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MODELLING ROAD TRAFFIC ASSIGNMENT AS  
A DAY-TO-DAY DYNAMIC, DETEMINISTIC PROCESS: 

A UNIFIED APPROACH TO DISCRETE AND 
CONTINUOUS TIME MODELS 

G.E. Cantarella and D.P. Watling 

 

Abstract Ȃ We consider the modelling of road transport systems as a day-to-day 

dynamic, deterministic process. The main contribution is to present a unified treatment 

of discrete-time and continuous-time approaches, these two classes of approach having 

been developed in two parallel streams of research which have had little connection 

made between them. In doing so, we aim to clarify the usefulness of these alternative 

approaches. We pay particular attention to: the specification of such models; the 

conditions which characterise the various forms of emergent behaviour; and the 

relationship between the model assumptions and real-world phenomena. The proposed 

framework is heavily focused, in the first instance, on a probabilistic approach to user 

choice modelling, though we also review and analyse the limiting case of deterministic 

choice model.  
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1. Introduction 

The focussed study of day-to-day dynamics has only recently begun to gain 

momentum, even though there is a long history of papers that have at least considered 

in passing the issue of dynamic adaptation in transportation networks. In his seminal 

paper, Wardrop (1952) alluded to the role of such dynamics when providing a 

justification for the introduction of the equilibrium concept, by stating: 

 

ǮIt may be assumed that traffic will tend to settle down into an equilibrium situationǤǯ 
 

Indeed, in the monograph that motivated the whole research field of traffic network equilibrium analysisǡ Beckmann et al ȋͳͻͷȌ reported a study of Ǯstabilityǯ noting that 

 

ǮIn our model we shall assume simply that those road users who do not just continue 

in their previous choices will choose their routes and the number of trips by road on 

the basis of the traffic conditions that prevailed in the preceding periods.ǯ  
 

They went on to illustrate with numerical examples some potential characteristic 

patterns of inter-period adjustment. Much later Smith (1979), in his landmark paper for 

equilibrium analysis, posited several mechanisms for dynamic adjustment such as: 

 

ǮConsider a single driver who has travelled at least once today. He may use the same 

routes tomorrow. However if he does change a route then he must change to a route 

which today was cheaper than the one he actually used today.ǯ  
 

before considering a weaker version of this rule in order to formally establish conditions 

for a stable equilibrium. 

Horowitz (1984) was the first to explicitly describe day-to-day dynamics, proposing 

models for a two-link transportation network derived from discrete-time non-linear 

dynamical system theory. These models are now better known as deterministic process 

models. The proposed models were also used to analyse the stability of stochastic 

equilibrium.  

But perhaps more than anyone, it was Cascetta (1987, 1989) who truly was the 

catalyst for work in this field to begin, proposing models derived from stochastic process 

theory. In previous work it had generally been the case that the focus was on Ǯequilibriumǯ as the modelǡ and the dynamic process was defined primarily to justify the 

plausibility of equilibrium as a predictor.  The significance of Cascettaǯs work was that he 
effectively reversed these roles; for the first time, it was the dynamic process that was the primary entity of interestǡ it was Ǯthe modelǯǡ and any interest in notions of 
equilibrium was justified only to gain an insight into features of the dynamic process.  

Since this early work, the field has grownalbeit rather slowlyto potentially 

encompass a rather wide range of approaches, including deterministic and stochastic 

processes, discrete- and continuous-time models, and deterministic and probabilistic 

choice models.   
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To better understand the nature of time in day-to-day dynamics, or what might be 

called more correctly (and more generally) epoch-to-epoch dynamics, the following 

quote is useful to have in mind: 

 
‘... epochs can have either a “chronological” interpretation as successive reference 
periods of similar characteristics (e.g. the a.m. peak period of successive working days) 
or they can be defined as “fictitious” moments in which users acquire awareness of 
path attributes and make their choices’.  (Cascetta, 1989) 
 ǮTimeǯ in the sense described above is thus ontologically discreteǡ but still we may 

choose to represent it as continuous as an approximation. This can often be convenient 

for obtaining analytical/theoretical results, which may be easier to establish in the 

continuous-time case. On the other hand, for numerical solution or computer simulation 

discrete-time is more convenient, and so even if the model is specified originally in 

continuous-time, it will typically be discretised for computational purposes at least. 

Although it may not seem such a great distinction, it turns out that the properties of the 

resulting non-linear systems can be rather different in the two cases, some qualitative 

phenomena evident in one and not in another. 

In the present paper we consider the modelling of road transport systems as a 

deterministic process (stochastic process models are widely discussed in Watling & 

Cantarella, 2013a, 2013b). The main contribution is to present a unified treatment of 

discrete-time and continuous-time approaches, these two classes of approach having 

been developed in two parallel streams of research which have had little connection 

made between them. In doing so, we aim to clarify the usefulness of these alternative 

approaches. We pay particular attention to: the specification of such models; the 

conditions which characterise the various forms of emergent behaviour; and the 

relationship between the model assumptions and real-world phenomena. The proposed 

framework is heavily focused on a probabilistic approach to user choice modelling, 

though we also discuss the limiting case of deterministic choice.  

The paper is structured as follows. In section 2 we describe the fundamental essence 

of a day-to-day dynamic model, and go on to describe the various alternative generic 

forms of such a process. Section 3 first introduces a brief summary of basic definitions, 

notations and equations commonly used in literature, together with fixed-point models 

for equilibrium assignment; then it describes two simple dynamic process models based 

on exponential smoothing, which however simple are useful to develop considerations 

about fixed-point stability. Section 4 reviews more general (discrete-time) deterministic 

process models, together with tools, theorems and methods that may be used to analyse 

them, and connections to existing equilibrium approach. Section 5 reviews and analyses 

some continuous time deterministic process models based on Wardropian user path 

choice behaviour. Section 6 analyses the strengths or weaknesses of these approaches, 

looking to potential applications that are particularly suited to dynamic process models. 

In doing so, we identify open issues and research questions for future investigation.  
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2. General deterministic process models  

With the comments above in mind, then, let us begin to define the components of our 

specification. Two sets will play an important part in the specification, namely the time-

space and the state-space. The time-space is denoted by ࣮ and defines the set of time-

instants over which we wish to consider the process. For a continuous-time process we 

thus would have ࣮ ك Թ, and typically taking time 0 as a start-point would have ࣮ = [0, ) 

(which we shall denote Թ+ for brevity).  For a discrete-time process we typically define 

the discrete time points over a constant mesh, and so it is natural to index time by the 

non-negative integers ࣮ = {tԺ Ƭ t  Ͳሽǡ which we shall denote by the natural number symbol Գ for brevity. 

The process itself will be described through the state vector x(t) at time t࣮, and the 

state-space ࣭ is the constant, time-independent Ǯuniverseǯ to which any such state must 
belong, i.e. x(t)࣭ for any t࣮.  The state vector itself is defined variously according to 

particular day-to-day models; it might be the flows on the arcs (or links) or on the paths 

(or routes) of a network, but may alternatively be the travel times, or may be a 

compound vector containing several different kinds of ǮentitiesǯǤ The details are 
important, and as we introduce each model later it will be a key first issue to specify 

what the state-vector actually represents. A common element is that x(t) is a sufficient 

description in two respects: 

A1 if we know x(t) then we know (or can infer) everything we might want to know from 

the model for the purposes of design or evaluation; and 

A2 x(t)  contains sufficient information of the history of the process up to time t that we 

are able subsequently to write down a mathematical law/model to forecast all future 

modelled states.  

So assumption A1 essentially says that, as the process evolves, we ensure that we record 

in the state vector all of the relevant variables that we may need at the end of the 

modelling process. Assumption A2 is a key theoretical one, and means that we can 

appeal to a whole range of theoretical results to establish properties of the processes 

concerned. Technically, this is known as the Markov property; often it is described as a Ǯmemorylessǯ propertyǡ but actually this term is potentially confusing in the present 
context, since a key element of many day-to-day dynamic models is the way in which the Ǯmemoryǯ or Ǯlearning processǯ of the travellers is represented, and (as we shall see) the 

Markov property certainly does not require that the travellers are memoryless in the 

sense of only reacting to their most recent temporal experiences. Rather, the Markov 

property is better understood as a requirement on the way we construct the process and 

define the state variable; namely, we aim to define these in such a way that the relevant Ǯmemoriesǯ of travellers up to time t are encoded in x(t), we do not need to know 

additionally about x(s) for s࣮ where s < t. In other words, systems with long finite 

memory may still be formulated as Markovian systems, with a duly specification of the 

system state x. However, this construction process requires some craft and may be non-

trivial, and we cannot guarantee to be able to achieve it for all learning models. In 

particular, it should be noted that we cannot simply define a component of x(t) to be the 

complete history of the process since time t = 0, since then our state-variable will be 

ever-expanding in time, and we violate the requirement to have a constant, time-

independent state-space ࣭.   
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According to the non-linear dynamic system theory, in the case of a continuous time, ࣮ = Թ+, it is natural to define the deterministic process through differential equations in 

which the state is described as a continuous-only variable. Thus, a time-homogeneous, 

Markovian, continuous time deterministic system with continuous state-space is 

expressed as (with a dot denoting derivative with respect to time): 

 ሻ = (x(t))  (tԹ+; x(t)࣭) (2.1)ݐሶሺܠ 

for some time-independent function  : ࣭  Թ+ ࣭, called transition function. 

Observing the system each t unit of time, we have the case of a discrete time the 

state-space ࣭ may be continuous, discrete or mixed. Thus we may write: 

 x(t) = (x(t t), t) (tԹ+; tԹ+; x(t) ࣭) 

for some time-independent function  : ࣭  ࣮ ࣭, still called transition function.  In this 

case, it is worthwhile to consider an integer time index k =  t / t  Գ, thus, we may 

write:  

 x(k) = (x(k  1)) (kԳ; x(k)࣭)  

where the meaning of x(k) =  x(t = kt) and (x) have slightly changed with respect to 

the above equation. Anyhow, in the following we will use notation t instead of k and xt 

for x(t) as commonly used,  reserving x(t) for continuous time systems only. Thus a  

time-homogeneous, Markovian, discrete-time deterministic process may be 

specified as: 

 xt = (xt1) (tԳ; xt࣭) (2.2) 

where today state, xt, depends on yesterday state, xt1.. As already noted, any time-

discrete system with long finite memory may still be formulated as a Markovian system, 

with a duly specification of the system state x, to include (finite) memory of the past 

states. 

In some case it may occurs that today state also depends on itself. This condition may 

occur for instance when the system state is the result of aggregation and/or averaging 

over sub-periods of the day/epoch t, or at idealized systems which cannot exist in the 

real-world but act as Ǯbenchmarksǯǡ such as idealized traveller information systems 
where the ITS and/or travellers can see perfectly into the future. Model (2.2) becomes: 

 xt = (xt-1, xt) (tԳ; xt࣭) (2.3) 

Quite often the following approach may be followed to express model (2.3) as (2.2). 

The implicit function method.  Let us express equation (2.3) as y = (x, y), assuming 

f(x, y) = y  (x, y) it yields f(x, y) = 0. Thus, if the hypotheses of the implicit function 

theorem hold [briefly: if f(x, y) is continuously differentiable and the Jacobian matrix  

y f(x, y) = I  y (x, y) is invertible, then there exists a unique continuously 

differentiable function y = g(x), from an open set X to an open set Y, such that for any 

given x  X, y = g(x)  Y is a solution in y to f(x, y) = 0], then the following equation, 

formally consistent with (2.2), can be obtained for a properly defined function g(): 

 xt = g(xt-1)  (tԳ; xt࣭) 

where x g(x) = (y f(x, y)|y=g(x))-1  (x f(x, y)|y=g(x)).  This expression of Jacobian is 

remarkably useful when analyzing the evolution over time close to a fixed-point state  

x* = xt = xt-1, that is x*= (x*, x*), since it does not require to know function g(). 
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If the transition function in equation (2.3) is separable with respect the two 

arguments another approach is also available as described below. This approach, 

applied in Bifulco et. (2013), can be proved a particular instance of the previous one. Anyhow it is outlined below for comparisonǯs purposeǤ 
The inverse function method.  If the transition function (, ) in equation (2.3) is 

separable with respect the two arguments: (xt-1, xt) = 1(xt-1) + 2(xt), equation (2.3) 

may be rewritten as: 

 xt  2(xt) = 1(xt-1)  (2.4) 

Let us express equation (2.4) as y  2(y) = 1(x), assuming f(y) = y  2(y) it yields  

f(y) = 1(x). Thus, if the hypotheses of the global inverse function theorem hold [briefly: 

if f(y) is continuously differentiable and the Jacobian matrix y f(y) = I  y 2(y) is 

invertible in an open set Y, then there exists a unique continuously differentiable inverse 

function h(z) = f-1(z) for z  f(Y), where f(Y) denotes the image of the set Y], then the 

following equation, formally consistent with (2.2), can be obtained for a properly 

defined function h(): 

 xt = h(1(xt-1)) 

where, since the Jacobian matrix of function h(z) is z h(z) = (I  y 2(y)|y=h(z))-1, the  

Jacobian matrix of function h(1(x)) is x h(1(x)) = ( I  y 2(y)|y=1(x))-1  (x 1(x)). 

[The same result may be obtained by applying the implicit function method expressing 

equation (2.4) as:  (y  2(y)) + 1(x) = 0.] This expression of Jacobian is remarkably 

useful when analyzing the evolution over time close to a fixed-point state x* = xt = xt-1, 

that is x*  2(x*) = 1(x*), since it does not require to know the inverse function h().  

 

Relationship between continuous- and discrete-time deterministic process models 

can be exploited as follows. Without any loss of generality, let function  in equation 

(2.1) be specified as (x) =  ((x)  x) for a duly defined function (x) and a strictly 

positive scale parameter  > 0, then any continuous-time deterministic process (2.1) 

may also be specified as: 

 ሻ =  ((x(t))  x(t))   > 0  (t Թ+; xt࣭)ݐሶሺܠ 

In small interval t the above equation can be expressed as : 

 x(t + t) Ȃ x(t) = t  ((x(t))  x(t)) + o(t) (t Թ+; xt࣭) 

Thus the continuous time deterministic process may be approximated as: 

 x(t + t)   t  ((x(t))  x(t)) + x(t)  (t Թ+; xt࣭) 

The above finite difference equation may be considered as a discrete-time deterministic 

process based on exponential smoothing filter with  = t  > 0, (xt) =  ((xt)  xt) + xt 

 xt  =  (xt-1) + (1  ) xt-1   (tԳ; xt࣭) 

or 

 xtȂ xt-1 =  ((xt-1)   xt-1)  (tԳ; xt࣭) 
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3. Simple deterministic process models for traffic assignment 

In this section a discrete- and a continuous-time simple deterministic process models 

based on exponential smoothing are presented. These models are quite simple, so as to 

carry out explicit stability analysis, but also rather effective since they allow singling out 

the role of each of the main parameters of the system. Moreover, they are consistent 

with user equilibrium with probabilistic choice functions, and may be formulated with 

respect to arc or path variables leading to consistent evolutions over time and same 

stability conditions.  Some basic definitions and notations are first introduced. 

3.1 Basic definitions, notations and equations 

In this section, main definitions, notations and equations for travel demand assignment 

to transportation networks are reviewed. Demand flows are assumed constant and one 

transportation mode is considered, hence path choice is the only user choice behaviour 

affected by network performances, or more properly by congestion.  

User travelling between the same origin-destination pair with common behavioural 

features are grouped into a user class i, with a set of (elementary) available paths 

(assumed non-empty and finite) Ki. Let 

di  0 be the demand flow for user class i, 

p[i]  0 be the vector of path choice probabilities for user class i, with 1T
 p[i] = 1; 

h[i] be the vector of path flows for user class i; 

v[i] be the vector of path systematic utilities for user class i; 

w[i] be the vector of path costs for user class i. 

Demand conservation for user class i can be expressed as: 

 h[i] = di p[i] i (3.1) 

It assures that flows of all paths connecting the user class i sum up to demand flow di. 

Path choice behaviour can be modelled through a random utility model assuming that 

each user of class i associates to each path k in set Ki a value of perceived utility Uk, 

modelled by a random variable with mean vk, and chooses the maximum perceived 

utility path. When the perceived utility co-variance matrix is non singular, probabilistic 

choice models are obtained, leading to a probabilistic path choice function for each user 

class i: 

 p[i] = p[i](v[i]; )  i (3.2) 

where   0 is the dispersion parameter related to the perceived utility standard 

deviation; this parameter models several source of uncertainty regarding both the 

users and the modeller. It also plays the role of utility scale parameter. In the 

following it is assumed common to all users. In multi-user assignment it (and possibly 

the choice function) may vary with the user class i. The choice function may well include others parametersǡ not explicitly introduced for simplicityǯs sake 

The choice function is continuous and continuously differentiable for all usually adopted 

probabilistic choice models. If parameters of perceived utility distribution do not 

depend on path systematic utility values the resulting choice model is called invariant, 

and the path choice function is monotone increasing with respect to systematic utility 
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with symmetric (semi-definite positive) Jacobian (Cantarella, 1997); in this case path 

choice probabilities depend on differences between systematic utility values only. 

The systematic utility values depend on the corresponding path costs through the 

path utility function, generally through an affine transformation. In the following, for 

notation simplicity the scale parameter (which it assumed included in the dispersion 

parameter ), and the constant are not explicitly shown leading to: 

 v[i] = w[i]  i (3.3) 

Transportation supply (in within-day steady-state regime) is usually modelled 

through a network with a transportation cost ca and a flow fa associated to each arc a. 

(Node costs can be considered by duly modifying the graph). Let 

c be the vector of arc costs, with entries ca;  

B[i] be the arc-path incidence matrix for user class i, with entries bak = 1 if arc a belongs 

to path k, bak = 0 otherwise; 

f be the vector of arc flows, with entries fa. 

The arc path cost consistency is expressed by (omitting path specific cost for simplicity): 

 w[i] = B[i]
T c     i (3.4) 

Moreover, the arc path flows consistency is expressed by (omitting base flows for 

simplicity): 

 f = i  B[i]  h[i]   (3.5) 

Let  n be the number of arcs, arc flow vectors belong to the feasible arc flow set: 

 Sf = {f  = i di B[i] p[i] : p[i]  0, 1T p[i]  = 1 i}  Rn ;+ 

which is non-empty (if the network is connected), compact (since closed and bounded), 

convex. By combining equations (3.1-5) the arc flow (vector) function can be defined: 

  f(c; d, ) = i di B[i] p[i](B[i]
T
 c; )  Sf (3.6) 

where d   is the vector of demand flows di. It is worth noting that the arc flow function 

is homogenous of degree 1 with respect to demand flows: 

 f(c; d, ) = f(c; d, )    

The arc flow function is continuous and continuously differentiable for usually adopted 

probabilistic choice functions. For invariant probabilistic choice functions it is also 

monotone decreasing with respect to path cost (as it also occurs for the Wardrop choice 

function), and has a symmetric (negative semi-definite) Jacobian matrix: Jf(c).  

Congestion is simulated assuming that arc costs depend on arc flows, through the arc 

cost (vector) function, with non-negative values for mathematical convenience: 

 c = c(f; )  0 f  Sf (3.7) 

where  is the vector of all relevant parameters, such as capacity, sensitivity to 

congestionǡ ǥ . 
In the following, the arc cost function will be assumed continuous and continuously 

differentiable with respect to arc flows, f, with Jacobian matrix Jc(f). 
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The user equilibrium (UE) assignment searches for mutually consistent arc flows and 

costs, as introduced by Wardrop (1952) with deterministic path choice behaviour. 

Wardrop (or deterministic) path choice behaviour model is not dealt with here, since it 

leads to a path choice point-to-set map. It may be considered the limit case of any 

probabilistic choice model when dispersion goes to zero. User equilibrium with 

probabilistic path choice functions was introduced by Daganzo and Sheffi (1977), who 

called it stochastic user equilibrium (SUE). [For a comparison between UE and SUE see 

the appendix] In this case, equilibrium assignment can effectively be expressed by fixed-

point models given by the arc cost function and the arc flow function: 

 c* = c(f*; )   c(Sf)  Rn ;+  (3.8a) 

 f* = f(c*; d, )   Sf  Rn ;+  (3.8b) 

Other equivalent models can be formulated with respect to path variables. An equivalent 

formulation with respect to flows (or costs) only is often used in literature (Cantarella, 

1997; a different one in Daganzo, 1983), which can be obtained by explicitly including 

equation (3.8a) into equation (3.8b): 

 f* = f(c(f*; ); d, )   Sf  Rn ;+ 

or vice versa 

 c* = c(f(c*; d, ); )   c(Sf)  Rn ;+  (3.9) 

Existence is guaranteed if both the arc cost function and the arc flow function are 

continuous (and the network is connected), through Brouwer theorem.  

For monotone decreasing arc flow function, as for invariant probabilistic path choice 

functions (Cantarella, 1997), if the arc cost function is monotone strictly increasing 

uniqueness is guaranteed; if the Jacobian matrices of both the arc flow function, f(c), and 

the arc cost function, c(f), are well-defined, uniqueness is guaranteed by positive definite 

Jc(f) and negative semi-definite Jf(c). Uniqueness conditions can be weakened for strictly 

positive invariant probabilistic path choice functions only requiring that arc cost 

function is monotone increasing (but not necessarily strictly monotone). Anyhow 

uniqueness of arc flows also guarantees uniqueness of arc costs as well as path flows 

and costs. Weaker (sufficient) conditions for uniqueness have been recently derived (a 

comprehensive review of uniqueness conditions is in Cantarella et al., 2010); a full 

discussion of this topic is out the scope of this paper, it suffices mentioning that 

monotonicity of the arc cost function is not needed to assure uniqueness.  

3.2 A simple discrete-time deterministic process model 

A deterministic process model based on exponential smoothing is presented below. 

This model is quite simple, so as to carry out explicit stability analysis, but also rather 

effective since it allow singling out the role of each of the main parameters of the system. 

Moreover, its fixed-point states are equivalent to user equilibrium with probabilistic 

choice functions (as defined by 3.9), and it may be formulated with respect to arc or path 

variables leading to consistent evolutions over time and same stability conditions. Let 

xt be the vector of arc forecasted costs at day t, which are the values of costs that affect 

today user choice behaviour; 

ft be the vector of arc flows at day t; 

c(ft; ) be the vector of arc costs occurred at day t. 
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The arc forecasted costs generally depends on yesterday actual and forecasted costs, 

through the cost updating recursive equation: 

 xt =  c(ft-1; ) + () xt-1  c(Sf)     with x0 = c(f0; ), f0 Sf  (3.10) 

where  ]0,1] is  the weight given to yesterday actual costs when forecasting today 

costs,  assumed time invariant and common to all users. Dispersion among users is 

modelled through perceived utility distribution with respect to adopted path choice 

functions. 

Remembering equation  (3.6) : ft-1 = f(xt-1; d, )  Sf, we get: 

 xt =  c(f(xt-1; d, ); ) + () xt-1    with x0 = c(f0; ), f0 Sf  (3.11) 

implying (see end of section 2): 

  xt Ȃ xt-1c(f(xt-1; d, ); ) Ȃ xt-1    

 xt Ȃ xt-1xt-1; d, ,     with x; d, ,   c(f(x; d, ); ) Ȃ x  

Equation (3.11) tries to model how each user make forecasts mixing own experience, 

experience shared with other users, as well as any other source of information. 

Forecasted costs provided by equation (3.11) are a convex combination of costs 

occurred on all the previous days until day t = 0, with weights (), ()2ǡ ǥǡ ǡ 
respectively. The weight given to any of the previous days becomes rather small after 

some days, for instance with  it is 0.5% after 6 days, and with  after 9 

days. (According to some results for a moving average filter, the length of user memory 

seems rather short generally including few days only.)  

The recursive equation (3.11) defines a (discrete-time) deterministic process model, 

for demand assignment to a transportation network. The state at day t is defined by the 

vectors of arc forecasted costs, xt.  On one hand the proposed DP (3.11) is a rather 

simple model of complex user behaviours; on the other hand, it allows for theoretical 

analysis of fixed-point stability described in next sub-section 3.4. DP (3.1) is suitable for 

large scale application (through brute force approach), since the computer resources 

needed to run the deterministic process model (3.1) are comparable to those for most 

solution algorithms for equilibrium model (3.8).  

Some system states of DP (3.11) are worth of in-depth analysis, in particular fixed-

points, where the evolution over time of the Ǯsystem stopsǯ: xt = xt-1 = x*. This condition 

combined with equations (3.11) yields: 

 x* = c(f(x*; d, ); )   c(Sf)    (3.12) 

A fixed-point state described by above equations (3.12) is equivalent to the user 

equilibrium, as defined by equations (3.9) or (3.8); hence, the already discussed 

equilibrium existence and uniqueness conditions still apply. Thus, definition, existence 

and uniqueness of fixed-point states of DP (3.11) depend on cost function parameters  

(including arc capacities), dispersion parameter  (and possibly other parameters of the 

choice function), and demand flows d, but are not affected by the values of updating 

parameter  
A deterministic process may evolve towards fixed-points as well as other kind of 

attractors, such periodic, quasi-periodic, and a-periodic (chaotic) attractors (attractors 

may be indentified through Lyapunov exponents, as shown in Cantarella & Velonà, 

2003), or may not converge at all, as it can be observed by running it with different 
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values of parameters (and/or starting states). Thus even if a fixed-point state exists and 

is unique the system may not converge towards it. Conditions for fixed-point (local) 

stability can be used to check whether the fixed-point is an attractor, without running 

the underlying deterministic process model, as discussed in sub-section 3.4.  

We conclude by remarking that an equivalent model with respect to path costs is 

given below, using the same state variable even though with a different meaning: 

 x[i]
t = B[i]

T
 c(j dj B[j] p[j](x[j]

t-1; ) ; ) + () x[i]
t-1                                               i (3.12) 

where x[i]
t is the vector of path forecasted costs for user class i at day t, which are the 

values of costs that affect today user choice behaviour. 

This equivalence is something that is not so remarkable for probabilistic choice models, 

but which breaks down in the limit case of deterministic choice, leading to a range of 

new issues that are special to such limit cases Ȃ we deal with this issue later, in section 5. 

3.3 A simple continuous-time deterministic process model 

In order to understand the relation between, and implications of, the discrete- and 

continuous-time formulations, it is convenient to examine essentially the same 

underlying model for both cases. However, if the aim were to be representative of the 

existing body of literature on this topic, then this would be somewhat difficult to 

achieve, primarily since existing analyses of continuous-time systems have almost 

exclusively examined dynamics with respect to the deterministic / Wardrop user 

equilibrium model, where the analyses of discrete-time systems has focused on 

dynamics about a probabilistic user equilibrium. An exception is the work of Watling 

(1999), who considered both discrete- and continuous-time models for the same 

system; this  paper therefore provides a useful bridge, even though it is not 

representative of the main bodies of work (especially on continuous-time systems). 

Following Watling (1999), then, let us begin by considering the simple discrete-time 

model given by (3.11), which by defining: 

 x; d, ,   c(f(x; d, ); ) Ȃ x   (3.13) 

we showed to be expressible in the form: 

 xt Ȃ xt-1xt-1; d, ,    (3.14)

This gives the adjustment to the process in a time increment of length 1, and thus it 

would be logical to assume that, in a fractional time increment of length t the process 

would adjust (from time t to t+t) by an amount xt-1; d, , t + o(t), i.e.: 

 x(t + t) Ȃ x(t) = xt; d, , t + o(t)     (tԹ+) . 

Taking the limit as t  0 then yields the standard form of a continuous time process, as 

a differential equation: 

 ሻ = (x(t))  (tԹ+; x(t)࣭) . (3.15)ݐሶሺܠ 

As in the discrete-time case, several kinds of system evolution may emerge from 

(3.15). One kind of system behaviour of special interest emerges from the counterpart to 

a Ǯsystem stopǯ as considered for the discrete-time model, namely those feasible points 

at which ܠሶ ሺݐሻ ൌ Ͳ. That is to say, the fixed points which are solutions to: 

      (x*) = 0      (x*࣭) .              (3.16) 
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From (3.13) and (3.16), it is trivial to see that the fixed points of the continuous-time 

system coincide exactly with those of the discrete-time system, as given by (3.12), and 

that these fixed points coincide with the probabilistic user equilibria (3.8)/(3.9). Thus 

we have a bridge between discrete-time processes, continuous-time processes and 

equilibrium models. 

Furthermore, just as noted in the discrete-time case, entirely equivalent 

representations exist of the above-defined model for the continuous-time case. Watling 

(1999) considered two such alternative possibilities. In the first, the path costs rather 

than arc costs were used as state variables, yielding a continuous-time system 

equivalent to (3.12) following the same construction logic as above. In the second, under 

the assumption that the path choice model (3.2) is given by a regular random utility 

model, an equivalent system may be developed in which, for each OD movement, we 

choose one Ǯreference pathǯǡ and then consider the difference in all other path costs 
relative to the cost of the reference path. It is worth emphasising a key distinction with 

the work on deterministic / Wardrop user equilibrium models (as reviewed in section 

5), where there has been a significant recent interest in distinguishing the properties of 

arc-based and path-based models; in the case of the present model, no such distinction 

occurs, the two representations are entirely equivalent. The advantage to the analyst of 

having such alternative representations is that some may be more amenable to deducing 

theoretical properties than others; Watling (1999), for example, made considerable use 

of the formulation in terms of path cost differences.  

3.4 Stability analysis for a simple discrete-time deterministic process model 

As noted above provided that exactly one fixed-point exists the system evolves towards 

it only if it is stable. Local stability conditions, from discrete-itme non-linear dunamic 

system theory, are based on a spectral analysis of the Jacobian matrix of a DP. Let  

n be the state dimension (say the number of arcs); 

J(xt) be the (n  n) Jacobian matrix of the DP  at point (xt); 

a be one of the n (not necessarily distinct) eigenvalues of matrix  J (omitting 

dependence on xt). 

Conditions for the (local) stability of a fixed-point (x*) of a DP requires that the spectral 

radius *, that is the maximum modulus | a* | among all the eigenvalues, of the Jacobian 

of the DP (at the fixed-point, J(x*), is less than one: 

 * = maxa { | a* | }  1  (3.17) 

[It is noteworthy that, according to (3.17), null eigenvalues are not relevant to assess 

stability conditions. Moreover, the Jacobian matrices based on path variables have the 

same non-null eigenvalues of the Jacobian matrices with respect to arc variables, thus 

the very same results are obtained if path variables are considered.]  

Applying some results of matrix algebra, Jacobian matrix J(xt) and its eigenvalues a 

may be expressed highlighting the role of updating parameter , which greatly affects 

the fixed-point stability: 

 J(xt) = (1  ) In  Jc(f(xt))  Jf(xt)    (3.18) 

 a = (1  ) a = 1 + (a 1)  aα ͳǡ ǥǡ n  (3.19) 

where a a(xt) is one of n eigenvalues of matrix Jc(f(xt))  Jf(xt).  
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Equation (3.19) also allows us to compute the determinant of the Jacobian of DP 

(3.11) since | J | = a a. Its absolute value may be out of the range [0,1[, thus the system 

DP may not be dissipative, that is it may not converge to an attractor (this issue may 

deserve further analysis).  

The (local) stability conditions (3.17) may be expressed with respect to the 

eigenvalues a* of matrix J(x*) and updating parameter  using equation (3.19): 

 ((Re(a*) Ȃ 1) + 1/)2 +  Im(a*)2   1/2 a α ͳǡ ǥǡ n (3.20) 

The stability region for eigenvalues a* is the inside of a circle on the Argand plan with 

radius (1/) and center at ((1 1/), 0). The lower the value of parameter , the greater 

the area of stability region is.  

The stability region is located between the two points on real axis (() , 0) and 

(1, 0). Thus, if there exist at least an eigenvalue a* that have real part greater than one, 

Rea*)  1, the fixed-point is always non-stable whatever the values of updating 

parameter ; in this case multiple fixed-points can be found. Vice versa if all the 

eigenvalues a* have real less than one, Rea*) < 1, or maxa {Rea*)  1} < 0, there 

always a small enough value of parameter    such that the fixed-point is stable. 

Condition (3.20) allows us to clearly distinguish the role of updating parameter , 

which only affects the size of the stability region, and that of all the other parameters, 

which only affects the eigenvalues a*. Hence, the effect of any change of updating 

parameter  can be analyzed without re-computing the eigenvaluesa*. 

Condition (3.20) is to be verified at the fixed-point only. On the other hand, it only 

assures local stability: that is there is an attraction domain of the fixed-point state such 

that from any starting state in the attraction domain the system converges towards the 

fixed-point, otherwise the system may converge to other fixed-points, other kinds of 

attractors, or may not converge at all. Generally the attraction domain is only a subset of 

the state space. Thus, global stability conditions are still an open issue. (Bie & Lo (2010) 

addresses the relevant issues of attraction domain definition and analysis.)  

If the arc flow function has a symmetric negative semi-definite Jacobian, Jf(x), as it 

occurs for invariant choice functions, the stability condition (3.20) can be further 

exploited as described below.  

 

 If the Jacobian, Jc(ft), of the arc cost function is positive semi-definite (for real vectors 

at least) then it can be proved that all the eigenvalues of matrix J(xt, ft) have non-

positive real part, Rea)  0. 

 

 If the Jacobian Jc(f(c)) of arc cost function is symmetric, it can be proved that matrix 

J(xt) has only real eigenvalues, a* = Re(a*), thus the stability conditions (3.20) 

becomes:  

 a*  ]() , 1[  a α ͳǡ ǥǡ n (3.21) 

 Thus, if the Jacobian, Jc(ft), of the arc cost function is both symmetric and  positive 

semi-definite then all the eigenvalues of matrix J(xt, ft) are non-positive real 

numbers, a* = Rea)  0; in this case the stability condition (3.21) becomes:  

 maxa {| a* |} 1  /   (3.22) 
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Equation (3.22) gives an upper bound for the absolute values of the eigenvalues a*. 

Function (1  /) always gets values greater than or equal to 1 for  in the range ]0,1], 

and goes to infinity as  goes to zero. The value of the function is to be considered an 

input data, since it depends on updating parameter , which is an input data resulting 

from the calibration of the model or the design scenario. On the other hand knowing all 

the eigenvalues  a* equations (3.22) provides an upper bound for parameter  to 

assure stability: 

 0    max / (maxa {| a* |} + 1)    

3.5 Stability analysis for a simple continuous-time deterministic process model 

In section 3.4, we noted how stability properties of fixed points of the discrete-time 

system given by (3.14), based on (3.13), are greatly affected by the value of the 

parameter . Therefore any such result on stability effectively amounts to a network-

specific test as to whether some particular value of will lead to stable or unstable 

system behaviour. In the corresponding continuous-time system, given by (3.15) based 

on (3.13), a rather different picture emerges. 

In continuous time systems, the local stability of a fixed point may again be 

determined by analysis of the eigenvalues of the system Jacobian of (3.15), evaluated at 

the fixed point state. From inspection, it is easy to see that if J(x*) is the Jacobian of the 

discrete-time system (3.14) at fixed point x*, then the Jacobian of the continuous-time 

system (3.15) at point x*is given by J(x*) Ȃ I. Thus, if the eigenvalues of J(x*) are  

{a* : a α ͳǡʹǡǥǡn}, then those of J(x*) Ȃ I are {a* Ȃ 1 : a α ͳǡʹǡǥǡn}. For the continuous-

time system, the corresponding necessary and sufficient condition for local stability is 

that the real parts of any such eigenvalues are all negative, which we may thus write as: 

 maxa { Re(a* Ȃ 1) }  0 .  (3.23) 

However, using (3.23), we note that (cfr 3.19): 

 a* Ȃ 1 = (1  ) a*  Ȃ 1 = (a*  Ȃ 1)                        (aα ͳǡ ǥǡ n) (3.24) 

and since > 0, condition (3.23) is equivalent to: 

 maxa { Re(a* Ȃ 1) }  0 .  (3.25) 

The significance of (3.25) is that a* is independent of ; in contrast to the 

deterministic time system, the adjustment parameter  plays no part in determining 

stability of the fixed point. This illustrates that the two Ǯstabilityǯ properties of 
continuous and discrete time systems are not interchangeable, and they may be 

referring to quite different phenomena.  

Due to the fact that neither the fixed points nor the stability properties of the 

continuous-time system depend on a natural simplification is then to consider system 

(3.15) in the special case of  

 ሻ = (x(t))  (tԹ+; x(t)࣭) . (3.26)ݐሶሺܠ 

We can then deduce an interesting relationship between stability of fixed points of 

(3.26Ȍ and the stability of fixed points of ȋ͵ǤͳͶȌǡ when we have the extra Ǯdegree of freedomǯ of choice of the value of in the latter system.  
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In particular, suppose the fixed point x*is stable with respect to the continuous time 

system (3.26). By inspection, if J(x*) is the Jacobian of the discrete-time system (3.14) at 

fixed point x*, then the Jacobian of the continuous-time system (3.15) at point x*is given 

by J(x*) Ȃ I) = (Jf Jc  I). Then, if the eigenvalues of J(x*) are {a* : a α ͳǡʹǡǥǡn}, then 

those of J(x*) Ȃ I) = (Jc(f(x*))  Jf(x*)  I) are {a* = a* Ȃ 1) = a* Ȃ 1 , a α ͳǡʹǡǥǡn}. 

Thus a* = 1 + a* (a α ͳǡʹǡǥǡn). Now, the stability of x* with respect to (3.26) implies 

that maxa {Re(a*)}  0, and so may write: 

 a* = Re(a*) + i Im(a*)                  (a α ͳǡʹǡǥǡn). 

Hence (for a α ͳǡʹǡǥǡn): 

 |a*|2 = |1 + a*|2 = |(1 +  Re(a*)) + i  Im(a*)|2 = (1+  Re(a*))2 +  Im(a*)2 = 

           =1+ 2  Re(a*) +  (Re(a*)2 + Im(a*)2)       

which (for is less than 1 if and only if: 

 2 Re(a*) + ((Re(a*)2 + Im(a*)2) < 0    

              0  < 2|Re(a*)| /(Re(a*)2 + Im(a*)2)           

Thus the discrete time system (3.14) is stable for: 

0   maxmina {2|Re(a*)|/(Re(a*)2 + Im(a*)2)}  . 

That is to say, if x* is stable for the continuous-time system (3.26), maxa {Re(a*)1}  0, 

then it is also stable for the discrete-time system (3.14) for sufficiently small values of 

the learning parameter (as already noted in sub-section 3.4).  
The converse is also true; this is readily seen by proving the contrapositive statement, 

namely that if x* is unstable for (3.26), then for any value of it is also unstable for 

(3.14). From the proof above, this can be seen by noting that if x* is unstable for (3.26) 

then there exists some eigenvalue a* where Re(a*) < 0, and for this eigenvalue it must 

be that |a*| > 1; this implies that x* is unstable for (3.26), since it is both a necessary 

and sufficient condition that all eigenvalues of the relevant Jacobian are inside the unit 

circle. 

Therefore, while stability in discrete-time is a somewhat different property to that in 

continuous-time, there are useful relations between the two that may be exploited. 

Having said this, for the particular simple family of models we are presently considering, 

there have yet to be any general conditions (paralleling the discrete-time case) that 

establish stability of the continuous-time system (3.26). On the other hand, we may test 

for stability of any continuous-time system in any particular numerical setting by using 

tools such as the Routh-Hurwitz criterion; see Watling (1999) for such an illustration. 

As was noted at the start of section 3.3, our decision to analyse the particular 

dynamical model considered here was based on a desire to compare properties of 

discrete- and continuous-time systems, and in this sense we have chosen what we 

believe to be the most suitable example for illustrative purposes. On the other hand, 

virtually all analyses of continuous-time network problems have been performed with 

respect to dynamical processes related to the deterministic user equilibrium model, and 

in this case a series of general stability results exist. We review these papers in section 5; 

some quite distinct issues arise in what is effectively a limit case, as the variance in driversǯ perceptual differencesȀerrors tends to zeroǡ and for this reason we believe it 
more suitable to treat these in a separate way. 
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Before leaving this section, we should also note that, just as for the discrete-time case, 

the stability analysis above requires only that the relevant conditions be verified at a 

fixed point, and as a result they assure only local stability, namely stability with respect 

to systems that are initialised within some attraction domain about the fixed point. As 

we also discuss in section 5, rather more is known about global stability properties in 

the limit case of deterministic choice models, even if for rather idealized cases and/or ad 

hoc specifications. 
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4. Extended discrete time models and research perspectives 

In this section some extended discrete-time deterministic process are briefly discussed 

together with some research perspectives. The general specification of a deterministic 

process requires the explicit modelling of 

 

 user learning and forecasting: how users forecast the level of service that they will 

experience today, from experience and other sources of information; 

 user habit: how users make a choice today, possibly repeating yesterday choice to 

avoid the effort needed to take a decision, or reconsidering it according to forecasted 

level of service. 

 

In a simple extension of DP (3.11), user learning and forecasting behaviour is 

modelled through an exponential smoothing filter giving the cost updating recursive 

equation already described by the recursive equation (3.10) repeated below: 

 xt =  c(ft-1; ) + () xt-1  c(Sf)     with x0 = c(f0; ), f0 Sf  (4.1a) 

In addition, users may also review yesterday choice with a fixed probability, and their 

choice behaviour after reviewing can be simulated through a probabilistic path choice 

function. Let 

 ]0,1] be the probability of reconsidering yesterday choices; thus each day t, () d[i] 

users simply repeat yesterday choice, assumed time invariant and common to all 

users. 

f(xt;d, ) = f(xt; d, )  be the vector of arc flows at day t due to the d users who 

have reconsidered yesterday choices, and behave according to forecasted costs xt. 

Thus, an exponential smoothing filter gives the flow updating recursive equation: 

 ft = f(xt; d, ) + () ft-1  Sf    with f0  Sf   (4.1b) 

Comments made above for cost updating parameter  about multi-user assignment and 

calibration, as well as on numerical interpretation, apply to the flow updating parameter 

 too; in this case values in the range [0.4, 0.6] seem likely.  

The recursive equations (4.1a) and (4.1b) define a (discrete-time) deterministic 

process model (DP), for demand assignment to a transportation network. The state at 

day t is defined by the vectors of arc forecasted costs and arc flows, (xt, ft).  On one hand 

the proposed DP (4.1) is a rather simple model of complex user behaviours; on the other 

hand, it allows for theoretical analysis of fixed-point stability described in next sub-

sections. DP (4.1) is suitable for large scale application (through brute force approach), 

since the computer resources needed to run DP (4.1) are comparable to those for most 

solution algorithms for equilibrium model (3.8).  

Some system states of DP (4.1) are worth of in-depth analysis, in particular fixed-

points, the evolution over time of the system stops: (xt, ft) = (xt-1, ft-1) = (x*, f*). This 

condition combined with equations (4.1) yields: 

 x* = c(f*; )   c(Sf)    (4.2a) 

 f* = f(x*; d, )   Sf  (4.2b) 
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A fixed-point state described by above equations (4.2) is equivalent to the user 

equilibrium, as defined by equations (3.8); hence, the already discussed equilibrium 

existence and uniqueness conditions still apply. 

Definition, existence and uniqueness of fixed-point states of DP (4.1) depend on cost 

function parameters  (including arc capacities), dispersion parameter  (and possibly 

other parameters of the choice function), and demand flows d, but are not affected by 

the values of updating parameters  and  On the other hand, provided that exactly one 

fixed-point exists the system evolves towards it only if it is stable, and stability of a 

fixed-point state is greatly affected by the values of updating parameters and , as 

discussed below. 

The analysis carried out in sub-section 3.4 may be quite straightforwardly be applied 

to DP (4.1) clearly distinguishing the role of updating parameters   and  , which only 

affects the size of the stability region, and that of all the other parameters, which only 

affects the eigenvalues a*. This approach cannot be followed for more general models. 

Conditions for fixed-point (local) stability can be used to check whether the fixed-

point is an attractor, without running the underlying deterministic process model. These 

conditions are based on a spectral analysis of the Jacobian matrix of DP (4.1). (For more 

details see Cantarella and Cascetta, 1995; Cantarella and Velonà, 2003; Cantarella, 

2013). 

It is worth noting that DP (4.1) is, dissipative, that is it converges anyway to some kind 

of attractor, over the whole state space, that is from any starting state, and any 

combination of parameters. Since DP (4.1) is dissipative only three types of bifurcations 

may occur: 

 

 a Pitchfork bifurcation, in this case several fixed-points exist, only some of them being 

stable, and the system evolves towards a stable fixed-point that depends on the 

starting state, unless the starting state is exactly a non-stable fixed-point; 

 a Flip bifurcation, and the system evolves towards a periodic attractor, then possibly 

to an a-periodic one.  

 a Neumark bifurcation, and the system evolves towards a quasi-periodic attractor.  

 

Assuming that the arc flow function has a symmetric negative semi-definite Jacobian 

matrix, Jf(x), as it occurs for invariant choice functions, the following results hold.  

 

 If the Jacobian matrix, Jc(f), of arc cost function is symmetric, Pitchfork or Flip 

bifurcations only may be observed. Hence quasi-periodic attractors may only occur 

with arc cost function with asymmetric Jacobian. 

 If the Jacobian matrix, Jc(f), of arc cost function is symmetric positive semi-definite, 

Flip bifurcations only may be observed. Hence, multiple fixed-points may not occur. 

 

A relevant research perspective regards multi-user class assignment to model 

distribution of updating parameters, as well as of dispersion and possibly other 

parameters among users. In this case, the extension of explicit stability analysis is by no 

means straightforward. This way e.g. systematic vs. non-systematic users or ATIS-

equipped vs. non-equipped users might be differentiated, this extension is rather 

straightforward, but does not allows explicit stability analysis.  
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Most other approaches to user learning and forecasting are based on moving average 

filters (eg Iida et al., 1992), possibly with respect to differences between actual and 

forecasted costs in previous days. Other approaches to modelling user inertia to change 

and how much users are prone to review their habit are briefly described below; they 

are not suitable for the explicit stability analysis carried out in sub-section (3.4) 

distinguishing the role of each parameter, unless otherwise stated. 

In aggregate approaches based on extra utility models for conditional path choice 

model where the path chosen the previous day is given an extra utility, expressing the 

so-called transition cost to a different alternative (an example of such an approach is in 

Cascetta and Cantarella, 1991). 

In aggregate approaches to modelling the effect of reliability of (possibly different) 

information sources the flow updating parameter depends on the aggregate reliability, 

thus may change over time. Examples of this kind models, often called bounded-

rationality models,  are mostly based on probabilistic (or deterministic) threshold filters 

with respect to differences between actual and forecasted costs; in this case the flow 

updating parameter is the results of a switching choice model. Modelling effects of an 

ATIS reliability is addressed by Bifulco et al. (2009) through a modelling approach 

consistent with this paper; the analysis is further developed in Bifulco et al. (2013) 

requiring deterministic process models where today state depends on today state too 

apart the yesterday one (the inverse function method described in section 2 has been 

applied in this case, as already noted.). Still, embedding this approach in a (complete) 

multi-user framework allowing for the explicitly stability analysis is still an open issue. 

In disaggregate approaches (examples are reported by Cascetta & Cantarella, 1993; 

Chang & Mahamassani, 1988, 2004), a flow updating parameter  is defined for each 

path separately depending on the difference between experienced and forecasted arc 

costs. The use of probabilistic thresholds leads to path choice switching models. This 

approach is rather effective when only two paths are available between each O-D pair, 

since there is no need of any path choice function. Indeed, when more than two paths 

are available, a conditional path choice function should be applied to model path choice 

behaviour of users who decide to reconsider their yesterday choice. This approach 

seems better suited for disaggregate assignment through stochastic process models, 

which are out of the scope of this paper.  

More general models are given in Cantarella & Cascetta (1995), for instance a matrix 

is used for the convex combination underlining the exponential filter. But, in more 

general models, not based on exponential smoothing filters, fixed-point states may not 

be equivalent to the user equilibrium; in this case ad hoc existence and uniqueness 

conditions should be developed. 

The deterministic process model (4.1) is suitable for large applications, as already 

stated.  On the other hand, the application of stability conditions as such to a large scale 

network seems quite hard, since it requires the computation of the eigenvalues of large 

matrices; in this approximation through matrix norms may be applied. This expression 

of stability conditions may be included as a constraint in optimization models for 

Transportation Supply Design with equilibrium assignment. This approach has been 

applied by Cantarella et al. (2012) for signal setting with equilibrium at a large scale. 
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5. Continuous-time models based on deterministic choice  

Thus far, our analysis has focused on models in which choice decisions, conditional on 

the past, are represented through probabilistic choice models based on random utility 

theory. It is well known that as the variance in the random terms tends to zero, then so we approach a case of ǲdeterministic choiceǳǤ This is a potentially confusing term since 
all of the models we consider in the present paper (including those with probabilistic 

choice) are deterministic processes, but the distinction is that in the case of ǲdeterministic choiceǳ all users make decisions without the presence of 
unexplained/random variation. Such dynamical models are thus potentially a way of 

exploring stability with respect to ǲdeterministicǳ (Wardrop) user equilibrium.  

In such cases, we may potentially explore systems in either discrete-time or 

continuous-timeǢ howeverǡ all existing literature on this topicǡ to the authorsǯ 
knowledge, has focused on continuous-time systems, primarily since in such case it is 

possible to derive some rather general results for certain classes of adjustment process. 

Although corresponding discrete-time systems have not been explored to date, the 

comments made in sections 3.3 and 3.5 could be trivially extended to the present case; 

thus, we can think of stability in continuous-time as establishing the existence of a 

sufficiently slow rate of adjustment for stability in discrete-time, but without providing 

insights into the stronger property of whether particular adjustment rates will or will 

not be stable. We therefore shall not show the explicit extension of the results in section 

3.3 and 3.5 to the limit case of deterministic choice since, although some care is needed 

(due to non-uniqueness issues, as discussed below), the essential elements of the 

arguments made in that section transfer in a straightforward way.  

Thus our focus will be on continuous time DP models based on deterministic choice. 

One of the advantages of analysing dynamical systems in continuous rather than 

discrete time is that, generally speaking, it is more straightforward to find general 

theoretical results than for discrete-time systems. Aside from this it seems appealing to 

represent time as continuous, since it surely is in reality. However, this brings with it a 

significant difficulty, namely how to represent in a single model the very different kinds of phenomena that happen on a shorter Ǯwithin-dayǯ time-scale (e.g. the congestion 

interactions at vehicles traverse a network on a particular day) with those on a longer Ǯbetween-dayǯ time-scale (e.g. drivers reviewing their choice of route on a subsequent 

trip in response to trip experiences in the recent past, but not in response to Ǯinstantaneousǯ conditionsȌǤ While continuous-time models as proposed to date 

therefore seem rather more distant from the real-life system than their discrete-time 

counterparts, the study of the former kind of system can still be informative; for 

example, as we discussed in section 3.5, they provide insights into properties of discrete 

time models.  

Informally we can understand continuous systems as describing a kind of general 

trend, without getting into the detail of what exactly that would mean. Perhaps due to 

the difficulty in synchronizing the within- and between-day scales, it seems that virtually 

all analyses of continuous-time traffic assignment models to date have adopted an Ǯinstantaneousǯ network loading relationshipǡ and it is therefore one that we shall also 

adopt here. That is, at any time instant t, a path flow instantaneously propagates to each 

of its component arcs at that time t. In turn these are used to generate instantaneous arc 
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travel costs, through steady-state arc performance functions, which are then 

components of the instantaneous path travel cost at time instant t. We refer to this below as Ǯthe instantaneous loading assumptionǯǤ ȋAlthough effectively the same occurs 
in a discrete time process but just over a discrete time t, such a model offers the possibility of a different interpretation due to the fact that we may think of each Ǯepochǯ 
of the discrete time process as having a duration of its own, allowing us to refer separately to Ǯwithin-dayǯ and Ǯbetween-dayǯ timeǤȌ 

The instantaneous loading assumption means that simple relationships then exist 

between arc flows/costs and path flows/costs. In particular, at any given time instant t, 

the |K[i]|-dimensional path cost vector w[i](t) for user class i is then related to a 

corresponding arc cost vector c(t) through the arc path cost consistency relationship 

(3.4), i.e. through w[i](t) = B[i]
T
 c(t), for i α ͳǡʹǡǥǡm. Similarly at any time instant t, the 

|K[i]|-dimensional path flow vector h[i](t) for class i is related to a corresponding arc flow 

vector f(t) through (3.5) by f(t) = [i] B[i] h[i](t).  

If we assume there to be a time-independent congestion function c(.) given by (3.7) 

that maps (instantaneous) arc flows f(t) onto (instantaneous) arc costs c(t) = c(f(t)), it 

follows that we may then also write down a time-independent functional relationship 

which maps the concatenated vector of all user class path flows h(t) = (h1(t), h2(tȌǡǥǡ 
hm(t))T onto user class path costs w1(t), w2(tȌǡǥǣ 
 w[i](t) = w[i](h(t)) = B[i]

T
c(j Bjhj(t))      i α ͳǡʹǡǥǡm . 

Below, it is sometimes more convenient to work with congestion relationships on the 

arc level and sometimes on the path level, but these are entirely equivalent through the 

relationship above. Finally, we remark that as stated in §3, for each user class i we 

assume there to be a time-independent, non-empty and finite set K[i] of elementary paths 

available, and that there is a time-independent demand flow of d[i]  0. 

As noted in §2, for continuous-time systems the specification is typically in terms of a 

differential equation, with a dot over a variable denoting a time-derivative. It seems that 

the first person to explicitly write down such a system in a traffic network assignment 

context was Smith (1984a), which is most readily specified in the path domain. Denoting 

h(t) = (h1(t), h2(tȌǡǥȌT, Smith considered the system: 

 h  =[i] k, l  K[i] (k  l)  h[i]r(t) max(0, w[i]k(h(t)) Ȃ w[i]l(h(t))) kl 

where for each user class i and for each k, lK[i] (k  l) the path-swap indicator vector kl  

is the vector of dimension [i] |K[i]| with Ȃ1 in the kth element, +1 in the lth element, and 

zeroes elsewhere1. That is to say, this model assumes drivers on a higher cost path than 

an alternative will switch to the alternative at a rate proportional to the product of the 

flow on the higher cost path and the difference in cost. Under the assumption of weakly 

monotone path cost functions, the Wardrop equilibria are in general non-unique, but 

form a convex set which coincides with the point equilibria of this system. Under this 

weak monotonicity condition, Smith established global convergence of his system to a 

point equilibrium in this convex set. 

Friesz et al. (1994) and Zhang and Nagurney (1996) both considered the stability of 

the elastic demand Wardrop equilibrium state. Friesz et al. assumed the OD demand 

                                                        

 
1 This assumes that the paths are labelled 1 up to the total number of paths for all user classes, so we must 

start with some overall path label set K of which the { K1, K2ǡ ǥǡ Km) are then subsets. 
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vector d(u) to be a function of the m-vector of OD travel costs u. Using the vector pair 

(u(t), h(t)) as state variable, they considered the system: 

ሶݑ   = [i] { max(0, u[i](t) +  (d[i](u(t)) Ȃ kK[i] hk(t))) Ȃ u[i](t)}      (i α ͳǡʹǡǥǡm) 

 ሶ݄  = k { max(0, hk(t) Ȃ  (w[i]k(h(t)) Ȃ u[i](t))) Ȃ hk(t)}  (kK[i] ; i α ͳǡʹǡǥǡm)   

for given values of the parameters [i] > 0 (i α ͳǡʹǡǥǡm), k > 0 (kK[i] ; i α ͳǡʹǡǥǡm),  > 0 

and   > 0. The justification for this model was as a representation of a traveller 

information system, which was able to inform drivers of the equilibrium path costs for 

the previous day. Friesz et al established that there exists a sufficiently large value of  

and small value of  to ensure asymptotic stability of the set of path-based, elastic 

Wardrop equilibrium solutions with respect to this system, under the assumption that 

both the arc cost functions and negative demand functions are continuous and strictly 

monotone. 

The approach of Zhang and Nagurney (1996) differed from Friesz et al, firstly, in the 

respect that they assumed the demand functions to be invertible (in the terminology of 

Friesz et al.); i.e. that there exist inverse demand functions (1(d), 2(dȌǡ ǥǡ m(d)) such 

that  [i](d(u)) = u[i] (i α ͳǡʹǡǥǡm). But since we always have that the OD demands are the 

sum of path flows: 

 d[i] = kK[i] hk     (i α ͳǡʹǡǥǡm) 

then we can re-write the inverse demand functions as dependent on h, rather than d; let 

us suppose that the inverse demand functions written in this way are (1(h), 2(hȌǡ ǥǡ 
m(h)). We may then consider the following continuous time system in state variable 

h(t) only: 

 ሶ݄  =  [i](h(t)) Ȃ w[i]k(h(t))          if  hk(t) > 0 (kK[i] ; i α ͳǡʹǡǥǡm)   

       = max(0,  [i](h(t)) Ȃ w[i]k(h(t))) if  hk(t) = 0 

Zhang and Nagurney establish global asymptotic stability of the Wardrop elastic 

equilibrium with respect to this system, under the assumptions that the arc cost 

functions and negative inverse demand functions are continuous and strictly monotone. 

As an alternative, when monotonicity assumptions cannot be guaranteed, they show 

how local asymptotic stability may be tested by classical techniques from the dynamical 

systems literature, explicitly determining the eigenvalues (characteristic values) of a 

Jacobian matrix of dimension equal to the number of paths with non-zero equilibrium 

flow, with asymptotic stability guaranteed if these eigenvalues all have negative real 

parts. 

More recently Yang & Zhang (2009) Ȃ building on the theory set out in Zhang et al 

(2001) Ȃ went on to show how the systems proposed by Smith (1984), Friesz et al. 

(1994) and Zhang and Nagurney (1996) [as reviewed above], along with several others 

models proposed for transportation problems, were examples of a general family 

characterised by being a Rational Behaviour Adjustment Process (RBAP): 

 ǮA day-to-day route choice adjustment process is called a RBAP with fixed travel 

demand if the aggregated travel cost of the entire network decreases based on the 

previous dayǯs path travel costs when path flows change from day to dayǤǯ 
 

They showed furthermore that if in any RBAP system a path flow becomes stationary 

over days, then it must be a user equilibrium path flow.  
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Most recently, there has been an interest in arc-based continuous-time systems, in 

contrast to the path-based methods described so far. This was motivated by the 

observations of He et al (2010), who noted two deficiencies with path-based methods in 

the context of continuous time systems that approach user equilibrium. These were 

namely that different path-flow equilibria would arise from different initial path-flows, 

and that the path-based methods neglect a kind of interdependence between paths. 

[These considerations only apply to continuous time systems based on deterministic 

choice behaviour.] In response they proposed the following system with the arc flow 

vector f(t) as state variable: 

ሶ  ൌ ൫argmin൛ܡ א ܵ  ܋ሺሻܡ  ሺͳ െ ሻܦሺǡ ሻൟܡ െ  ൯

where  > 0 and 0 <  < 1 are given parameters, Sf  is the feasible arc flow set (as defined 

in section 3), and D(. , .) is a distance metric. Assuming the arc cost functions to be 

separable between arcs, by which we may write c(f) = (c1(f1), c2(f2Ȍǡǥǡ cn(fn)), He et al 

propose the use of the metric: 

ǡܠሺܦ  ሻܡ ൌ σ  ൫ܿሺݓሻ െ ܿሺݔሻ൯ ݀ݓ௬௫ୀଵ  .  

Under the assumption of continuously differentiable and monotonically increasing arc 

cost functions, He et al showed that f is a fixed point of the system above if and only if f is 

a user equilibrium flow pattern. (e et alǯs results a have since been extended in two ways. Guo & Liu (2011) showed 

that the approach may be adapted to analyse boundedly rational behaviour, establishing 

that f was a fixed point of the resulting system if and only if f was a boundedly rational 

user equilibrium arc flow pattern. In parallel work, and returning to the user equilibrium frameworkǡ (an Ƭ Du ȋʹͲͳʹȌ recently extended (e et alǯs result by 
considering a family of metrics satisfying the conditions: 

 

 D(. ,. ) is a nonnegative function; 

 D(x, y) = 0  x = y ; 

 D(x, y) is differentiable and strictly convex in y for each x. 

 

For such a family, and under the same assumptions on the arc cost functions as He et al 

made, they showed that f is a fixed point of (e et alǯs dynamical system ȋfor any D in the 

family above) if and only if f is a user equilibrium. Moreover they establish that such a 

fixed point is globally asymptotically stable over Sf for this family of dynamical systems. 

Finally, they extended this result to asymmetric, non-separable arc cost functions, 

though for a much more restricted family of metrics. Under the assumption that c(f) is 

continuous and strictly monotone (in the vector sense), and for the family of distance 

metrics satisfying the gradient condition Dx(x, y) = Ȃ Dy(x, y), they again establish that any fixed point of (e et alǯs system is globally asymptotically stable and the unique user 
equilibrium for that problem. An example of a distance metric is given satisfying the 

required condition, namely: 

 D(x, y) = (x Ȃ y)T A (x Ȃ y)  

for some constant, positive definite matrix A. 
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6. Conclusions While the existence of travellersǯ adaptive travel choice behaviour has been recognised 
for many decades, and while it implicitly underpins the notion of network equilibrium, 

the last twenty years has seen a growing body of work in which dynamical models are 

recognised in their own right, not only as a means of justifying long-run equilibrium 

analysis. In the present paper we have sought to highlight, and present a unified 

treatment of, the theoretical foundation of such models, focusing specifically on those 

models that may be represented as a deterministic dynamical system. A particular 

contribution has been to bring together discrete and continuous time systems in one 

paper; this is more significant than might first be imagined, since the two bodies of work 

seem to have grown almost independently, apparently from somewhat different 

ideologies.  

As said in the introduction day-to-day dynamics concerns the evolution of a 

transportation system that occurs in similar periods over successive days, thus it is 

ontologically discrete, and naturally described by discrete-time dynamic process. These 

models try to explicitly mimic real evolution over time, and could be easily calibrated 

against real data. In addition, they can easily be compared with stochastic process 

models, usually formulated over discrete time. Moreover, for numerical solution or 

computer simulation discrete-time is more convenient, and so even if the model is 

specified originally in continuous-time, it will typically be discretised for computational 

purposes, as stressed below. 

Adopting a continuous-time representation of the system, on the other hand, seems 

more appealing from the point of view that in the real world, time is typically considered 

to be continuous; surely, then, the discrete time system is only an approximation? This 

can be a somewhat misleading line of thought, however, due to the difficulty in dealing 

with the two different time-scales over which within-day traffic interactions occur, and 

between-day updating of travel choices occurs. A continuous-time model which could 

deal with both would indeed be attractive, but rather complex due to the lagged effect of 

daily experiences on subsequent decisions. Virtually all models considered in the 

literature are not so complex, and do not separate these scales, meaning that it is more 

difficult to understand which real-world phenomena these models are aiming to 

capture. It seems that a more plausible explanation for the continuous-time approaches 

we have reviewed here is that they are intended as smooth approximations to an 

underlying discrete day-to-day adjustment process. These approximations themselves 

may not have any direct real-world interpretation; rather their value is in the light they 

shed on the underlying discrete-time world. In particular, as discussed in section 3.5, it 

is possible to use stability analysis of a continuous-time model to infer stability 

properties of a related discrete-time model, in a consistent way with results obtained by 

directly analyzing the discrete-time model. On the other hand continuous-time models 

need discretization to be solved, thus this kind of models are less relevant from the 

solution point-of-view.  

As far as choice modelling is concerning, probabilistic choice models ሺPCMǯsሻ, derived 

from random utility theory, when compared with deterministic choice model (WCM), 

derived from Wardrop I principle, provide a more realistic description of user choice 

behaviour, since additional parameters model several source of uncertainty, regarding 
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both the users, such as perception errors, dispersion of a user behaviour over days, dispersion among usersǡ ǥ , and the modeller, such as aggregation errors (due to area 

zoning), dispersion of supply characteristics (for instance due to weather conditions), 

missing attributes, attribute measurement errors, ǥ , thus WCM may be considered a 

limit case when all sources of uncertainty may be neglected. 

Discrete- or continuous-time dynamic assignment models based on PCMǯs, with 

respect to those based on WCM, show the following features, besides those reviewed in 

the subsection 3.1 and in the appendix with respect to user equilibrium assignment: 

 

 they naturally include the equilibrium pattern (given by SUE modelled by a fixed-

point model) as a fixed-point state, also allowing for weaker uniqueness conditions;  

 they provide consistent and equivalent results with respect to path or arc variables 

(this distinction is only meaningful for dynamic models based on WCM); 

 they can easily be compared with  stochastic process models (see below).   

 

In a companion paper, we have provided a similar treatment of stochastic process 

models, which emerge from a quite different theoretical backdrop (Watling & Cantarella, 

2013a). Together, these papers extend and update the treatment of these two kinds of 

modelling approach as described in the unifying framework of Cantarella & Cascetta 

(1995). Our objective has been to highlight the theoretical pedigree of this modelling 

approach and the tools available for its analysis; we have not had the space to also 

consider the many computational methods proposed for implementing such models, but 

a study of such approaches would be a natural next step for the interested reader.  

In the discrete-time models considered in sections 3 and 4, we made the compromise 

of assuming that steady-state link performance functions could represent the within-day 

scale as a first approximation, with the possibility that these can be replaced by more 

sophisticated dynamic network loading methods as required (see, as some examples: 

Cascetta & Cantarella, 1991; Hu & Mahmassani, 1997; Balijepalli & Watling, 2005; Liu et 

al, 2006; Friesz et al, 2011). Adopting a continuous day-to-day scale, on the other hand, 

makes it rather more difficult to distinguish the processes occurring over the two time-scalesǤ Zhang et al ȋǮAssumption ͷǯǡ ʹͲͲͳȌ notably propose such a distinction with two 
separate continuous time-scalesǡ yet these do not appear Ǯsynchronizedǯ to a common 
overall time-scale (it is as if two separate clocks are running) and so the model is rather 

abstract. Smith and Wisten (1995) and Friesz et al (1996) have made some advances in 

this direction. 

Our review suggests that the field is now sufficiently mature that the range of 

alternative methods, theoretical results and tools are now ready to be put to good 

practical use in analysing real-life systems. Certainly, we are not suggesting that the 

models will not evolve, but rather it seems now that it is time for the models to be used 

more widely in empirical studies, so that we might better understand their strengths 

and the areas in which they need to be improved. We would suggest that a particularly 

good, open area for publication would be studies which tried to match the theoretical 

tools with actual real-life phenomena. This may include diverse aspects such as 

clarifying what we might mean by a Ǯdayǯǡ considering how we might deal with unusual 
events or seasonal effects, considering the spatial and temporal transferability of the 

behavioural specifications, or considering more deeply how travellers actually Ǯlearnǯ 
from personal experience, experience of others and any information sources. 
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Our approach in the present paper has not been to present day-to-day dynamics as a 

replacement for equilibrium analysis, but rather as an additional and extended option: 

equilibrium sits within the framework of day-to-day dynamic analysis. For relatively 

stable systems that quickly re-stabilise following a systematic change or perturbation, 

and for policies and measures which are readily captured by their assumptions, 

equilibrium analyses remain a sensible choice. However, there seem to be many cases in 

which it seems to be more difficult to justify the premises of equilibrium analysis, such 

as in the cases of incidents, information systems, responsive control and networks 

subject to high levels of variability. Although these models are only just starting to be 

considered in a more practical context, early experience suggests that even in cases that 

might seem more amenable to equilibrium analysis (such as a bridge closure), day-to-day models are able to capture Ǯirreversibleǯ effects that would never arise from a 
traditional Wardrop or so-called stochastic user equilibrium analysis (He & Liu, 2012). 

While it seems premature to suggest that we have reached the Ǯend of equilibriumǯ ȋa 
phrase coined by Goodwin, 1998), at least we may now ask whether the decision 

processes that we model stabilise sufficiently quickly that equilibrium is a reasonable 

approximation. To be clear, we could always have asked this question; the difference is 

that now we have an alternative approach to consider. 
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A.  Appendix 

Traditionally user equilibrium assignment has been addressed assuming no 

uncertainty due to modeller and/or user errors, thus leading to (deterministic) User 

Equilibrium (UE) where route choice is based on the I Wardrop principle. It is modelled 

through nonlinear optimization and variational inequalities, for which very efficient 

solution algorithms are available, at least for cost functions with symmetric Jacobian. 25 

years afterwards the user equilibrium with probabilistic path choice models, usually 

named Stochastic User equilibrium (SUE), was introduced, since  

 

 SUE includes a more realistic description of user route choice behaviour, after all it 

has at least one more parameter, and UE can be considered as a limit case of SUE. 

Additional parameters model several source of uncertainty, regarding both the users 

and the modeller, which can hardly be neglected, such as:  

- perception errors, dispersion of a user behaviour over days, dispersion among usersǡ ǥ 

- aggregation errors, missing attributes, attribute measurement errorsǡ ǥ 

 

Some useful mathematical features of fixed-point models for SUE with respect to any 

kind of models available for UE are given below. 

 

o Uniqueness of flows per user class, and of route flows. 

o Flows depend on cost through a continuous, c. differentiable function with 

symmetric Jacobian, under very mild assumptions met by all models used in current 

practice.  

o These models for SUE allow for weak uniqueness and convergence conditions, 

including non necessarily increasing cost functions, which cannot be extended to UE, 

however modelled. 

o These models can be solved through simple and feasible algorithms proved 

converging under very mild assumptions even for cost functions with asymmetric 

Jacobian. 

 The SUE arc flow pattern is less sensible to input data such as demand flow (less 

than proportional) with respect to UE pattern (more than proportional), thus there is 

no need of a high convergence threshold, 10-3 being enough in most cases, to be 

compared with 10-6, or even less, often required for UE solution. 

 

Moreover, 

 

 Fixed-point models for SUE, as well as all the related analysis, can easily be extended 

to deal with SUE with variable demand including any kind of demand models, whilst 

models for DUE require that the inverse demand function, not available in the 

general case, and anyway hard to define and compute, apart from other limiting 

assumptions. Thus SUE approached through fixed-point models is the only option for 

equilibrium assignment with variable demand. 

 

 


