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Abstract: Application of predictive functional control (PFC) has been very succesful
on many processes, however application to unstable open-loop processes has met
more varied success rates. Certain processes in particular with factors of the type
(s—a)/(s—ra), 7 > 1 have proved very difficult to stabilise. This paper illustrates how
the prestabilisation approach to prediction can be used to overcome this bottleneck
and with the added bonus of retaining the intuitive tuning parameters that make

PFC popular.
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1. INTRODUCTION

Predictive functional control has evolved from
IDCOM (Richalet et al., 1978) and is a simple
variant of predictive control. This simplicity is its
very appeal and has allowed successful implemen-
tations in many processes where the full MPC
(Model predictive control) products such as DMC
(Cutler et al., 1980) are too expensive and/or
too complicated. Another feature of PFC is that
its tuning parameters are intuitive for practising
engineers and hence it is easier to understand and
own than say GPC (Clarke et al., 1987).

Of course the weakness of simplified control algo-
rithms is that they are not so powerful and cannot
be applied as widely. PFC as it stands does not
readily extend to multivariable systems (a major
selling point of MPC), however it does handle
constraints which is another important feature of
MPC (Garcia et al., 1989). In this paper we wish

to concentrate on an issue which is well stud-
ied in the literature for MPC (e.g. (Kouvaritakis
et al., 1992; Rawlings et al., 1993; Rossiter et
al., 1996; Scokaert et al., 1998)) but not at all
for PFC. That is when does the algorithm give
stabilising control ?

Although some apriori stability results are pos-
sible in PFC (as yet unpublished), the general
ﬁractice in industry is not to worry about apriori
results (Kouvaritakis et al., 1996) and instead
make use of aposteriori results. That is, during
offline design and tuning, because the control law
for the unconstrained case is a fixed linear feed-
back, it is easy to compute the implied closed-loop
poles and hence chose the tuning parameters that
give the most desirable closed-loop behaviour. As
this process is offline and via computer simulation
it is relatively cheap. It should also be noted,
that for MPC at least, notional guidelines of a
large prediction horizon and a small, but not too




small, control horizon will nearly always give nom-
inal stability. For PFC similar guidelines exist,
for instance using a large coincidence horizon in
conjunction with a stable process will give closed-
loop behaviour similar to the open-loop dynamics.

However, all this changes when one encounters un-
stable open-loop processes. Apart from numerical
conditionning issues (e.g. (Rossiter et al., 1998))
normal guidelines do not always give stabilising
control and this is particularly a difficultly with
PFC. Hence, the aim of this paper is to de-
velop a means whereby PFC can be given a high
apriori expectation of closed-loop stability, when
the current algorithm almost always fails. Such a
result opens up the potential for application to
many more processes. The methodology adiopted
here is based on the observation in (Rossiter et
al., 1998) that using unstable predictions as a
basis for a predictive control law design is un-
wise. Moroever the part of the prediction that
is ignored, that is the part bevond the output
horizon, is the most troublesome part because it
is divergent. Hence one can not make recursive
feasibility claims (Kouvaritakis et al., 1996) and
instability could easilv be caused solely by the
presence of constraints. In summary, there is a
need to ensure that the prediction class is stable,

even for unstable open-loop plant. In fact dual-
mode strategies and recent work making use of
invariant sets fulfil thi- need explicitly by con-
straining the prediction- 1 that implied by a fixed
closed-loop beyond a certien horizon.

Most articles (with the cxception of (Garela et
al., 1982)) on MPC muake u-- of state realignment
in prediction (Rossiter ¢ ul. 2001). That is one
assumes that one can rutiahise a model with the
process measurement- «nii then use this in pre-
diction. However state recliznment (Rossiter et
al., 2001) does not alwiv~ give zood predictions
(too sensitive to measurement noise) and so many
many industrial package- use FIR (Finite impulse
response) or Independent Model (IM) representa-

tions (Garcia et al.. 10~2  An IN is equivalent
to a FIR but has the advinaoe of requiring less
parameters and removine truncation errors. As a
consequence, this article will adopt an IM struc-
ture rather than state realignment, although the
results can be reworked easilv enough. Hence, as
argued above, there is a need to find a reparame-
terisation of the degrees of freedom to give stable
predictions for an unstable process represented
by an independent model. This parameterisation
can then be used to develop an appropriate PFC
algorithm.

The paper will be set out as follows. Section
2 will give some background on PFC, section
3 develops prediction equations and shows how
prestabilisation can be achieved and then applies

the prestabilised equations to PFC to give the
‘new’ algorithm. The paper is completed with
some simulation examples and conclusions.

2. BACKGROUND ON PFC

In this paper we will adopt the notation of y, w for
process outputs and inputs respectively. z7! is the
unit delay operator such that z='y, = yx_; where
yr denotes the value of y at the kth sampling
instant and yj4 denotes the predicted value
of yry; computed with information available at
sampling instant k.

The most common features of predictive control,
shared by PFC are

(1) A system model, which is used to generate
system predictions

(2) A performance specification

(3) Online selection of the controls from substi-
tuting predictions into the performance spec-
ification.

The modelling and performance specification will
be discussed next and prediction left to section 3
as this is a significant part of the paper.

2.1 Independent models of unstable processes

In PFC it is usual to use an IM for prediction.
An independent model is intended to represent
the process as closely as possible so that it has
matching inputs and outputs. Let y,, be the
output of the independent models (IM). The norm
is to simulate the IM in parallel with the process,
using the same inputs « and hence in general, due
to uncertainty, ¥ # ym-

The difficulty with an unstable process is that
such a parallel simulation cannot work because
the same input would not stabilise the IM and an
uncertain plant. One solution (e.g. (Richalet, ))
is to decompose the model into two parts as in
Figure 1. Hence if the process is modelled by G,
then

G = (I + M)~ M, =% (1)

where both M; and M> are stable. Next note that,
in the nominal case of y = ym, the output of figure
2 is the same as that of figure 1, so equivalent to
using the structure of Figure 1, one could use the
structure of figure 2. In this case if u is stable, so is
w and if y is stable so is z. Hence when the process
is stabilised, so is the output of the independent
model.

A convenient decomposition in the SISO case is
as follows:

G=n+n_ Mlzn—+; M,y = b2

s I8 B e
dod_’ d i

(2)
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Fig. 1. Independent model used for prediction
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Fig. 2. Implementation of independent model for
simulation

where ny, d, are the numerator/denominator
factors respectively containing roots outside the
unit circle (unstable). It is clear that both M; and
M5 have stable poles.

2.2 Predictive functional control online objective

For this paper we focus on a PFC variant with
just one degree of freedom. The aim here is to
specify offline the desired closed-loop performance
in terms of the response of a first order lag and
hence the specification is defined mainly by a time
constant. In PFC one chooses: (i) the lag (that
is the time constant, say Tprc or equivalently

the target pole e~ TPrc where T is the sampling
period.) and (ii) the prediction horizon say T}.
The prediction horizon is denoted the coincidence
horizon. Compute the response of a target Ist
order lag T} seconds ahead. The control move is
then selected as the control which will cause the
predicted plant output to coincide with the de-
sired lag T}, seconds ahead; hence the terminology
coincidence point. In such a way one hopes that
in the closed-loop the process output will behave
in a similar fashion to the selected lag.

To place this algorithm in a more mathematical
context (for the delay free case), let Ty seconds
correspond to n, samples (i.e n,T = T}), then the
online computation reduces to solving a simple set
of equalities:

o Ta
target = yi + (Tktn, — yi)(1 —€ TPFG) (3
Yk+ny |k = target

The ‘target’ is the coincidence point where the
prediction is made to coincide with the target
trajectory. If n, (or equivalently T}) is too large,
then this strategy reduces to choosing the control
increment which will drive the predicted output
to the desired set-point in steady-state and hence
will give only open-loop characteristics. So in

order for the choice of lag to be effective, the value

T}, must be appropriate to the desired lag time
Th

constant position Tprc, for instance e~ 7pFc >
0.1.

Remark 2.1. Where the system has complex open-
loop dynamics, it is often necessary to use more
than one coincidence point. These processes and
the solutions are not discussed here, especially
because the design immediately becomes more
complicated and less intuitive. Instead the aim of
this paper is to see how far one can go with just
one coincidence point.

2.3 Parameterisation of the freedom in the predictions

It is typical in MPC to use changes in control as
the degrees of freedom in the predictions. In par-
ticular the use of changes (rather than absolute)
allows a neat means of ensuring offset free control.
In PFC a similar practice has been followed where
there is one coincidence horizon, that is to use the
change in control at the current time as the de-
gree of freedom. Where more that one coincidence
horizon is deployed, the 2nd degree of freedom
is often a ramp rate for the input but we shall
not consider those variants here. What is more
important is to note that other parameterisations
of the degrees of freedom could be deployed e.g.
(Kouvaritakis et al., 1998; Wang, 2000), perhaps
to much advantage, but this has not yet been
investigated. In this paper we consider one such
reparameterisation.

There is a need to parameterise the degrees of
freedom appropriately for the process to be con-
trolled. For stable plant, changes in control are in-
tuitive and simple to use and hence are appropri-
ate, however for unstable plant this is not the case.
In the first instance one must allow several d.o.f.
in order to bring the unstable dynamics under
control within the output horizon e.g.(Rawlings
et al., 1993; Rossiter et al., 1996). To be more
sure, it is better to place structure into the future
control trajectory in such a way that the output
prediction is known to be stable e.g.(Kouvaritakis
et al., 1992; Rawlings et al., 1993; Rossiter et
al., 1996; Scokaert et al., 1998; Kouvaritakis et
al., 1998; Rossiter et al., 1998). The question to be
answered is what structure to deploy and how to
express the d.o.f. within that ? Here one solution
closely related to (Rawlings et al., 1993; Rossiter
et al., 1996) is given. Investigation of other possi-
ble solutions forms future work.




3. PREDICTION WITH AN INDEPENDENT
MODEL

This section summarises the work of (Rossiter,
2001). In order to implement the PFC algorithm
of eqn.(3) it is clear that a prediction is needed
and within that a clear separation of the degrees
of freedom to ease solution of (3). When using
an independent model for prediction, future y are
unknown. Hence, we use partial state realignment,
that is return to figure 1 and realign the loop
variable y,, on the process output measurement,
then use this as a basis for prediction, where now
the only unknown is the future input variable u;
these values of course are the usual degrees of
freedom.

3.1 Notation

Define vectors of future (arrow pointing right) and
past values (arrow pointing left)

Auy Yr+1
Dugyy Yk+2
Ay = s = i
= =
Atgin, -1 Yk+n,
Augy Yk
Ay = | AU

4’2 = | Y&-1

Uu
—

In general the vector of future values can be
any length, but the lengths n, will correspond to
the coincidence horizon and n, the input horizon
(taken to be one here). For computing predictions,
we will use the Toeplitz/Hankel notation for a
given polynomial n(z) = ng +nyz~' +..., then

Tig 0 0
ny  Ng 0
Ca= |2 7 7 (4)

Nm Mm—1 Mm-2

ny ... Nmpm—1 N

g ... N 0
Hy =

nm 0 ¢ 0

Also note: (i) the definition that I', is a tall
and thin variant on the square matrix C, so
that (Lt %:lad = sl el )
the commutative and inverse properties C,Cy =
CpyCa; C3' = Cyj, and (iii) throughout this
paper dimensions are flexible to fit the context.

3.2 Prediction without prestabilisation

Prediction reduces to the solution of some simul-
taneous equations. These come from setting up
consistency conditions around M; and M (from
figure 1 but with initial conditions taken from
figure 2) at each future time instance, e.g.

Ca_
Cn_
Y

= COnyy+Hnyu —Ho w
= Obz[g_j,,m"{'d] +Hb2£—H _Z
=z+w
= =
y,,+d
=Ly -z-w)
= EA‘!_L)+L£

(5)

I

w
—
Z
i
m
L4
d
u
et

where d represents a correction for offset (common
in DMC), L is a vector of ones and E is a lower
triangular matrix of ones. The solution of (5) takes
the form (details are provided in (Rossiter, 2001)):
y =y, +Ly-z-w)

B ™ Gd__lcglccz__,,l {Cn/—\_"‘-i + Msv} (©)
where

M, = [Kua Kerya Kz];

Ky = CA(CnL + Cy_H,,) <
Ky =-Ca(Crn_Hi_ +Cy_Cp,L); v=|%
K; = GaGy(Cy, L+ Hy,) 4
K, = -CaCy_(Co, L+ Hy_) =

It is clear that one can easily decouple the degrees
of freedom (Au) and the notional free response
(depending on measured data), but this is omitted
to save space as it will not be used here. Moreover
it is evident that these predictions diverge due to
the term C‘d‘:.

Remark 3.1. As noted in (Rossiter et al., 1998;
Rossiter, 2001), and any simple examples, control
laws based on predictions (6) can easily fail due
to:

(1) Numerical ill-conditionning (divergent pre-
dictions cause numerical difficulties in com-
puting ¥ . and hence the control law accu-
rately)

(2) With a small number of degrees of freedom
it is difficult to make the output predictions
near stable. Hence predicted errors beyond
this horizon rapidly diverge.

(3) As one increases m, to overcome this, one
must increase ny (guidelines given n, >
n,,) and then numerical ill-conditionning may
occur.

3.3 Stabilising the predictions from a realigned
model

Given the analytic nature of the predictions in (6),
it is straightforward to form a parameterisation




of future inputs that stabilises the predictions.
Rewrite eqn.(6) in terms of z-transforms

n(2)Ay(z) + z(z)

B = Todaeam  °

—rm
(7)
The output predictions y  are stable iff the
numerator term contains a factor d4(z) which
implies the following constraint on Ay (2):

n(z)Au(z) + z(z) = d+(2)7(2) (8)

where v(z) is a degree of freedom (assumed here
to be a polynomial). Constraint (8) can be written
as a matrix equation

1 [Ajy—"i} = My (9)

which has a solution of the following form:

AH =] K1v+l“d+£)

D = Ko (10)

where matrices K, K- are suitable block ma-
trices from [Ty, —T4,] ' M,. The corresponding
output prediction is

g = [CACd_]_l{ng+Fn3] (11)

&

Hence, the process output predictions ( = +

d) are given as

Y =Hic+ My

5 = gt

Hy =[CACy 7Ty (12)
M, = [CAC@!_]_IKZ + [0, —-L,L, —L]

3.4 The PFC algorithm with prestabilised predictions

Using the algorithm of (3) as a basis, the descrip-
tion of a PFC algorithm based on predictions (12)
is elementary. Choose g to have just one variable

¢ and define egy to be the n;h standard basis
vector. Then

Yoty |k = e?v:y [Hick + Myv] (13)

Solving for coincidence (3) gives

T
. Uk + (Thgn, — &) (1 — e_ﬁg?) = eZyMyv
= e{yHl
(14)
One can then substitute (14) into (10) to find the
new control increment.

Auk = eflr[K]_U + Fd+ ck] (15)

Remark 8.2. The use of the IM (Figure 2) and
control law (15) can be represented as a fixed term
control law if desired for closed-loop analysis. The
implementation would be via (14,15).

=[5 a0 | M

4. EXAMPLES

In this section the efficacy of the PFC algorithm
based on prestabilised equations is demonstrated.
The following unstable process was used
s—1
G= ——0
s2—-1.5s—1 e}
This was sampled at a rate of 0.2 sec giving
discrete poles at approx 1.5, 0.9.

Remark 4.1. PFC based on the (unstable) pre-
diction equations of (6) with Auy as the degree
of freedom, did not give a stable closed-loop.
However, it is obvious that ensuring closed-loop
stability is straightforward with the prestabilised
predictions, even with just a single coincidence
horizon.

4.1 Simulation 1

First we illustrate, apart from stability which is
apparent, that the PFC tuning parameters can
still be used in the usual intuitive way. The fol-
lowing (see table 1) pairs of coincidence horizons
and discrete ‘target’ poles are selected. In terms
of time constants recall that target pole p is given
from -

p=¢e TPrc (17)
To simplify comparison, the coincidence horizon
is taken as a default value whereby py =~ 0.1
where n, is the coincidence horizon. Clearly other
choices are possible. Moreover it is noted that
n, > 6 or an unstable closed-loop results; this is
to be expected as lower bounds on the prediction
horizon are also required when MPC is applied
to unstable processes. The corresponding simula-
tions are displayed in figure 3 where the x-axis is
in sampling instants.

Pair 1 | Pair 2 Pair 3 Pair 4
Ty 6 8 10 20
Target pole 0.5 0.6 0.8 0.9
Line Solid | Dashed | Dotted | Dash-dot

Table 1. Tuning parameters and legend for fig. 3

It is clear that in accordance with expectations,
the closed-loop behaviour has a strong correlation
with the selected target pole. That is as the target
pole is speeded up so does the closed-loop response
with a corresponding increase in input activity.

4.2 Simulation 2

The second simulation is to illustrate that the
controller is robust. Hence for the choice of pair
3 (from table 1) a further closed-loop simulation
is performed as seen in figure 4. This time a step
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output disturbance is introduced at the 50th sam-
pling instant and measurement noise is introduced
at the 90th sampling instant. It is clear that the
the disturbance is rejected effectively with zero
offset and so is the noise?®.

5. CONCLUSION

This paper has shown how the method of presta-
bilisation can be developed for IM models and
hence used to extend the applicability of PFC to
open-loop unstable processes. The efficacy of the
proposed algorithm was illustrated by an example.
Future work will consider extensions to more than
one coincidence point, constraint handling and
other parameterisations of stabilising predictions.

1 From the work of (Rossiter, 2001) on stable models,
it is expected that an IM will give better noise rejection
than a realigned model. A comparison for unstable models
constitutes future work
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