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Abstract

It is possible to prestabilise the predictions used within
Predictive Functional Control in order to increase the
likelihood of a stabilising control design for unstable
open-loop plant. However, it is not clear that such
a procedure will always give better closed-loop perfor-
mance. This paper compares strategies with and with-
out prestabilisation.
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1 Introduction

Predictive control is an intuitive control design method
whereby one predicts the expected effects of differ-
ing control trajectories and then selects the trajectory
which causes the most desirable expected behaviour.
Such a procedure fits well with human based con-
trol and can lead to easier design. For instance such
questions as over what horizon should one predict be-
haviour, what sort of future control trajectories should
one use, can all be answered fairly easily. In academia
there has been a tendency to link these decisions to opti-
mal control [1, 17] as this enables one to use well under-
stood theoretical results. In particular apriori analysis
of stability is straightforward (e.g. [4, 7, 12]). How-
ever, the link to optimal control takes the technique
further away from engineering intuition which was key
in early industrial variants of MPC (predictive control),
e.g. [2, 8]. In this paper we focus on one commerical
product [8] Predictive Functional Control (PFC) which
has sought to relate controller design as much as possi-
ble to well understood engineering concepts. This sim-
plification is at the expense of some potential optimality
and power, nevertheless its extensive success in practice
demonstrates that such issues are rarely a problem.

There is however some classes of problem for which PFC
will often fail, that is unstable open-loop processes with
factors of the type (s — a)/(s — ra), r > 1 and multi-
variable processes. Here we concentrate on the former
of these. Some recent work [14, 15] has shown that it is

possible to transcribe some of the work on guaranteed
stability (e.g. [4, 11]) using prestabilisation before op-
timisation (other works tend to use post stabilisation).
By prestabilising the predictions before using them in
a PFC algorithm, one is able to stabilise processes that
previously could not be stabilised with such a simple
approach. This development can even be extended to
constraint handling and feasibility issues [16].

The interesting work that remains is to investigate the
use of prestabilisation over a wide class of unstable pro-
cesses. It is known that PFC coped well with some un-
stable processes, hence one ask if it is better to stick
with the original algorithm in those cases, rather than
using prestabilisation. There is good reason to inves-
tigate this question because prestabilisation has links
to dead-beat control. Moreover, early variants of MPC
with guaranteed stability (e.g. [4, 6]) were known to
be overtuned unless one used large control and output
horizons. PFC uses a control horizon of only one and
hence the prestabilised variant could well suffer from
being overtuned (near dead-beat in character).

In this paper a brief summary of PFC algorithms based
on prestabilised and non prestabilised predictions will
be given. It will then be shown how to compute implied
closed-loop poles (which is non-trivial due to the nature
of the independent model). An examples section will
then contrast closed-loop poles and closed-loop simula-
tions for each algorithm with a variety of scenarios and
processes. Finally some conclusions will be drawn.

2 Background

2.1 The PFC algorithm

In this paper we will adopt the notation of y, u, r for
process outputs, inputs and setpoint respectively. z~*
is the unit delay operator such that z7ty, = yr_1, Uk
is the value of y at the kth sample and ;4 is the
predicted value of ypy; computed at sample k. PFC
makes use of a system model to generate predictions of
the process behaviour in terms of the current state and
future inputs. The current input is selected by substitu-




tion of the predictions into a performance specification.
The performance specification is defined by a desired
closed-loop response in terms of a target first order lag.

Although more involved variants exist!, to avoid over
complicating this brief paper we concentrate on a PFC
variant with just one degree of freedom. Hence in PFC
one chooses: (i) the lag (that is the time constant, say
Tprc and (ii) a single prediction horizon say T} (de-
noted the coincidence horizon). The control move is
selected as the control which will cause the predicted
plant output to coincide with the response of a target
1st order lag T}, seconds ahead. Let T} correspond to
ny samples (i.e ny,T = T}, T the sample period), then
the online computation reduces to solving:

ST
target = Y+ (rkn, —gr)(1—e TFFC) ()
Yrktn,|k = target

Although apparently simple, this strategy has achieved
great success in practice e.g. [10].
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Figure 1. Independent model used for prediction
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Figure 2. Independent model for simulation

2.2 Independent models

In PFC it is usual to use an IM (independent model) [3]
for prediction. This can give significant improvements
in sensitivity to measurement noise over the alternative
of state realignment [13]. Also it is equivalent to a
FIR model which is favoured in industry and hence this
article will adopt an IM structure.

An independent model is intended to represent the pro-
cess as closely as possible so that it has matching inputs
and outputs. Let y,, be the output of the independent,
models (IM). The norm is to simulate the IM in parallel
with the process, using the same inputs u. In general,
due to uncertainty, y # ym,.

1Usually these are used to cater for setpoints with high order
dynamics

With unstable processes a parallel simulation cannot
work because the same input will not stabilise the IM
and an uncertain plant. A typical solution (e.g. [9]) is
to decompose the model into two parts as in figures 1,2
where for a process modelled by G:

G=(I+M) M = g (2)
where both M; and M; are stable. Figure 1 is used for
prediction and figure 2 for online parallel simulation. A

convenient decomposition in the SISO case is as follows:

_ 4
G= Bl

M1=%t; M3=n——; bg=ﬂf—d.§.
(3)

where ny., d,. are the factors containing unstable roots.

Note that for ease of notation any process dead-time is
assumed to be absorbed into n and n...

2.3 Prestabilisation and prediction

Using unstable predictions as a basis for a predictive
control law design is generally unwise [12]. Even if the
behaviour is predicted to be good within the horizon,
it would be divergent thereafter and hence one can not
make recursive feasibility claims [5] and instability is al-
most inevitable due to constraints (i.e. unnoticed con-
straint violations beyond the horizon). There is a need
therefore to parameterise the degrees of freedom in such
a way that the predictions are stable. Here (see [14]) we
use the basic philosophy of [7, 11], but without endpoint
constraints. That is place structure into the predicted
future control trajectory to bring the unstable dynam-
ics under control.

2.3.1 Notation: Define vectors of future (ar-
row pointing right) and past values (arrow pointing left)

ﬁuk Yk+1
Ag _ . Uk+41 ; E} . yk:{»?.
AU.k+nu—1 Yk+n,
Aug_y Yk
Au=| Btz |, y=| Y1

The vector of future values can be any length, but
n, corresponds to the coincidence horizon and n, the
input horizon (often one in PFC). We will use the
Toeplitz/Hankel notation to compute predictions. For
a given polynomial n(z) =ng +n127! +..., define

o 0 0
Ty T 0
Cn — ng ni Ng (4)

NMm Nm—1 Nm-2




i cen Mm-=1 Nm

no R Nm 0
Hy=

Ny 0 : 0

Also define I',, as a tall and thin submatrix of C, so
that [1,z7%,z72...]0xb = n(z)[1, 27, ...]b and note that
dimensions are flexible to fit the context.

2.3.2 Open-loop predictions: Set up consis-
tency conditions around M; and M, at each future time
instance and solve as simultaneous equations. Hence
the predictions are given by (see [14] for details):

E:H33+KUE+KWE+KL,£+KZ£ (5)

1

where L is a vector of ones, A =1—- 271 and

P = Cpici'cy!
H = PT,
Ky = PCaA(ChLL+C,_Hy,)
K, = —PCA(CH_Hd_ +Cd_Cb2L)—L
Ky = PCAC'd_(Cf,zL+H{,2)+L
K. = —PC’AOC{_(GJJZL-I-Hn_) - L
2.3.3 Prestabilised predictions: It is

straightforward [14] to form a parameterisation of
future inputs that stabilises the predictions of (5).
In essence this reduces to the constraint that A_’t_f; be
selected such that

P_ly) = Fd.}.’}’ (6)

with - stable. This can be solved analytically via a
suitable diophantine equation. More details are sup-
plied in [14, 13] but are not given here to save space.
The resulting predictions take the form

&
Au :{ H|Cw|cy|cz} w +[Fd+]c
Y lfuicywiow|cy: ¥ H, | =
Z
(7

where Hy = [CACy_]"'Th.

3 The PFC Algorithm and closed-loop poles

3.1 Algorithms
Here we give the PFC algorithms based on open-loop
and prestabilised predictions. The aim is to solve the
equations in (1) using the predictions. Define the vari-
able . -

U =e Trre; U™ = Tere (8)

and define ef to be the ni* standard basis vector. First
form the algorithm with open-loop predictions.

Algorithm 3.1 PFC with open-loop (unstable) predictions.
Substitute predictions (5) and (8) into (1):

Yk, |k egy[HAy++Ku£+ng+Kyg+Kz£]
= (1- ‘I’ny)'r‘k+ny + Unvy
(9)

Solving (9) gives the control law as
A'U.kZP.er_{_ny —PuE—Pwi‘_U—Py‘y_—Pzﬁ (10)
where g = (eZyH)‘I, By = il Py =~y By =
[¥™,0,..] — gKy, P, = —gK,, P, =g(1-0™).
Using prestabilised equations, the PFC algorithm is:

Algorithm 3.2 PFC with prestabilised predictions
Assume ¢ = cx and substituting (7) and (8) into (1)
implies

el [Hick + Cyut + Cyuw + Cyy ¥ + Cyz 2]
= (1 ity lIIny)Tk-I-ny + \I;ﬂyyk

Yitny |k

(11)
Solving (11) gives

ef Hick = Thyn,(1—T™)+y 0™
—eq [Cyuts + Cyuw + Cyy Y + Cyz 2]
(12)
Substituting (12) into (7) gives the control as:
Aug = Prrin, — Py — Puw — Py — Pz (13)

where g = (ej Hi)™!, h = eTq,, P, = hgel Cyu -

el Ky, Py = hgel Cyw — €] Ky, P, = hgel Cyy —
el Ky, P, = hgel Cy. —elK..

3.2 Closed-loop poles

It is convenient to rewrite the difference equations
(10,13) representations of the control law in terms of
z-transform polynomials D,, D,,, Dy, D. as follows:

ug = Pr(2)Tkin, -Du(z)usc—Dw(z)wk—Dy(Z)yk—D(z(z))zk

14
where Dglz) = Blp %% Dels) =
Eallizhe %, Diled = BlLe bz,
D,(z) = P[1,271,272,..]7. The argument (.)(2) is
dropped hereafter to aid readability. To compute the
implied closed-loop for the nominal case, one must
combine the following equations: the process y = Gu,
the IM (3), w = Miu, z = My (figure 2) and the
controller (14). Substituting eqn. (3) into the control
action eqn. (14) gives the full controller as

ba

.
I s Dwd—+]u = Prrin, = [Dy + Dz =y (15)

Hence the controller in the loop can be represented as

k=2

D (16)




g e d_],;u + Doty p n_Dyn+ Db,

Combining the controller and plant model, the closed-
loop poles are obtained from 1+ GK = 0 which implies

(d— —d_Dy+Dyni)ng + (n_Dy+D,b)dy =0 (17)

4 Comparison of algorithms

As it is hard to generalise theoretically, algorithms
3.1,3.2 will be compared using an number of examples
spanning a range of possible unstable processes. The
comparison will be by way of closed-loop poles, which
indicate stability and expected speed of response, and
closed-loop simulations for selected values of tuning.

4.1 Examples used
Several processes with different types of unstable
poles/zeros are trialed.

e Example 1 has just one unstable pole at z = 1.5.

i z=1-0.32"2
T 1-1.9+2"10.482"2 +0.182"3

G(2)

e Example 2 has an unstable pole at z =~ 1.49 and
an unstable zero z & 1.22. Note the pole is greater
than the zero.

_ 0.2126271 — 0.259422
T 1-2.39672"1 + 1.3499z2

G(z)

e Example 3 has an unstable pole at z ~ 1.22 and
an unstable zero z =~ 1.35.

0.18271 — 0.2432z2

Gle) = TS 1269, T 7 1105552

e Example 4 has 2 unstable poles at z = 1.2068 +
0.1885:

_ 0.2661z7! —0.217222
T 1—2.41362z"1 + 1.49182—2

G(z)

4.2 Closed-loop poles

In this section, the implied nominal closed-loop poles
that arise from a PFC design are computed for PFC
algorithms 3.1 and 3.2. This computation is carried
out for various choices of coincidence horizon and tar-
get poles ¥ (denoted as Pst in the figures). The mod-
ulus of the poles for 4 different T is plotted (y-axis)
against coincidence horizon (x-axis) in figures 3-6 for
examples 1-4 respectively. The poles for algorithm 3.1
are in dashed line and for algorithm 3.2 in solid line.
The dotted line (modulus 0, 1) denotes the origin and
stability boundary respectively. Clearly if any pole is
modulus greater than 1, then the closed-loop will be
unstable for the given coincidence horizon.

What is immediately clear from figures 3-6 is that over-
all the prestabilised approach to PFC (algorithm 3.2) is
far more likely to give a stablising control law. That is
the solid lines are far more often of modulus less than
one and notably for coincidence horizons large enough
algorithm 3.2 stabilised all the examples. However, for
small coincidence horizons it could be unstable.

Ironically, PFC based on non-prestabilised predictions
(algorithm 3.1) was more likely to be stable with small
coincidence horizons (though not always, see examples
2,3) and was usually unstable for large coincidence hori-
zons. Moroever, for large coincidence horizons one of
the poles always tended to one, i.e. the closed loop
would become very slow. Algorithm 3.1 could not sta-
bilise example 2 at all!

In summary, for a simple instability (examples 1,4) al-
gorithm 3.1 could be stabilising and give good poles for
small coincidence horizons. Algorithm 3.2 on the other-
hand was always stable with good poles for large hori-
zons (including the troublesome example 2 on which
algorithm 3.1 failed) and was sometimes also good for
small horizons. Example 3 was not stabilised with a
small horizon by either algorithm, perhaps due to the
non-mimimum phase characteristic. There was some
insignificant variability of the details with .

4.3 Simulation examples

The conclusions above can be readily illustrated with
some closed-loop simulations. These are important
because there is not a direct correspondence between
closed-loop poles and performance. The following sim-
ulations are produced; as before dashed lines denote
algorithm 3.1 and solid lines algorithm 3.2. .

e Figure 7. Example 1 with ny, = 1,¥ = .7 and
n, =10, ¥ =0.7.

e Figure 8. Example 2 with n, = 7,¥ = .5 and
ny =20, ¥ =0.5.

e Figure 9. Example 3 with ny, = 10, ¥ = .5 and
ny, =15, ¥ =0.5.

e Figure 10. Example 4 with n, = 2,% = .6 and
n, =8, ¥ =0.6.

It is clear from these that sometimes algorithm 1 gives
the best performance and sometimes algorithm 2 and
also that the simulations illustrate the results of the
pole analysis. In Figure 7 it is seen that algorithm
3.2 gives good responses (but has a jerky input for low
ny) whereas algorithm 3.1 gives good response only for
small n,. Figure 8 suggests that algorithm 3.2 gives
better response with larger ny, algorithm 3.1 is unsta-
ble. Figure 9 shows similar performance for n, = 10,
but again shows the degradation of algorithm 3.1 for




large n,. Figure 10 shows that contrary to the pole
analysis of figure 6, good performance can only be ob-
tained with algorithm 3.1 - again small n, only. Al-
though algorithm 3.2 is stable for large n,, the response
is very poor (almost dead-beat behaviour).

5 Conclusions

It is clear that the variants of PFC based on unstable
predictions and prestabilised predictions have different
strengths and weaknesses. One would want to have
both algorithms available to tackle any unknown pro-
cess. It is noted that the algorithm based on open-loop
predictions cannot stabilise every process, but when
it works (usually in a narrow range of horizons) it
can give good performance. The algorithm based on
prestabilised predictions gives much better stability as-
surances and seems to stabilise all processes for large
horizons, however the performance can be over active
and resemble dead-beat behaviour for some processes.
Future work will seek to explain this weakness in the
algorithm and propose some improvements to increase
its flexibility and appeal. Preliminary work based on
[11] has given encouraging improvements.
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Figure 3. Modulus of closed-loop poles for example 1
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Psi=0.5 Psi=0.6
2
15 P4 d
S r -.\\
o K—_
c B 10 15 20
Ps1=0.9

Figure 6. Modulus of closed-1owop poles for example 4

ny =3, Psi=0.7 r =10. Psi=0.7
]
or
ce
| 4 i
e 10 20 30 40 50 =g e 2z 30 40 50
Qutputs Qutputs
05 04
0.4 03:
03 02:
02 01
0.1 of
0 0.1
0.1 -02
=z 10 20 30 40 50 ey 10 20 30 40 50

Inputs Inputs

Figure 7. Simulations for example 1

ny =7, Psi=0.5

ﬂy =20, Psi=0.5

10 20 30 40 50

Qutputs

10 20 30 40 50

Qutputs

10 20 30 40 50
Inputs

10 20 30 40 50
Inputs

Figure 8. Simulations for example 2

ny =10, Psi=0.5

ny =15, Psi=0.5

o 10 20 30 40 50 1] 10 20 30 40 50
Outputs Outputs
2 1
1 05
r
[+
ol
-0.5
=1
-1
2 -15
=3 -2
-4 -25
o 10 20 30 40 50 a 10 20 30 40 50
Inputs Inputs
Figure 9. Simulations for example 3
n, =2, Psi=0.6 ny =8, Psi=0.6
1.2
1 I BRSO
A 1/
08 :
!
06 il
I
04 i
02 X
[+]
-02 -
[} 10 20 a0 40 50 ] 10 20 30 40 50
Outputs Outputs
2 30
15) o
1 'l‘ 1.'
0.5 1
i I
0 rl
-0.5 e

10 20 30 40 50
Inputs

10 20 a0 40 50
Inputs

Figure 10. Simulations for example 4




