (2012) for signal setting with equilibrium at a large scale.
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5. Continuous-time models based on deterministic choice

Thus far, our analysis has focused on models in which choice decisions, conditional on
the past, are represented through probabilistic choice models based on random utility
theory. It is well known that as the variance in the random terms tends to zero, then so
we approach a case of “deterministic choice”. This is a potentially confusing term since
all of the models we consider in the present paper (including those with probabilistic
choice) are deterministic processes, but the distinction is that in the case of
“deterministic choice” all users make decisions without the presence of
unexplained/random variation. Such dynamical models are thus potentially a way of
exploring stability with respect to “deterministic” (Wardrop) user equilibrium.

In such cases, we may potentially explore systems in either discrete-time or
continuous-time; however, all existing literature on this topic, to the authors’
knowledge, has focused on continuous-time systems, primarily since in such case it is
possible to derive some rather general results for certain classes of adjustment process.
Although corresponding discrete-time systems have not been explored to date, the
comments made in sections 3.3 and 3.5 could be trivially extended to the present case;
thus, we can think of stability in continuous-time as establishing the existence of a
sufficiently slow rate of adjustment for stability in discrete-time, but without providing
insights into the stronger property of whether particular adjustment rates will or will
not be stable. We therefore shall not show the explicit extension of the results in section
3.3 and 3.5 to the limit case of deterministic choice since, although some care is needed
(due to non-uniqueness issues, as discussed below), the essential elements of the
arguments made in that section transfer in a straightforward way.

Thus our focus will be on continuous time DP models based on deterministic choice.
One of the advantages of analysing dynamical systems in continuous rather than
discrete time is that, generally speaking, it is more straightforward to find general
theoretical results than for discrete-time systems. Aside from this it seems appealing to
represent time as continuous, since it surely is in reality. However, this brings with it a
significant difficulty, namely how to represent in a single model the very different kinds
of phenomena that happen on a shorter ‘within-day’ time-scale (e.g. the congestion
interactions at vehicles traverse a network on a particular day) with those on a longer
‘between-day’ time-scale (e.g. drivers reviewing their choice of route on a subsequent
trip in response to trip experiences in the recent past, but not in response to
‘instantaneous’ conditions). While continuous-time models as proposed to date
therefore seem rather more distant from the real-life system than their discrete-time
counterparts, the study of the former kind of system can still be informative; for
example, as we discussed in section 3.5, they provide insights into properties of discrete
time models.

Informally we can understand continuous systems as describing a kind of general
trend, without getting into the detail of what exactly that would mean. Perhaps due to
the difficulty in synchronizing the within- and between-day scales, it seems that virtually
all analyses of continuous-time traffic assignment models to date have adopted an
‘instantaneous’ network loading relationship, and it is therefore one that we shall also
adopt here. That is, at any time instant ¢, a path flow instantaneously propagates to each
of its component arcs at that time t. In turn these are used to generate instantaneous arc
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travel costs, through steady-state arc performance functions, which are then
components of the instantaneous path travel cost at time instant t. We refer to this
below as ‘the instantaneous loading assumption’. (Although effectively the same occurs
in a discrete time process but just over a discrete time t, such a model offers the
possibility of a different interpretation due to the fact that we may think of each ‘epoch’
of the discrete time process as having a duration of its own, allowing us to refer
separately to ‘within-day’ and ‘between-day’ time.)

The instantaneous loading assumption means that simple relationships then exist
between arc flows/costs and path flows/costs. In particular, at any given time instant ¢,
the |Kjj|-dimensional path cost vector wy;(t) for user class i is then related to a
corresponding arc cost vector c(t) through the arc path cost consistency relationship
(3.4), i.e. through wy;(t) = B[,-]T c(t), for i = 1,2,..,m. Similarly at any time instant ¢, the
|Kji|-dimensional path flow vector hy(t) for class i is related to a corresponding arc flow
vector f(t) through (3.5) by f(¢) = X By hyi(t).

If we assume there to be a time-independent congestion function c(.) given by (3.7)
that maps (instantaneous) arc flows f(t) onto (instantaneous) arc costs c(t) = c(f(t)), it
follows that we may then also write down a time-independent functional relationship
which maps the concatenated vector of all user class path flows h(t) = (h1(¢t), h2(¢),...,
hm(t))T onto user class path costs wi(t), wz(t),...:

wyi(t) = w(h(8) = B c(XBhy(t))  i=1,2,..,m.

Below, it is sometimes more convenient to work with congestion relationships on the
arc level and sometimes on the path level, but these are entirely equivalent through the
relationship above. Finally, we remark that as stated in §3, for each user class i we
assume there to be a time-independent, non-empty and finite set Kj;; of elementary paths
available, and that there is a time-independent demand flow of dj;; > 0.

As noted in §2, for continuous-time systems the specification is typically in terms of a
differential equation, with a dot over a variable denoting a time-derivative. It seems that
the first person to explicitly write down such a system in a traffic network assignment
context was Smith (1984a), which is most readily specified in the path domain. Denoting
h(t) = (h1(¢), hz(t),...)T, Smith considered the system:

h =% Sete ki e ) Byge(£) max(0, wy(h(6)) - win(h(t))) Au

where for each user class i and for each k, [e Kj;j (k # [) the path-swap indicator vector Ay
is the vector of dimension 2 |Kfij| with -1 in the kth element, +1 in the It element, and
zeroes elsewherel. That is to say, this model assumes drivers on a higher cost path than
an alternative will switch to the alternative at a rate proportional to the product of the
flow on the higher cost path and the difference in cost. Under the assumption of weakly
monotone path cost functions, the Wardrop equilibria are in general non-unique, but
form a convex set which coincides with the point equilibria of this system. Under this
weak monotonicity condition, Smith established global convergence of his system to a
point equilibrium in this convex set.

Friesz et al. (1994) and Zhang and Nagurney (1996) both considered the stability of
the elastic demand Wardrop equilibrium state. Friesz et al. assumed the OD demand

1 This assumes that the paths are labelled 1 up to the total number of paths for all user classes, so we must
start with some overall path label set K of which the { K3, K>, ..., K») are then subsets.
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vector d(u) to be a function of the m-vector of OD travel costs u. Using the vector pair
(u(t), h(t)) as state variable, they considered the system:

u; = gy { max(0, upy(¢) + o (dy(u(t)) - Ziekn hi(t))) - up(6)} (i=12,.,m)
hy =Nk { max (0, hx(t) - B (wpk(h(2)) - uzi(¢))) - h(t)} (keKjj;i=12,..,m)

for given values of the parameters k;; > 0 (i = 1,2,...,m), Nk > 0 (keKyy; i=1,2,...m), o > 0
and f > 0. The justification for this model was as a representation of a traveller
information system, which was able to inform drivers of the equilibrium path costs for
the previous day. Friesz et al established that there exists a sufficiently large value of a
and small value of B to ensure asymptotic stability of the set of path-based, elastic
Wardrop equilibrium solutions with respect to this system, under the assumption that
both the arc cost functions and negative demand functions are continuous and strictly
monotone.

The approach of Zhang and Nagurney (1996) differed from Friesz et al, firstly, in the
respect that they assumed the demand functions to be invertible (in the terminology of
Friesz et al.); i.e. that there exist inverse demand functions (£1(d), &2(d), ..., &m(d)) such
that € jy(d(u)) = ugy (i = 1,2,...,m). But since we always have that the OD demands are the
sum of path flows:

d[i] = ZkEK[i] hk (l = 1,2,...,m)

then we can re-write the inverse demand functions as dependent on h, rather than d; let
us suppose that the inverse demand functions written in this way are (&1(h), &2(h), ...,
Em(h)). We may then consider the following continuous time system in state variable
h(¢) only:

hy, = € (h(8) - wi(h(f)) if hi(£)>0 (keKp;i=1,2,..,m)
=max(0, §i7(h(?)) - wi(h(¢))) if he(t) =0

Zhang and Nagurney establish global asymptotic stability of the Wardrop elastic
equilibrium with respect to this system, under the assumptions that the arc cost
functions and negative inverse demand functions are continuous and strictly monotone.
As an alternative, when monotonicity assumptions cannot be guaranteed, they show
how local asymptotic stability may be tested by classical techniques from the dynamical
systems literature, explicitly determining the eigenvalues (characteristic values) of a
Jacobian matrix of dimension equal to the number of paths with non-zero equilibrium
flow, with asymptotic stability guaranteed if these eigenvalues all have negative real
parts.

More recently Yang & Zhang (2009) - building on the theory set out in Zhang et al
(2001) - went on to show how the systems proposed by Smith (1984), Friesz et al.
(1994) and Zhang and Nagurney (1996) [as reviewed above], along with several others
models proposed for transportation problems, were examples of a general family
characterised by being a Rational Behaviour Adjustment Process (RBAP):

‘A day-to-day route choice adjustment process is called a RBAP with fixed travel
demand if the aggregated travel cost of the entire network decreases based on the
previous day’s path travel costs when path flows change from day to day.

They showed furthermore that if in any RBAP system a path flow becomes stationary
over days, then it must be a user equilibrium path flow.
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Most recently, there has been an interest in arc-based continuous-time systems, in
contrast to the path-based methods described so far. This was motivated by the
observations of He et al (2010), who noted two deficiencies with path-based methods in
the context of continuous time systems that approach user equilibrium. These were
namely that different path-flow equilibria would arise from different initial path-flows,
and that the path-based methods neglect a kind of interdependence between paths.
[These considerations only apply to continuous time systems based on deterministic
choice behaviour.] In response they proposed the following system with the arc flow
vector f(t) as state variable:

f = 3(argmin{y € S; : Ac(DTy + (1 = V)D(f,y)} — f)

where 6 > 0 and 0 <A < 1 are given parameters, Sy is the feasible arc flow set (as defined
in section 3), and D(., .) is a distance metric. Assuming the arc cost functions to be
separable between arcs, by which we may write c(f) = (c1(f1), c2(f2),.-» ca(fn)), He et al
propose the use of the metric:

DY) = X [y (cw) = ci(x) dw .

Under the assumption of continuously differentiable and monotonically increasing arc
cost functions, He et al showed that fis a fixed point of the system above if and only if f is
a user equilibrium flow pattern.

He et al’s results a have since been extended in two ways. Guo & Liu (2011) showed
that the approach may be adapted to analyse boundedly rational behaviour, establishing
that f was a fixed point of the resulting system if and only if f was a boundedly rational
user equilibrium arc flow pattern. In parallel work, and returning to the user
equilibrium framework, Han & Du (2012) recently extended He et al’s result by
considering a family of metrics satisfying the conditions:

e D(.,.)is anonnegative function;
e Dxy)=0cx=y;
e D(x,y) is differentiable and strictly convex in y for each x.

For such a family, and under the same assumptions on the arc cost functions as He et al
made, they showed that f is a fixed point of He et al’s dynamical system (for any D in the
family above) if and only if f is a user equilibrium. Moreover they establish that such a
fixed point is globally asymptotically stable over Sy for this family of dynamical systems.
Finally, they extended this result to asymmetric, non-separable arc cost functions,
though for a much more restricted family of metrics. Under the assumption that c(f) is
continuous and strictly monotone (in the vector sense), and for the family of distance
metrics satisfying the gradient condition Dx(X, y) = - Dy(X, y), they again establish that
any fixed point of He et al’s system is globally asymptotically stable and the unique user
equilibrium for that problem. An example of a distance metric is given satisfying the
required condition, namely:

D(x,y)=(x-y)'A(x-y)
for some constant, positive definite matrix A.
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6. Conclusions

While the existence of travellers’ adaptive travel choice behaviour has been recognised
for many decades, and while it implicitly underpins the notion of network equilibrium,
the last twenty years has seen a growing body of work in which dynamical models are
recognised in their own right, not only as a means of justifying long-run equilibrium
analysis. In the present paper we have sought to highlight, and present a unified
treatment of, the theoretical foundation of such models, focusing specifically on those
models that may be represented as a deterministic dynamical system. A particular
contribution has been to bring together discrete and continuous time systems in one
paper; this is more significant than might first be imagined, since the two bodies of work
seem to have grown almost independently, apparently from somewhat different
ideologies.

As said in the introduction day-to-day dynamics concerns the evolution of a
transportation system that occurs in similar periods over successive days, thus it is
ontologically discrete, and naturally described by discrete-time dynamic process. These
models try to explicitly mimic real evolution over time, and could be easily calibrated
against real data. In addition, they can easily be compared with stochastic process
models, usually formulated over discrete time. Moreover, for numerical solution or
computer simulation discrete-time is more convenient, and so even if the model is
specified originally in continuous-time, it will typically be discretised for computational
purposes, as stressed below.

Adopting a continuous-time representation of the system, on the other hand, seems
more appealing from the point of view that in the real world, time is typically considered
to be continuous; surely, then, the discrete time system is only an approximation? This
can be a somewhat misleading line of thought, however, due to the difficulty in dealing
with the two different time-scales over which within-day traffic interactions occur, and
between-day updating of travel choices occurs. A continuous-time model which could
deal with both would indeed be attractive, but rather complex due to the lagged effect of
daily experiences on subsequent decisions. Virtually all models considered in the
literature are not so complex, and do not separate these scales, meaning that it is more
difficult to understand which real-world phenomena these models are aiming to
capture. It seems that a more plausible explanation for the continuous-time approaches
we have reviewed here is that they are intended as smooth approximations to an
underlying discrete day-to-day adjustment process. These approximations themselves
may not have any direct real-world interpretation; rather their value is in the light they
shed on the underlying discrete-time world. In particular, as discussed in section 3.5, it
is possible to use stability analysis of a continuous-time model to infer stability
properties of a related discrete-time model, in a consistent way with results obtained by
directly analyzing the discrete-time model. On the other hand continuous-time models
need discretization to be solved, thus this kind of models are less relevant from the
solution point-of-view.

As far as choice modelling is concerning, probabilistic choice models (PCM’s), derived
from random utility theory, when compared with deterministic choice model (WCM),
derived from Wardrop I principle, provide a more realistic description of user choice
behaviour, since additional parameters model several source of uncertainty, regarding
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both the users, such as perception errors, dispersion of a user behaviour over days,
dispersion among users, ..., and the modeller, such as aggregation errors (due to area
zoning), dispersion of supply characteristics (for instance due to weather conditions),
missing attributes, attribute measurement errors, ..., thus WCM may be considered a
limit case when all sources of uncertainty may be neglected.

Discrete- or continuous-time dynamic assignment models based on PCM'’s, with
respect to those based on WCM, show the following features, besides those reviewed in
the subsection 3.1 and in the appendix with respect to user equilibrium assignment:

e they naturally include the equilibrium pattern (given by SUE modelled by a fixed-
point model) as a fixed-point state, also allowing for weaker uniqueness conditions;

e they provide consistent and equivalent results with respect to path or arc variables
(this distinction is only meaningful for dynamic models based on WCM);

e they can easily be compared with stochastic process models (see below).

In a companion paper, we have provided a similar treatment of stochastic process
models, which emerge from a quite different theoretical backdrop (Watling & Cantarella,
2013a). Together, these papers extend and update the treatment of these two kinds of
modelling approach as described in the unifying framework of Cantarella & Cascetta
(1995). Our objective has been to highlight the theoretical pedigree of this modelling
approach and the tools available for its analysis; we have not had the space to also
consider the many computational methods proposed for implementing such models, but
a study of such approaches would be a natural next step for the interested reader.

In the discrete-time models considered in sections 3 and 4, we made the compromise
of assuming that steady-state link performance functions could represent the within-day
scale as a first approximation, with the possibility that these can be replaced by more
sophisticated dynamic network loading methods as required (see, as some examples:
Cascetta & Cantarella, 1991; Hu & Mahmassani, 1997; Balijepalli & Watling, 2005; Liu et
al, 2006; Friesz et al, 2011). Adopting a continuous day-to-day scale, on the other hand,
makes it rather more difficult to distinguish the processes occurring over the two time-
scales. Zhang et al (‘Assumption 5’, 2001) notably propose such a distinction with two
separate continuous time-scales, yet these do not appear ‘synchronized’ to a common
overall time-scale (it is as if two separate clocks are running) and so the model is rather
abstract. Smith and Wisten (1995) and Friesz et al (1996) have made some advances in
this direction.

Our review suggests that the field is now sufficiently mature that the range of
alternative methods, theoretical results and tools are now ready to be put to good
practical use in analysing real-life systems. Certainly, we are not suggesting that the
models will not evolve, but rather it seems now that it is time for the models to be used
more widely in empirical studies, so that we might better understand their strengths
and the areas in which they need to be improved. We would suggest that a particularly
good, open area for publication would be studies which tried to match the theoretical
tools with actual real-life phenomena. This may include diverse aspects such as
clarifying what we might mean by a ‘day’, considering how we might deal with unusual
events or seasonal effects, considering the spatial and temporal transferability of the
behavioural specifications, or considering more deeply how travellers actually ‘learn’
from personal experience, experience of others and any information sources.
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Our approach in the present paper has not been to present day-to-day dynamics as a
replacement for equilibrium analysis, but rather as an additional and extended option:
equilibrium sits within the framework of day-to-day dynamic analysis. For relatively
stable systems that quickly re-stabilise following a systematic change or perturbation,
and for policies and measures which are readily captured by their assumptions,
equilibrium analyses remain a sensible choice. However, there seem to be many cases in
which it seems to be more difficult to justify the premises of equilibrium analysis, such
as in the cases of incidents, information systems, responsive control and networks
subject to high levels of variability. Although these models are only just starting to be
considered in a more practical context, early experience suggests that even in cases that
might seem more amenable to equilibrium analysis (such as a bridge closure), day-to-
day models are able to capture ‘irreversible’ effects that would never arise from a
traditional Wardrop or so-called stochastic user equilibrium analysis (He & Liu, 2012).
While it seems premature to suggest that we have reached the ‘end of equilibrium’ (a
phrase coined by Goodwin, 1998), at least we may now ask whether the decision
processes that we model stabilise sufficiently quickly that equilibrium is a reasonable
approximation. To be clear, we could always have asked this question; the difference is
that now we have an alternative approach to consider.
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A. Appendix

Traditionally user equilibrium assignment has been addressed assuming no
uncertainty due to modeller and/or user errors, thus leading to (deterministic) User
Equilibrium (UE) where route choice is based on the [ Wardrop principle. It is modelled
through nonlinear optimization and variational inequalities, for which very efficient
solution algorithms are available, at least for cost functions with symmetric Jacobian. 25
years afterwards the user equilibrium with probabilistic path choice models, usually
named Stochastic User equilibrium (SUE), was introduced, since

# SUE includes a more realistic description of user route choice behaviour, after all it
has at least one more parameter, and UE can be considered as a limit case of SUE.
Additional parameters model several source of uncertainty, regarding both the users
and the modeller, which can hardly be neglected, such as:

- perception errors, dispersion of a user behaviour over days, dispersion among
users, ...
- aggregation errors, missing attributes, attribute measurement errors, ...

Some useful mathematical features of fixed-point models for SUE with respect to any
kind of models available for UE are given below.

o Uniqueness of flows per user class, and of route flows.

o Flows depend on cost through a continuous, c. differentiable function with
symmetric Jacobian, under very mild assumptions met by all models used in current
practice.

o These models for SUE allow for weak uniqueness and convergence conditions,
including non necessarily increasing cost functions, which cannot be extended to UE,
however modelled.

o These models can be solved through simple and feasible algorithms proved

converging under very mild assumptions even for cost functions with asymmetric
Jacobian.
The SUE arc flow pattern is less sensible to input data such as demand flow (less
than proportional) with respect to UE pattern (more than proportional), thus there is
no need of a high convergence threshold, 10-3 being enough in most cases, to be
compared with 106, or even less, often required for UE solution.

Moreover,

# Fixed-point models for SUE, as well as all the related analysis, can easily be extended
to deal with SUE with variable demand including any kind of demand models, whilst
models for DUE require that the inverse demand function, not available in the
general case, and anyway hard to define and compute, apart from other limiting
assumptions. Thus SUE approached through fixed-point models is the only option for
equilibrium assignment with variable demand.



