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Drag in a resonantly driven polariton fluid

A. C. Berceanu E. Cancellierif, and F. M. Marchetti
Departamento de Fisica Teorica de la Materia Condensada,
Universidad Auténoma de Madrid, Madrid 28049, Spain
(Dated: May 17, 2012)

We study the linear response of a coherently driven polariton fluid in the pump-only configuration
scattering against a point-like defect and evaluate analytically the drag force exerted by the fluid on
the defect. When the system is excited near the bottom of the lower polariton dispersion, the sign
of the interaction-renormalised pump detuning classifies the collective excitation spectra in three
different categories [C. Ciuti and I. Carusotto, physica status solidi (b) 242, 2224 (2005)]: linear for
zero, diffusive-like for positive, and gapped for negative detuning. We show that both cases of zero
and positive detuning share a qualitatively similar crossover of the drag force from the subsonic to
the supersonic regime as a function of the fluid velocity, with a critical velocity given by the speed of
sound found for the linear regime. In contrast, for gapped spectra, we find that the critical velocity
exceeds the speed of sound. In all cases, the residual drag force in the subcritical regime depends
on the polariton lifetime only. Also, well below the critical velocity, the drag force varies linearly
with the polariton lifetime, in agreement with previous work [E. Cancellieri et al., Phys. Rev. B
82, 224512 (2010)], where the drag was determined numerically for a finite-size defect.

PACS numbers: 03.75.Kk, 71.36+c., 41.60.Bq

I. INTRODUCTION

Out of equilibrium quantum fluids such as polaritons
in semiconductor microcavities are being the subject of
an intensive study. Microcavity polaritons, the quasipar-
ticles resulting from the strong coupling of cavity photons
and quantum well excitons, have the prerogative of be-
ing easy to both manipulate, via an external laser, and
detect, via the light escaping from the cavity [I]. In par-
ticular, resonant excitation allows the accurate tuning
of the fluid properties, such as its density and current.
However, the polariton lifetime being finite establishes
the system as intrinsically out of equilibrium: An exter-
nal pump is needed to continuously replenish the cavity
of polaritons, that quickly, on a scale of tens of picosec-
onds, escape.

Recently, the superfluid properties of a resonantly
pumped polariton quantum fluid in the pump-only con-
figuration — i.e., where no other states aside the pump
one are occupied by, e.g., parametric scattering — have
been actively investigated both experimentally and the-
oretically [2H9]. This pumping scheme, differently from
other cases, such as the resonant optical parametric oscil-
lator regime and the non-resonant pumping scheme, cre-
ates a polariton fluid that, inside the pump spot, is not
characterised by a free phase. On the contrary, the phase
of the pump state is locked to the one of the external
pumping laser. Nevertheless, it has been predicted [2], [3]
and observed [4] that scattering can be suppressed below
a critical velocity, where the system displays superfluid
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behaviour, similarly to what has been predicted by the
Landau criterion for equilibrium superfluid condensates.
Further, a fixed phase clearly prevents the formation of
phase dislocations, such as vortices and solitons. For
this reason, it has been suggested [6] and experimentally
realised [7] that the defect can be located just outside
the pump spot, where the hydrodynamic nucleation of
vortices, vortex-antivortex pairs, arrays of vortices, and
solitons can be observed when the fluid collides with the
extended defect. Similarly, nucleation of vortices in the
wake of the obstacle has been observed in pulsed experi-

ments [8] [].

In a conservative quantum liquid flowing past a small
defect, the Landau criterion for superfluidity links the on-
set of dissipation at a critical fluid velocity with the shape
of the fluid collective excitation spectrum [10]. In par-
ticular, for weakly interacting Bose gases, the dispersion
of the low-energy excitation modes being linear implies
that the critical velocity for superflow coincides with the
speed of sound cs. Clearly, this is strictly correct only
for vanishingly small perturbations [I1], while for a de-
fect with finite size and strength, the critical velocity can
be smaller than ¢, [12] [13].

However, even for perturbatively weak defects, in out-
of-equilibrium systems, where the spectrum of excita-
tions is complex, the validity of the Landau criterion has
to be questioned [, 14, 15]. In the particular case of
coherently driven polaritons in the pump-only configura-
tion, it has been predicted [2, [3], and later observed [4],
that scattering is suppressed at either strong enough
pump powers or small enough flow velocities. Yet, on
a closer scrutiny, it has been shown that, despite the
apparent validity of the Landau criterion, the system al-
ways experiences a residual drag force even in the limit of
asymptotically large densities [5] or small velocities. This
result has been proven by numerically solving the Gross-
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Pitaevskii equation describing the resonantly-driven po-
lariton system in presence of a non-perturbative extended
defect. Here, the drag force exerted by the defect on the
fluid has been shown to display a smooth crossover from
the subsonic to the supersonic regime, similarly to what
it has been found in the case of non-resonantly pumped
polaritons [I5]. In this work, we find an even richer phe-
nomenology for the dependence of the drag force on the
fluid velocity and two different kinds of crossovers from
the sub- to the supercritical regime. Further, we show
that the origin of the residual drag force, which, in agree-
ment with Ref. [5], lies in the polariton lifetime only, can
be demonstrated even within a linear response approxi-
mation.

More specifically, in this work, we apply the linear
response theory to analytically evaluate the drag force
exerted by the coherently driven polariton fluid in the
pump-only configuration on a point-like defect. To sim-
plify the formalism, we restrict our analysis to the case
of resonant pumping close to the bottom of the lower
polariton dispersion, where the dispersion is quadratic.
Here, the properties of the collective excitation spectrum
have been shown to be uniquely determined by three pa-
rameters only [3]: the fluid velocity v, the interaction-
renormalised pump detuning A,, and the polariton life-
time k. In particular, the sign of the detuning A, deter-
mines three qualitatively different types of spectra: lin-
ear for A, = 0, diffusive-like for A, > 0, and gapped for
A, < 0.

For both cases of linear and diffusive spectra, we find
a qualitatively similar behaviour of the drag force as a
function of the fluid velocity v,: In particular, the drag
displays a crossover from a subsonic or superfluid regime
— characterised by the absence of quasiparticle excita-
tions — to a supersonic regime — where Cherenkov-like
waves are generated by the defect and propagate into the
fluid. The crossover becomes sharper for increasing po-
lariton lifetimes 1/x and displays the typical threshold
behaviour for x — 0 with a critical velocity given by the
speed of sound of linear regime, v° = cg, exactly as for
weakly interacting equilibrium superfluids (in the case
of perturbatively weak defects). This behaviour is simi-
lar to the one predicted for polariton superfluids excited
non-resonantly [15], where the spectrum in that case is
diffusive-like.

However, for gapped spectra at A, < 0, we find that
the critical velocity governing the drag crossover exceeds
the speed of sound, v¢ > ¢4, and we determine an an-
alytical expression of v¢ as a function of the detuning
A,. Further, for k — 0, the drag has a threshold-like
behaviour qualitatively different from the one of weakly
interacting equilibrium superfluids, with the drag jump-
ing discontinuously from zero to a finite value at v, = v°.

We evaluate the drag as a function of the polariton
lifetime x and find for all three cases that: In the super-
critical regime, v, > v, the lifetime tends to suppress
the propagation of the Cherenkov waves away from the
defect and therefore to suppress the drag. Instead, well in

the subcritical regime, v, < v, we find that the residual
drag goes linearly to zero with the polariton lifetime &, in
agreement to what it was found in Ref. [5], by making use
of a non-perturbative numerical analysis for a finite size
defect. Similarly to Ref. [5], here, we do also find that the
residual drag in the subcritical regime can be explained
in terms of an asymmetric perturbation induced in the
fluid by the defect in the direction of the fluid velocity.

This paper is structured as follows: In Sec. [T we briefly
introduce the linear response approximation. We classify
the three types of collective excitation spectra in the sim-
plified case of excitation close to the bottom of the lower
polariton dispersion in Sec. [[TA] In Sec. [[Tl] we derive
the drag force and characterise the crossover from the
subsonic to the supersonic regime in the three cases of
zero, positive and negative detuning. In this section, we
also evaluate the drag as a function of the polariton life-
time, interpreting therefore the results of Ref. [5]. Brief
conclusions are drawn is Sec. [Vl

II. LINEAR RESPONSE

The description of cavity polaritons resonantly excited
by an external laser is usually formulated in terms of
a classical non-linear Schrodinger equation (or Gross-
Pitaevskii equation) [16] for the lower polariton (LP) field

¢Lp(r,t) (h = 1):

i0pprp = [wrp(—iV) — ik + V(r) + glvrp*]vLp
+ F(r,t). (1)

The LP dispersion is expressed in terms of the photon

we (k) = wd + % and exciton w% energies, the photon

mass mc, and the Rabi splitting Qg [1]:

1
wrp(k) = 3 [we (k) + wk]
1 012 2

3 [we (k) —wi]”+ Q% . (2)
Because polaritons continuously decay at a rate k, the
cavity is replenished by a continuous wave resonant pump
F(r,t) at a wavevector k, (we will later assume k,, di-
rected along the z-direction, k, = (k,,0)) and frequency
Wyt

F(r,t) = fpe'lorment) (3)

Note that, as discussed in appendix |A] Eq. is a sim-
plified description of the polariton system: This implies
that the interaction non-linearities are small enough not
to mix the lower and upper polariton branches. More-
over, starting from a formulation in terms of coupled
exciton and photon fields, the polariton lifetime would
be momentum dependent and, similarly, the polariton-
polariton interaction strength g is not contact-like as in-
stead assumed in Eq. . However, as shown in ap-
pendix [A] these simplifications, do not affect our results



qualitatively, rather, allow to write them in terms of sim-
pler expressions. Further, we have checked that, when-
ever the system is excited near the bottom of the lower
polariton dispersion, the results for the drag force re-
ported in Sec. [[T]] coincide with the ones obtained by
using an exact photon-exciton coupled field description.

The potential V (r) in Eq. (2)) describes a defect, which
can be either naturally present in the cavity mirror [4]
or it can be created by an additional laser [I7]. Later
on, we will assume the defect to be point-like V(r) =
gv0(r) and weak, so that we can apply the linear response
approximation [II]. In this treatment, one divides the
response of the LP field in a mean-field component g
corresponding to the case when the perturbing potential
is absent, and a fluctuation part di¢(r,t) reflecting the
linear response of the system to the perturbing potential:

Yrp(r,t) = e et [eikp'rz/)o + 5w(r,t)] i (4)

By substituting into , we obtain a mean-field equa-
tion and, by retaining only the linear terms in the fluc-
tuation field and the defect potential, the following first
order equation in 0%(r,t):

R ikpr
o () =£ (o) +ve (L) o

where the operator £ is given by:

[: _ @(_ZV) — ik gw(%emkp.r (6)
~ e —Gpp(-iv) —ix)

with Wrp = wrp — wp + 2g[to|?. We are not interested
here in solving the complex cubic mean-field equation for
1o, as this has been already widely studied [I]. Rather,
we want to study the response of the system to the pres-
ence of the defect and how different behaviours of the
onset of dissipation can be described in terms of the dif-
ferent excitation spectra one can get for polaritons reso-
nantly pumped close to the bottom of the LP dispersion.

A. Spectrum of collective excitations

The spectrum of the collective excitations can be ob-
tained by diagonalising the operator £ in the momentum
space representation:

wrp(Ok + kp) — ik 93
Lxx, = 2 — o)
—g —wrp(0k —kp) —ik

(7)
where, 0k = k — k,. The description of the spectrum
simplifies in the case when the pumping is close to the
bottom of the LP dispersion, that can be approximated
as parabolic

k2 sk?
wLp(ékj:kp):wLp(O)-i-%—F%i(%-vp, (8)
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FIG. 1: (Color online) Collective excitation spectra for the
subsonic (thick solid [black] line at v, = 0.2¢s, with ¢; =

v/ glo|?/m) and supersonic (dashed [red] line at v, = 1.9¢;)
regimes and for an interaction-renormalised pump detuning
A, = —0.3glvol* (a, b), Ay = 0 (¢, d), A, = 0.3g|0]* (e,
f) and A, = 2.3g|o|® (g, h). Real parts of the spectra are
plotted in the left panels and the corresponding imaginary
parts in the right panels for k = 1.1g|1o|*> — note that in our
description the spectrum imaginary parts do not depend on
the fluid velocity v,.

where v, = k,/m is the fluid velocity, and m is the LP
mass, m = 2mc|[l — (W — w)// (W% — W)+ Q%L
This simplification allows one to describe the complex
spectrum in terms of three parameters only, namely the
fluid velocity vy, the interaction-renormalised pump de-
tuning

2

kp 9
Ap:wp— wLp(O)+%+g|¢o| 9)

and the LP lifetime k:

wh(k) = 6k - v, — ir + \/(0k) [e(0k) + 2gv0]?] , (10)
where e(k) = % — Ap. If energies are measured in units
of the mean-field energy blue-shift g[i|? (we will use
the notation A} = A, /glvo|* and & = k/g|io|?), then
the fluid velocity v, is measured in units of the speed
of sound ¢; = v/g|1o|?/m. In order to make connection
with the current experiments, note that, for blue-shifts
in the range g|yp|? ~ 0.1 — 1 meV, typical values of the
speed of sound ¢, are 0.8 — 2.7 x 10° m/s. Similarly, for
common values of the LP mass, the range in momenta in
Fig. [1| comes of the order of 6k, ~ 0.2 — 0.8 yum~!.

The spectrum can be classified according to
the sign of the interaction-renormalised pump detuning



A, 2| B] — see Fig. (1l For A, < 0 [panels (a,b)], the
real part of the spectrum is gapped while the imaginary
part is determined by the polariton lifetime x only. If
one applies the Landau criterion making reference to the
real part of the spectrum only, then one finds a critical
velocity

(&

Z:\/1+|A;,|+ (AL +2) > 1, (11)
S

always larger than the speed of sound for A, < 0. If
the fluid velocity is subcritical, v, < v° (see [black] solid
lines in Fig. au))7 then no quasiparticles can be excited
and thus, for infinitely living polaritons x — 0, the fluid
would experience no drag when scattering against the
defect. For supercritical velocities instead, v, > v¢ see
[red] dashed lines in Fig. [T{a), one expects dissipation in
the form of radiation of Cherenkov-like waves from the
defect into the fluid. In the supercritical regime, the set
of wavevectors k for which Rjwt (k)] = 0 form a closed
curve in the k-space with no singularity of the derivative,
i.e., in other words, the radiation can be emitted in all
possible directions around the defect. This, as we will
see in the next section, will imply that the drag force for
k — 0 goes abruptly, rather than continuously, from zero
at vp, < v° to a finite value at v, > v°.

The spectrum gap closes to zero in the resonant sit-
uation at A, = 0, when the two branches w* (k) touch
at 0k = 0 [panels (c,d) of Fig. [1]: Here, the real part of
the spectrum displays the standard linear dispersion at
small wavevectors as for the weakly interacting bosonic
gases, with the slope given by ¢, £ v,. The imaginary
part, as in the previous case, is constant and equal to
—k. It is clear therefore that in this case, when x — 0,
one recovers the equilibrium results valid for weakly in-
teracting gases [I1] (18], where the critical velocity for
superfluidity equals the speed of sound, v¢ = ¢, and the
drag displays a threshold like behaviour. Here, in the
supersonic regime v, > v, the close curve Rlw™ (k)] =0
has instead a singularity, resulting in the standard Mach
cone of aperture 6, sinf = ¢, /v,, inside which radiation
from the defect cannot be emitted [I§].

Finally, for A, > 0, the real parts of the particle w* (k)
and hole w™ (k) branches of the spectrum touch together
in either one [A, < 2, see panels (e,f)] or two [A, > 2, see
panels (g,h)] separate regions in momentum space. In the
same regions, the corresponding imaginary parts instead
split. With a somewhat abuse of language, we call these
kinds of spectrum, diffusive-like. We note that, clearly,
these spectra have no correspondence in equilibrium sys-
tems, because a finite polariton lifetime k is needed in or-
der for these modes to be stable, S[w* (k)] < 0. We also
note that for these spectra, even if considering only the
real part of the collective excitation spectrum, as soon as
the fluid is in motion v, > 0, dissipation in the form of
waves is possible. However, we will see that similarly
to the case of polaritons non-resonantly pumped [I5],
when decreasing x (and accordingly A, in order to have
stable solutions), this situation connects continuously to

F [(me;)*g% /9]

k' =0.35, A}, = 0.05

FIG. 2: (Color online) Drag force F' as a function of the
fluid velocity v, for different values of the pump detuning
Ap: Ap = —0.3g|T0)? (a), Ap = 0 (b), and A, > 0 (c), and
for different values of the polariton lifetime — here, we use
the notation k' = r/g|vo|?, A, = A/g|ibol*.

the previous case, where a threshold-like behaviour with
v¢ = ¢4 was found.

We will see in the next section how these different
spectra imply only two qualitatively different types of
crossover of the drag force as a function of the fluid ve-
locity, for either A, < 0 or A, > 0 pump detunings.

III. DRAG FORCE

The steady state response of the system to a static and
weak defect can be evaluated starting from Eq. :

(3ue) =2 (vtiats)

For a point-like defect, this can be written in momentum
space as:

79\/1#0(6(1{) —-k- Vp + ili)
e(k)[e(k) + 2g(vol?] — (k- vp —ir)?

while the other component 69} (k, — k) can be obtained
by complex conjugation and by substituting k — —k.
The drag force exerted by the defect on the fluid is given
by [11]:

Feo [onrwoPY0Ve).  (2)
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FIG. 3: (Color online) Drag force F' as a function of the
inverse polariton lifetime ' = x/(g|to|?) in the (a) subcritical
regime (v, = 0.2¢,) and (b) supercritical regime (v, = 1.9¢;).
In both cases we have fixed A, = —0.3g|Uo|*> (v° =~ 1.46¢s)
but these results are qualitatively similar for any other value
of the pump detuning. We plot in the insets the normalised
real-space wavefunction | p(r)|?/|1o|? for two specific values
of ¥ =0.2 and ' = 0.8.

and, in the steady state linear response regime, we ob-
tain:

dk
F =gy / e 500 Ok 1) + o (O, — K]

—2gt1nl [ s g - (9

The drag is clearly oriented along the fluid velocity vy,
ie., F = Fv,. If Kk — 0, then the integral in Eq. is
finite only if poles exist when Rjw® (k)] = 0, i.e., when
quasiparticles can be excited, in agreement with the Lan-
dau criterion. For finite polariton lifetimes, however, it
is clear that the integral will be always different from
zero for v, > 0. We now analyse the behaviour of the
drag force as a function of the fluid velocity for the three
(A, =0, Ap > 0, and A, < 0) different spectra illus-
trated in the previous section.

For the linear spectrum, at A, = 0, in the equilibrium
limit, kK — 0, we recover for the drag the known result of
weakly interacting Bose gases in two dimensions [11]:

F (vp/cs)2—1@

(mes)Pgi /g wvp/es

(Up - CS) ) (14)

with a threshold-like behaviour at a critical fluid veloc-
ity equal to the speed of sound cs. This limiting re-
sult is plotted as a bold gray line in the panels (b,c) of
Fig. For A, = 0 and finite lifetimes s, we find a
smooth crossover from the subsonic to the supersonic
regime, with the drag being closer to the equilibrium
threshold behaviour for decreasing « (see Fig. 2(b)). A
finite lifetime tends to increase the value of the drag in
the subsonic region v, < v¢, giving place to a residual
drag force, similar to what was found in the numerical
simulations of Ref. [5]. Instead, in the supersonic region
vp > v¢, the finite lifetime tends to decrease the value of
the drag. In the case of diffusive-like spectra at A, > 0
the situation is qualitatively very similar to the resonant
case (see Fig. [2|c)), with the difference that now, in or-
der to have stable solutions, we can decrease the value
of the lifetime only by decreasing accordingly also the
value of the pump detuning A,. The crossover for both
A, =0and A, > 0 is also qualitatively very similar to
the case of non-resonantly pumped polaritons [I5], where
the spectrum of excitation is in that case diffusive-like.

In the case of gapped spectra, the situation is however
qualitatively different (see Fig.[2(a)). For infinitely living
polaritons, kK — 0, the drag force can also be evaluated
analytically and its expression is similar to Eq. , but
with a critical velocity larger than the speed of sound,
which expression is given in Eq. :

P (mle-1gy

(m08)39\2//g B vp/Cs

(vp—0v%).  (15)

Therefore now the drag experiences a jump for v, = v°,
rather than a continuous threshold as for the resonant
case A, = 0. As already mentioned in the previous
section, this discontinuous behaviour of the drag for the
gapped spectra is connected to the fact that, as soon as
quasiparticles can be excited by the defect at v, > v,
Cherenkov-like waves can be immediately emitted in all
directions, rather than being restricted in a region out-
side the Mach cone like before. For A, = 0, the cone was
gradually closing with increasing the fluid velocity.
Both the increase of the value of the drag in the sub-
critical region as a function of the polariton lifetime and
the decrease in the supercritical region, are behaviours
common to all the types of spectra. We plot the drag
force as a function of x in Fig. B} for two values of the
fluid velocity v, and a specific value of the pump detun-
ing A, though we have checked that the following results
are generic. For v, < v¢, we find that the residual drag
is a finite-lifetime effect only, and, in agreement with the
results of Ref. [5], we find that, well below the critical
velocity, the drag force goes linearly to zero for k — 0.
In the resonant case A, = 0, the slope of the drag for
vp <K ¢ can be evaluated analytically starting from the

expression :

F 2cy 1 1 K
(mcs)?’g‘%/g k=0 TUp 1 — (vp/cs)? glol?



The residual drag in the subsonic regime is an effect of the
broadening of the quasi-particles energies: Even when the
spectrum real part does not allow any scattering against
the defect (e.g., for A, < 0), the broadening produces
some scattering close to the defect. This results in a per-
turbation of the fluid around the defect, asymmetric in
the direction of the fluid velocity (see panel (a) of Fig. [3]),
similarly to what it was obtained in Ref. [5]. Instead, in
the supersonic regime, the drag force is weaker in the non-
equilibrium case respect to the equilibrium one. This is
caused by the finite lifetime tending to suppress the prop-
agation of the Cherenkov waves away from the defect, as
shown in panel (b) of Fig.

IV. CONCLUSIONS AND DISCUSSION

To conclude, we have analysed the linear response to
a weak defect of resonantly pumped polaritons in the
pump-only state and we have been able to determine
two different kinds of threshold like behaviours for the
drag force as a function of the fluid velocity. In the
case of either zero or positive pump detuning, one can
continuously connect to the case of equilibrium weakly
interacting gases, where the drag displays a continuous
threshold with a critical velocity equal to the speed of
sound. However, for negative pump detuning, where the
spectrum of excitations is gapped, the drag shows a dis-
continuity with a critical velocity larger than the speed of
sound. In this sense, the case of coherently driven micro-
cavity polaritons in the pump-only configuration displays
a richer phenomenology than the case of polariton super-
fluids non resonantly pumped. It would be interesting to
perform a similar analysis in the case of polaritons in the
optical parametric oscillator regime, where polaritons are
parametrically scattered from the pump state to the sig-
nal and idler states. Here, the spectrum of excitations
has been already determined in Ref. [I9], however it is
far from clear what are the conditions for subcritical,
superfluid, behaviour in a fluid characterised by three
distinct currents, and how the link between signal and
idler imposed by the parametric scattering influences the
scattering of both fluids against a defect.

1P -

(@a&+gy4mm+%)
Ly, =

where now wrp(dk £ k,) = wrp(dk £ k,) — wp, +
2gxcipc§kikp|wo\2. It is easy to show that the eigenval-
ues of this operator coincide with our approximated ex-
pressions ([10)) in the limit of 6k < k,, when ¢2; i, cip,
s?k ik, sip and when we can simply rename g = gx cﬁp
and k = k(kp). It is interesting to note that, even if we
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Appendix A: Gross-Pitaevskii equation for the lower
polariton field

If one starts from a descriptions of polaritons in terms
of separate exciton and cavity photon fields, a rota-
tion into the lower and upper polariton basis, followed
by neglecting the occupancy of the upper polariton
branch, results in the following Gross-Pitaevskii equation
for the lower polariton (LP) field in momentum space

Yrp(rt) =3, e Y p(t) [16]:

iOrpx = fpe P ok, + lwip(k) — ik(k)] Yrpx+
Z I k1 ko VLP Ky +ko—kVLP I VL Pk T

ki,k2
SkZkakleP,klskl . (A1)
ki
where r(k) = kxci + kosi is the effective LP decay

rate, gk k, k, = 9XCkClk;+ko—k|Ck,Ck, 1S the interaction
strength, and where V(r) = Y, e®7V4. In these expres-
sions, the coefficients

2,58 = 1+ wolk) = w
ks 9k — 2 <1 + \/(wc(k) _wg()Q _i_Q%:) (AQ)

are the Hopfield coefficients used to diagonalise the free
polariton Hamiltonian. We want here to justify the sim-
plified description done in Eq. . If we follow the linear
response expansion as in (4)), the operator £ in momen-
tum space analogous to (7)) reads as:

9x R, ok, Cok—l, VG
—orp(0k — k) — in(dk — k) |

would retain the linear terms in k,, - 6k in the expansion
of ¢34 4+, this would result in a renormalisation of the
fluid velocity v, in the expression which takes into
account the blue-shift of the lower polariton dispersion
due to the interaction.
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