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Abstract

A simple geometrical model of a ripened secondary dendrite arm is used to

investigate the curvature at the neck of the arm where it joins the primary trunk. It is

found that the negative K
(1)

component of the curvature does not fully balance the

peak in the positive K
(2)

component.

Introduction

Within the mushy zones of a solidifying metallic melt a number of complex

interactions between the growing dendrites and their parent melt can occur as a result

of natural or forced flow. One such interaction is the copious detachment of

secondary dendrite arms. These dendritic fragments may subsequently be swept by

the flow away from the mushy zone towards the centre of the casting, where they may

act as powerful heterogeneous nuclei, leading to grain multiplication and ultimately a

grain refined microstructure. In deed, a number of aluminium producers have

experimented with the viability of using mechanical agitation during the DC casting

process as an alternative to the addition of chemical grain refiners to the melt [1].

However, despite the potential commercial importance of dendrite fragmentation and

detachment as a result of flow in the parent melt, the phenomenon is far from well

understood. Fig. 1 shows a dendrite grown [2] in the transparent analogue system

NH4Cl-H2O. Many of its secondary arms display the familiar geometry characteristic

of alloy systems, being highly constricted at the base where they join the primary
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dendrite trunk. This geometry is usually attributed to the initial growth phase of the

secondary arm as it grows through the solute rich boundary layer adjacent to the

primary trunk. These features appear delicate in the extreme, yet it is well established

that in quiescent conditions they may persist for long periods of time as relatively

stable features [3, 4]. However, if perturbed by motion of the parent melt detachment

may occur.

Several mechanisms have been proposed to account for the detachment of secondary

dendrite arms in a flow. These include [5, 6] local remelting due to warm fluid being

swept over the dendrites, mechanical shearing, plastic deformation followed by

remelting and constitutional remelting. The latter may occur because the high solute

concentration in the boundary adjacent to the primary trunk will lower the local

melting temperature. If the solute concentration is altered by the flow the local

melting temperature will drop and remelting may occur [7].

According to the Gibbs-Thomson relationship, the equilibrium solute concentration in

the liquid is increased by the curvature of the dendrite by an amount

K
Hm

T
cc
r
ll


 (1)

where cl is the equilibrium concentration at a flat interface, r
lc is the local equilibrium

concentration,  the surface energy between the solid and liquid phases, T the

absolute melting temperature, H the heat of fusion per unit volume, m is the slope of

the liquidus line and K is the curvature. For a body which is a figure of revolution, K

will have two components, K
(1)

and K
(2)

(K = K
(1)

+ K
(2)
) the orientation of which are

shown in Fig. 2. It is generally accepted that the high K
(2)

component of the curvature

that results due to the narrow neck of the secondary arm is balanced by the negative

K
(1)

component of the curvature [5]. If this were not the case the large positive K
(2)

component of the curvature at the neck of the secondary arm would lead to rapid

remelting due to the increased local solubility in this region.
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Any viable mechanism for secondary arm detachment must be able to account for a

number of observations that have been made relating to this phenomenon, in

particular those of Glicksman & co workers [6] on the succinonitrile-acetone system.

By observing the detachment of dendrites in a controlled flow cell and making

simultaneous measurements of the local flow velocity in the mushy zone they found

that increasing the flow velocity does not necessarily increase the fragmentation rate

and, moreover, that detachment often occurs in swarms, that is there is a critical level

of disturbance at which large numbers of dendrite arms will detach essentially

simultaneously.

In this paper we examine the morphology of ripened secondary dendrite arms in the

NH4Cl-H2O analogue casting system and apply a simple analytical model to calculate

the K
(1)

and K
(2)

component of the curvature to establish the extent that these are in

fact in balance and thus comment on the viability of various detachment mechanisms.

Method

In order to model the K
(1)

and K
(2)

components of the curvature we have used a

geometrical model of a ripened secondary arm that we have previously employed to

model fluid flow within the mushy zone [8, 9]. The primary requirements of the

geometrical model are that the dendrite arm, which we take to have unit height,

should have a smooth, continuously differentiable surface with a radius minimum r1,

at a height z1, and a radius maximum r2, at height z2 (see Fig. 2).

The following parametric function can be shown to satisfy these criteria




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z t exp( )2 t  0 (4)

Here ai (i = 0, 4) are parameters which are determined by the values of (r1, z1) and (r2,

z2) according to
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   ln( )z2 (11)

In applying this parametric form to model the geometry of secondary dendrite arms

the main underlying assumptions are that each individual secondary arm can be

considered as a figure of revolution and that the parametric form is itself a good

representation of the profile of the arm. The first of these appears reasonable

provided we restrict consideration to secondary arms that are themselves not

undergoing tertiary arm growth. Theoretically this approach can be justified by the

low crystalline anisotropy of most metals. Although growth process tend to amplify

crystalline anisotropy exponentially this is not true of ripening and remelting

processes. The fact that the morphology of secondary dendrite arms (in the absence

of tertiary growth) is governed principally by ripening rather than growth processes

[10, 11] mean that they are likely to be figures of revolution to a good approximation.

The second assumption can be justified empirically by comparing the model geometry
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to that of real secondary arms. As shown in the insert in Fig. 1, provided we again

restrict our consideration to secondary arms without tertiary branching the assumption

appears valid. That is, provided we fit the model to the co-ordinates of the radius

minimum and maximum, (r1, z1) and (r2, z2) respectively, a good approximation to the

actual geometry of a ripened secondary dendrite arm is obtained.

In order to determine realistic values of the parameters (r1, z1) and (r2, z2) we have

made careful measurements of these parameters on 34 of the best developed

secondary arms apparent in Fig. 1. The arms selected for this process are indicated in

the figure. We acknowledge that the solid fraction for the NH4Cl-H2O system shown

in Fig. 1 is very low, leading to secondary arms that are likely to be relatively longer

and more slender than those in most metallic castings, nonetheless the mechanism

stabilising the secondary arms in this system is likely to be the same as that operating

in metallic systems at higher solid fraction.

The rationale for selecting the arms chosen is relatively straightforward. Firstly, we

have avoided arms within 40 visible sidebranches of the tip, to ensure that the

geometry we are studying is indicative of the ripening and not the growth process and

secondly have selected only the larger arms for inclusion within the data set. The

reasons for this latter condition are twofold. Firstly the numerous small sidebranches

evident along the length of the dendrite are likely to be being actively removed, a

process which occurs by axial dissolution causing the dendrite to shrink from its tip

back towards its root rather than to detach from the trunk [12]. Secondly, and perhaps

more pragmatically, it is easier to make the measurements accurately for the larger

sidebranches.

For each of the 34 sidebranches selected the parametric geometrical model has been

fitted to the measured values of (r1, z1) and (r2, z2) and Mathematica [13] has been

used to calculate the differentials, rt, zt, rtt and ztt from which it is then a fairly

straightforward matter to calculate zr and zrr and hence K
(1)

and K
(2)

from their

standard forms,

2/32

)1(

)1(
),(

r

rr

z

z
rzK


 (12)



6

2

)2(

1
),(

r

r

zr

z
rzK


 (13)

Results

Figures 3 a&b shows the values of ri and zi as a function of L, the length of the

corresponding dendrite. In line with the definitions of r and z above, the measured

radii and heights have been non-dimensionalised by dividing by L. With reference to

Figure 3a we note that, both r1 and r2 show a systematic tendency to decrease with

increasing L. In deed, to a reasonable first approximation trend lines fitted through

the two data sets would be parallel. In contrast, z1 and z2 appear to be independent of

L, although the data for z2 shows considerable scatter. The implication of this is that,

unlike the case for growth of a dendrite, secondary dendrite arms are not self-similar

to within a characteristic length scale. They become instead relatively more slender

as they become longer, although the locations of the maximum and minimum radii do

not appear to change with length. This no doubt reflects the fact that the morphology

of secondary dendrite arm is governed by ripening as opposed to growth processes

[10, 11]. For the 34 sidebranches measured the mean location of the maximum and

minimum radii are 02.007.01 z and 07.059.02 z .

Figure 4 shows a typical profile for the curvatures K
(1)

and K
(2)
, in this case calculated

for a dendrite with dimensions ( 1r , 1z ) and ( 2r , 2z ), where for reference the mean

values of r1 and r2 are 03.01 r and 08.02 r . In keeping with the co-ordinate

system described above the curvature is given in dimensionless units. For a

secondary arm of average length, ȝm190L , the maximum in K
(2)

of 34 would

equate to a positive curvature of 1.7  10
5
m

-1
. It is clear from Fig. 4 that, as would be

expected, there is a sharp positive peak in the K
(2)

component of the curvature in the

vicinity of the radius minimum at z1, which is balanced by a negative peak in the K
(1)

component. However, it is significant that the positive peak in K
(2)

is not completely

balanced by the negative peak in K
(1)
. In fact in the case illustrated the relative

magnitudes are
)1(

minK = -27 and )2(
maxK = 34.
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We have performed the type of calculation illustrated in Fig. 4 separately for each of

the 34 measured sidebranches and the results for
)1(

minK and )2(
maxK , together with their

summation, are displayed in Fig. 5. Here, because each of the sidebranches has a

different length, we have reverted to using dimensional curvature in order that a

meaningful comparison can be made. Despite considerable scatter in the data, which

is probably indicative of the fact that some of the sidebracnches are actively

dissolving while other are growing, the general picture is that the total curvature in the

vicinity of the radius minimum is generally positive, i.e. as above the negative K
(1)

component does not fully balance K
(2)
. The mean total curvature in the vicinity of r1

is -14 m101.4 K .

As described by Equation (1), this residual curvature at the neck of the sidebranch

gives rise to a local solubility in the liquid of r
lc , which will be higher than the

equilibrium solubility cl. Consequently, if rapid remelting of the sidebranch at its root

is not to occur the actual local concentration of solute in the liquid must be close to

r
lc . This local concentration in the liquid will in turn be established by equilibrium

with the local vicinity of the secondary arm and the primary trunk to which it attaches.

To estimate the local concentration of solute in the liquid we have assumed that this is

governed solely by exchange with the local vicinity of the secondary arm.

Consequently, the local mean concentration of solute in the liquid, lc , will be

determined by the mean curvature of the arm over some characteristic diffusion

length, dl. That is

K
Hm

T
cc ll


 (14)

where K is the mean curvature in the vicinity of the radius minimum, which is given

by
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The problem now reduces to estimating the characteristic diffusion length, dl.

However, as the narrowing of the root of the secondary arm in the vicinity of the

primary trunk is itself a manifestation of it growing through a solute boundary layer

we may take the height of the radius minimum as being indicative of the characteristic

length scale for solute diffusion. With 1z being 0.07 we have taken the limits on the

integral as being (in dimensionless units) 0 to 0.15 approximately, wherein, for our

average dendrite defined by a minimum ( 1r , 1z ) and a maximum ( 2r , 2z ) the integral

evaluates to 6.8K . Re-dimensionalising against the average length, ȝm190L ,

the gives a mean curvature of -14 m106.4 K , in remarkably close agreement with

the average difference between of )2(
maxK and

)1(
minK .

Discussion

From the above calculation, we would conclude that although the enhanced solubility

occasioned by the high K
(2)

component of the curvature is not exactly cancelled by the

negative K
(1)

component, the small positive residual leads to a solubility at the neck

which is very close to the local concentration of solute in the liquid as established by

equilibrium between the solid and liquid averaged over some typical diffusion length

scale, dl. This would very naturally explain both why these apparently delicate

features can persist for relatively long time under quiescent conditions but are subject

to detachment in swarms if there is flow in the interdendritic liquid. Specifically, if

the fluid local to the vicinity of the neck of the sidebranch, with solute concentration

close to r
lc is replaced by fluid with containing the equilibrium solute concentration,

cl, remelting will occur essentially simultaneously at all sidebranches. Moreover, as

shown in Figure 6 this is likely to be a runaway process. In Figure 6 we have plotted

the effect on K
(1)

and K
(2)

of the effect of a small change in r1, on the assumption that

L, z1 and z2 remain unchanged. At the radius minimum at z1, K
(2)

is only dependant

upon r2, but K
(1)

depends on the geometry of the whole dendrite and may
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consequently be effected by possible changes in r2. We have considered three

possible scenarios regarding r2 during this process (i) that it remains constant, (ii) that

it changes at the same rate as r1, (iii) the relative rates of change of r1 and r2 are

proportional to the local curvature at these points, i.e. r2/r1 = K(z2)/K(z1), although

in fact for the particular case considered the differences between the three scenarios

are so small as to not be distinguishable when plotted on Figure 6. For this example

calculation we have used the values of 1z , 2r and 2z , with a starting value for r1 of

1r , and a starting value for r2 of 2r . What is evident from the figure is that K
(1)

is

relatively insensitive to changes in r1 (and r2) while K
(2)

increases rapidly as r1

decreases. That is even a small amount of remelting is likely to drive the system

further from equilibrium, thus accelerating the rate of remelting. Detachment of

secondary arms in a swarm would invariably follow.
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Figures

Fig. 1. Image of a dendrite grown in the analogue casting system NH4Cl-H2O [from

Ref. 2]. Note that many of its secondary arms display the familiar geometry

characteristic of alloy systems, being highly constricted at the base. The numbers

indicate those secondary arm for which measurements of the radius and location of

the maximum and minimum diameters were made. The insert shows an example of

the model geometry adopted in the work overlaid upon one of the dendrite

sidebranches from the image.
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Fig. 2. Geometrical model of a ripened secondary arm, also illustrating the

orientations of the K
(1)

and K
(2)

components of the curvature.
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Fig. 3. The radii (a) and position (b) of the maximum and minimum diameters for 34

of the best developed secondary dendrite arms in Fig. 1, shown as a function of the

length of the arm, L.
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Fig. 4. Illustrative calculation of the K
(1)

and K
(2)

components of the curvature along

the length of an average secondary dendrite arm. Note that minimum in the negative

K
(1)

component does not fully cancel the peak in the K
(2)

component.
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Fig. 5. The values of the minimum in the K
(1)

and maximum in the K
(2)

components

of the curvature in the vicinity of the radius minimum near where the secondary arm

joins the primary trunk of the dendrite.
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Fig. 6. Illustrative calculation of how the minimum in the K
(1)

and maximum in the

K
(2)

components of the curvature in the vicinity of the radius minimum near where the

secondary arm joins the primary trunk of the dendrite vary as a function of r1.


