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Quantification of Mesh Induced Anisotropy Effects in the Phase-Field Method

A. M. Mullis

Institute for Materials Research, University of Leeds, Leeds LS2 9JT, UK

ABSTRACT

Phase-field modelling is one of the most powerful techniques currently available for the

simulation from first principles the time dependant evolution of complex solidification

microstructures. However, unless care is taken the computational mesh used to solve

the set of partial differential equations that result from the phase-field formulation of the

solidification problem may introduce a stray, or implicit, anisotropy, which would be

highly undesirable in quantitative calculations. In this paper we quantify this effect as

a function of various computational parameters and subsequently suggest techniques for

mitigating the effect of this stray anisotropy.

PACS: 81.31.-t, 81.30.Fb, 64.60.-i
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Introduction

The dendrite is a solidification morphology characteristic of many metallic melts and

certain other systems with a low entropy of fusion. It is a structure of both great

practical and theoretical interest. Dendrites are parabolic needle crystals that develop

complex, time dependent shapes, normally as the result of extensive branching which

gives rise to a tree-like structure.

During the processing of metallic components, solidification from the parent melt is

almost invariably the first step. Remnants of the dendritic microstructures formed

during solidification often survive subsequent processing operations, such as rolling and

forging, and the length scales established by the dendrite can influence not only the final

grain size but also micro- and hence macro-segregation patterns. This can have a wide-

ranging influence on both the properties of finished metallic products, affecting for

instance mechanical properties, corrosion resistance and surface finish, and on the

formability of metallic feedstock, such as the ability to resist hot tearing during rolling.

Theoretical interest stems from the fact the dendrite is a prime example of a pattern

forming system where complex morphologies arise from initially homogeneous

conditions due to the highly non-linear response of the controlling system. Moreover,

although the governing equations for dendritic growth have been known for many

decades, finding solutions to the free-boundary problem, even in the tip region has

proved enormously complicated. Indeed, finding analytical steady-state solutions for

the radius of curvature of the dendrite at its tip has proved to be beyond all orders of

perturbation theory [1].
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The problem of predicting the operating point of the dendrite first became apparent in

1947 when Ivantsov [2] showed that an isothermal paraboloid of revolution, growing

with radius of curvature R and (tip) velocity V into an isotropic undercooled melt was a

shape preserving solution to the diffusion equation, thus giving rise to the idea of the

needle dendrite. However, the Ivantsov analytical solution for such a crystal is

degenerate in that it relates the Peclet number, and not the growth velocity, to

undercooling, where the Peclet number is defined as

lD

VR
p

2
 (1)

where Dl is the diffusivity in the melt. Consequently, at a given undercooling an infinite

set of solutions are admissible, subject to the condition VR = constant. Such degeneracy

is not observed in nature, where a well-defined growth velocity can always be

associated with a given set of initial conditions.

A rigorous approach to the problem of selecting the operating point of a needle crystal

is provided by the theory of microscopic solvability [3, 4]. The principal physical

insight of solvability theory is that surface tension acts as a singular perturbation which

resolves the degeneracy found in the macroscopic problem. Perhaps counter to

intuition, it turns out that in the case of an isotropic system the equations have no

solution. The principal prediction of solvability theory is that capillary forces break the

Ivantsov degeneracy via the relationship
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where do is is the capillary length, which is given by
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where  is the interfacial energy between the solid and liquid phases, L is the latent

heat per unit volume, c the specific heat per unit volume and Tm is the equilibrium

melting temperature of the solid. *
is the anisotropy dependant eigenvalue for the

problem, where for a cubic system anisotropy is usually introduced by writing

)4cos1(o  ddd  (4)

where d is the anisotropy strength. For small Peclet numbers *
is found to vary as

4/7)(* dd   in the limit p, d  0.

Although it has allowed great advances in our understanding of the steady-state

dendritic growth, solvability theory is not suited to the time-dependant growth problem.

One of the central advances in the ability to predict non-steady dendritic growth in the

last 20 years has been the advent of phase-field modelling. First proposed by Langer

[5] and subsequently developed by, among others, Caginalp [6] and Penrose & Fife [7],

the basis of the phase-field method is the definition of a phase variable (say ) the value
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of which describes the phase state of the material. At it simplest, for a single-phase

solid, this might for instance equate   1 with the solid and   -1 with the liquid. The

central assumption of the phase-field method is that the interface between phases is

diffuse, with a finite width , and that  is thus a continuous variable over the whole

domain  on which the problem is defined. For the simple single-phase system

discussed above this would allow  to take values intermediate between the solid and

liquid end members, that is -1    1. Unlike the classical Stefan problem, in which

the solidification front is treated as a mathematically sharp interface at which boundary

conditions are applied, the continuity of  over  allows the equations that govern the

evolution of  to be written in a differential form. These are usually derived from either

a free-energy or entropy functional which incorporates conservation of energy and

positive entropy production, with the Gibbs-Thomson condition relating the local

interface temperature to the thermodynamic equilibrium temperature, local interface

curvature and interface kinetics. This phase-equation, coupled to a transport equation

for either heat or solute, can then be solved using conventional techniques for partial

differential equations.

The phase-field method has facilitated significant progress in our understanding of a

number of problems associated with time-dependant dendritic solidification including

the study of dendritic shapes at high undercoolings [8], a model for spontaneous grain

refinement [9] and the inclusion of electric currents through the solidifying material

[10]. However, there are a number of problems with the technique, one of which is the

implicit anisotropy introduced into the solution by the mesh on which the differential

equations are solved. Although most workers in the field recognise this as a potential
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pitfall when using phase-field methods the problem has received little systematic study.

The problem arises for the following reasons;

 the finite difference (FD) and finite element (FE) routines generally used to

solve the differential phase and transport equations normally discretise the

computational domain using a regular mesh. The regularity of the mesh

introduces a directionality which is equivalent to an implicit or mesh induced

anisotropy to the solution,

 dendritic solidification is very sensitive to small amounts of anisotropy.

Consequently, the small level of anisotropy introduced by using FE or FD

solvers with a regular mesh can have a significant effect in phase-field

simulations when, in many other computational models, this effect would be

insignificant.

This work was largely motivated by our observation that mesh induced anisotropy was a

far more significant problem in solutal phase-field models than in thermal models. In

this paper we set out to systematically analyses the origins of mesh induced anisotropy,

accounting for why it is more problematic in solute based systems, to quantify the mesh

induced anisotropy as a function of the relevant computational parameters and to

suggest mitigating strategies.

Computational Model

Our investigation was conducted using the single-phase model of Warren & Boettinger

[11]. As with most phase-field models the basis of the Warren & Boettinger model is

the definition of an entropy functional [12, 13], which in this case is
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where s is the thermodynamic entropy density,  is the phase variable taking values 0 in

the solid and 1 in the liquid, e is the internal energy density and c is the concentration of

solute (chemical species B) in the solvent (chemical species A). The parameter 

represents gradient corrections to the entropy density, although gradient corrections to c

and e are omitted.

It is shown in [11] that in the case of isothermal solidification in an ideal solution

between components A and B this lead to an anisotropic phase-equation given by
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with g being the quartic polynomial 2(1-)2 and  the width of the diffuse interface. In

each case the superscripts A and B indicate that the specified quantity refers to the pure

substances A and B respectively. The kinetic mobility is given by

BA
cMMcM  )1( (9)
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where  is the linear kinetic coefficient for interface attachment in the pure substances A

and B respectively. Anisotropy has been introduced by writing [14,15]

)cos1()()(  k (11)

where  is the anisotropy strength, k is a mode number, which for solidification in a

cubic metal will be 4 and
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Note that Equation (12) implies that if the surface energies and melting temperatures of

species A and B are assigned fixed (i.e. physical) values, it is not possible to

independently vary both A and B.

The transport equation is given by

   



  ABm

c HHcc
R

v
cDc 1 (13)

where the effective diffusivity is given by

))(( slsc DDpDD   (14)

with vm being the molar mass, R the gas constant and Ds the diffusivity in the solid

phase. p() is a polynomial given by [12]
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The system of differential equations given by Equations (6) and (13) represent a full

description of the solidifying system. In this work they have been solved using a simple

explicit finite difference method on a uniform square mesh with time step t and mesh

size t. The finite difference scheme employed is first order accurate in t and either
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second or forth order accurate in x (see below), for both the phase and transport

equations. The second order scheme uses a 3-point stencil to calculate the differentials,

namely

)(2/)( 11 xTTT jjx   (16)

while the forth order scheme uses a 5-point stencil

)(12/)88( 2112 xTTTTT jjjjx   (17)

The use of an explicit finite difference scheme means that the time step, t, will be

limited by a Courant type stability condition. For the transport equation this can be

written as

lD

x
t





2)(

(18)

where  would be exactly 4 in the absence of the non-linear source terms in Equ. (13)

and is likely to be > 4 when these terms are present. The equivalent condition for the

phase equation is less straightforward, but providedM2  Dl, gives a limiting time step

comparable to Equ. (18). Consequently we have adopted Equ. (18) as the limiting

condition on t, where  is to be determined empirically.
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Determination of the Mesh Induced (Implicit) Anisotropy

In the absence of anisotropy no stable solutions exits for a solid nucleus growing out

into its undercooled or supersaturated parent melt. Consequently, an initial circular

nucleus will grow to a critical radius, determined usually by the surface energy, ,

before breaking up into random fingers. However, until the critical radius is

approached, an initially circular nucleus will, to a very good approximation, retain its

circular shape. When anisotropy is present the evolution of the solidifying nucleus is

quite different. The solidification velocity will be greater in the direction(s) favoured by

the anisotropy so that an initially circular nucleus will rapidly develop a non-circular

aspect. In the case of a 4-fold anisotropy this leads rapidly to the development of a

‘rounded off’ square, well before the onset of instability leads to the breakup of the front

into fingers. An example of this morphology, with an anisotropy directed towards the

sides of the computational domain, is shown in Fig. 1. In order to establish the strength

of the implicit anisotropy, at least to first order, we explicitly introduce a counter

anisotropy of strength , such that a circular aspect is recovered. In the case of a 4-fold

anisotropy directed towards the sides of the computational domain, as shown in Fig. 1,

the counter anisotropy would also be 4-fold symmetric, but off-set by 45, that is direct

towards the corners of the domain. We thus estimate to first order the strength of the

four-fold symmetric component of the mesh induced anisotropy, m4.

In order to quantify m4 a number of simulations have been performed. In all of the

simulations performed the parameters used are those given in Table 1, unless stated

otherwise. For this parameter set, and using a second order accurate finite difference

scheme the measure value of m4 was 0.025.
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Results

As mentioned above this work was motivated by our observation that mesh induced

anisotropy is a far severe problem in solutal models than it is in thermal models.

Indeed, we have applied the methodology described above to measure the mesh induced

anisotropy in a thermal-phase field model [16, 17] which uses an essentially identical

phase equation and found m4 to be < 0.002.

Our initial feeling was therefore that the observed difference in the strength of the mesh

induced anisotropy was likely to arise from some quantity that differs significantly

between thermal and solutal models. The most significant difference between the

models is the extent of the diffusion boundary layer ahead of the growing dendrite,

which scales with the diffusion coefficient. The ratio l/Dl is typically 103 for metals,

where l is the thermal diffusivity in the liquid, leading to a comparable ratio for the

size of the diffusion boundary layers. In terms of dendritic growth this results in a

thermal boundary layer which is typically >> 10R, while the extent of the solutal

boundary layer is < R/10. In particular, the small size of the solutal boundary layer may

mean that it samples relatively few mesh cells, thus acquiring a directionality that

generates an implicit anisotropy within the transport equation. That the mesh induced

anisotropy within the solution arises predominantly from the transport equation can be

verified by independently varying the order of the solver used for the phase and

transport equations. The expectation would normally be that a higher order solver

would reduce the mesh induced anisotropy as more mesh points are sampled by the

larger stencil employed. The results of this investigation are shown in Table 2. In each

simulation the physical parameters used are identical and are as given in Table 1. From
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Table 2 it is clear that the transport equation does appear to be the primary source of the

mesh induced anisotropy and that increasing the order of the solver does reduce the

problem.

In order to establish the dependence of the mesh induced anisotropy as a function of the

diffusion boundary layer size we may either vary Dl, which will alter the physical extent

of the boundary layer and hence the number of mesh cells sampled or we may alter x,

which will keep the physical size of the boundary layer fixed but will include more

mesh cells within the fixed physical extent of the boundary layer. In the first instance

m4 was measured as a function of Dl. During this investigation the ratio Ds/Dl was held

fixed at 10
-4
and all other quantities were fixed at the values given in Table 1. However,

somewhat to our surprise, there was no variation in m4 despite varying Dl over a range

of two orders of magnitude, from 10
-9
m

2
s
-1
to 10

-7
m

2
s
-1
.

We did, however, find that there was a dependence on the ratio Ds/Dl, although the not

on the particular values assigned to either Dl or Ds. Typically Ds/Dl would be of the

order 10
-4
for substitutional diffusion in metals although for interstitial diffusion this

ratio could be as high as 10
-1
. Figure 2 shows that within the physical range of

10
-4
- 10

-1
there is a small drop in m4, although if this is extended to the unphysical limit

of equal conductivities in the solid and liquid states there is a much more significant

drop in the mesh induced anisotropy. However, while the ratio of conductivities in the

solid and liquid states does vary significantly between thermal and solutal models it is

less clear why this should affect the mesh induced anisotropy than the extent of the

diffusion boundary layer.
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We subsequently looked therefore at the variation of m4 with x, finding that there was

a significant reduction in m4 as x was reduced. However, closer investigation

revealed that it was not the number of mesh cells in the diffusion boundary layer that

was important, but the number in the diffuse solid-liquid interface. The variation of m4

with the ratio int/(x), where int is the half-width of the diffuse solid liquid interface is

shown in Fig. 3. That it is the ratio int/(x) that is important not the absolute value of

x was confirmed by independently varying int and x and obtaining an essentially

identical trend when m4 is plotted against int/(x). However, this result seems to

contradict our earlier findings that the mesh induced anisotropy arises predominantly

from the transport equation. Moreover, a mesh induced anisotropy arising within the

phase equation would not account for the different behaviour of the thermal and solutal

models, as the phase equation, and the way in which it is solved, is very similar between

the two models. Consequently we need looked for other ways in which thermal and

solutally controlled solidification differ in order to explain these observations.

Another fundamental way in which thermal and solutally controlled solidification

differs is that in thermally controlled solidification the temperature is continuous across

the solid-liquid interface whereas in solutally controlled solidification the concentration

would not, in general, be expected to be continuous at the interface. Rather, it would

maintain a constant ratio given by the equilibrium partition coefficient, ke = Cs/Cl,

where Cs and Cl are the solute concentration in at the interface in the solid and liquid

phases respectively. This is illustrated schematically in Fig. 4a for a sharp interface

model. However, within phase-field this discontinuity in c is smoothed out over the

width of the diffuse interface, such that c is continuous although c may be potentially
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very large. In the diffuse interface region c will sample very few mesh cells, in deed

less than in the solute boundary layer, and hence the potential to generate mesh induced

anisotropy exists. This would hence explain why m4 is insensitive to the extent of the

solutal boundary layer.

Moreover, it also explains why m4 shows a dependence on the ratio of the diffusivities

in the solid to the liquid states, Ds/Dl, within the solutal model. As illustrated in Fig. 4b,

in the thermal case the thermal diffusivities will typically be of similar magnitude and

are often assumed to be identical. For solutally controlled solidification this is not the

case with Ds/Dl typically being around 10
-4
. As above, in the sharp interface model this

results in a discontinuity in Dc at the interface, but in phase-field this is smoothed out

over the width of the diffuse solid-liquid interface, resulting in a potentially large value

for Dc. Interestingly, the transport equation (13) contain terms in both c and Dc.

So far we have looked only at the first order component of the mesh induced anisotropy,

that having the same 4-fold symmetry as the computational mesh being used to solve

the equations and we have described a simple method in which a counter directed 4-fold

symmetric anisotropy can be introduced to estimate its magnitude. A further question is

whether this 4-fold symmetric component is the only component of the mesh induced

anisotropy. This question can be resolved by taking a model in which the 4-fold

symmetric component of the mesh induced anisotropy has been exactly cancelled by the

explicit anisotropy and allowing it to carry on growing well beyond the limit where the

surface instabilities will cause the circular nucleus to break up. If such a simulation

shows random branching, the residual (higher order) anisotropy is likely to be
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negligible, if it shows a distinct directionality this is probably not the case. One such

simulation is shown in Fig. 5, from which a number of observations can be made. The

observed branching is clearly not random, and is most likely the result of a small

component of anisotropy with 16-fold symmetry, m16. Note here that the components

directed towards both the sides and the corners of the computational box will have been

suppressed by the process used to remove the 4-fold symmetric component of the mesh

induced anisotropy. For this reason this method will not reveal any 8-fold symmetric

components. The 16-fold symmetric branching has a doublon like characteristic (i.e. a

steady narrow channel running down almost the entire length of the trunk) which is

indicative of growth at low anisotropy. Consequently, although we have not attempted

to quantify the magnitude of the m16, it is likely to be small. It is also possible that if

the 16-fold symmetric component of the mesh induced anisotropy were cancelled out,

components with a yet higher symmetry would be revealed.

Discusion

The results presented here indicate that, conceptually, the simplest way to minimise the

implicit computationally induced anisotropy is to ensure that there is a high density of

mesh cells within the interface region. However, if a regular meshing is utilised this can

rapidly lead to an unmanageably large grid with correspondingly long computation

times. One potential route to introducing a very fine grid in the interface region while

preserving reasonable computational efficiency over the rest of the domain is the use of

adaptive meshing techniques [18, 19, 20], although this is not without its own problems.

Dynamically updating the grid around the evolving interface region is a far from trivial

matter. Moreover, as the structure of the grid evolves with time, implementation of
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such schemes on multi-processor machines requires dynamic load balancing, which

tends to limit the gains that can be made moving to large numbers of processors. No

such considerations apply to fixed grid computation. Also, due to the highly non-linear

nature of the phase equation and the non-linear source terms in the (solute) transport

equation, explicit solvers are still widely used in phase-field computations. However, if

used in conjunction with adaptive meshing this can give rise to problems with very

small time steps being used, as the maximum time step scales with the square of the

smallest cell in the mesh. Consequently, for maximum benefit adaptive meshing should

be coupled with a fully implicit solver, although this is far from trivial.

Other techniques such as solving on multiple rotated grids or using unstructured

meshing could potentially also result in significantly reduced mesh induced anisotropy.

In simulations of the competition between kinetic and capillary anisotropy during

dendritic growth, Ihle [21] used systems of 2 or 4 mutually rotated, regular finite

difference grids to reduce the mesh induced anisotropy. However, this was for a sharp

interface, front tracking, computational scheme. We are not aware of any application of

this technique to phase-field modelling, although there does not seem to be any reason

why it should not, in principle, be possible. Where the system of equations is solved

using finite elements, employing an irregular meshing without a strong directionality is

likely to significantly reduce the problem computationally induced anisotropy. For an

explicit time-stepping fixed mesh finite element (FE) methods are likely to be rather

inefficient compared to a finite difference (FD) scheme with similar resolution.

However, if an implicit solver is used or mesh adaptivity is introduced, the efficiency of

FE and FD schemes is likely to be much closer. Phase-field simulations of particle
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coalescence utilising a refined finite element mesh without a strong directional structure

have been conducted by Burman et al. [22]. Although they do not explicitly check

whether there is any mesh induced anisotropy, their results on the growth and

subsequent coalescence of initially spherical particles would suggest that mesh induced

effects in their computational scheme are very small. However, the down side of their

scheme is that to refine the grid in the region of the solid-liquid interface requires

remeshing of the entire domain. In their reported results most simulations required  50

new meshes to be generated, although in the most extreme case over 650 remeshings

were conducted.

A potential alternative strategy for the removal of mesh induced anisotropy would be to

eliminate the mesh altogether (at least for the transport equation), by using a Monte

Carlo algorithm to integrate the transport equation. Such a strategy has been

implemented by Plapp & Karma [23, 24] who use a large number of random walkers to

find solutions to the transport equation thus coping efficiently with the disparity in

length scales between the diffusion field and the dendrite tip radius for pure thermal

solidification at very low undercoolings. However, as implemented by these authors,

the scheme was only used to solve the far-field problem well away from the solid-liquid

interface region. Close to the interface region a standard finite difference scheme was

employed. Consequently, as implemented in [23, 24] the use of random walkers to

integrate the transport equation would have little effect on mesh induced anisotropy,

although it may, in principal, be possible to implement the Monte Carlo algorithm over

the whole domain.
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Finally, although the main concern of this paper has been a particular class of phase-

field models (those derived from the Wheeler, Boettinger & Mc Fadden (WBM) [13]

formulation), there are a range of formulations of the phase-field technique. It may

therefore be appropriate to mention the role of mesh induced anisotropy in other

formulations of the problem and indeed in some related techniques for solving the

dendritic growth problem, in particular the level set method, which has some formal

similarities with phase-field.

Perhaps the most significant alternative formulation of the phase-field technique to the

model we have discussed above is the thin-interface model, which has been developed

extensively by Karma & co-workers [25, 26, 27]. Developed initially [25, 26] as a tool

for probing the agreement between phase-field & microscopic solvability models [28]

of solidification in the important regime of very low undercoolings at which

experiments on analogue systems such as succinonitrile [29] can be conducted, the thin

interface model has two distinct difference from the model discussed above. Firstly, a

judicious choice of computational parameters allows for the elimination of interface

kinetic effects and secondly, unlike the WBM formulation, the time-step to be used for

the phase equation is independent of the diffuse interface width, . As far as we are

aware, mesh induced anisotropy has not been the subject of any quantitative

investigation in thin interface phase-field models, although solutal versions of the

formulation [27, 30] are known to suffer from spurious interface effects. In particular,

the magnitude of the (physical) solute trapping effect is significantly overestimated in

the thin interface model, an artefact which at present is dealt with by adding in anti-

solute trapping terms in a rather ad hoc manner [31]. Therefore, given that thin
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interface models suffer problems with the jump in the solute profile at the interface we

would not be surprised to find they suffered from mesh induced anisotropy effects

similar to those described above for WBM type models, although this is not certain.

The level set method, like phase-field, employs implicit tracking of the free boundary in

order to handle the complex topology of the solid-liquid interface that may arises during

crystallization. In both methods this is achieved by defining as phase variable, , the

value of which defines the phase of the material. The difference with the level set

method is that the contour   0 defines the exact position of the interface (where

typically  > 0 in the liquid and  < 0 in the solid). As such this is a sharp interface

model, with the interface dividing the computational domain into separate regions. The

transport equation is solved separately in each region, with boundary conditions which

are applied at the edges of the computational domain and on the free boundary, while

(for thermal growth) a condition of the form

nsl LvTTcD  ])(ˆ)(ˆ[ nn (19)

is applied directly at the locus of   0. Here c the specific heat per unit volume, n̂ is

the outward pointing unit normal to the solid-liquid interface, vn is the local velocity of

the interface along n̂ and and the subscripts l and s relate to the solid and liquid regions

of the domain respectively. In addition, a Gibbs-Thomson condition relating the

temperature of the interface to its local curvature and velocity may also be applied. The

level set method has been applied to the dendrite growth problem by a number of

authors [32, 33] and the technique is potentially very exiting as it removes the problems
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associated with the diffuse interface used in phase-field methods. However, it is fair to

say that the application of the technique is far less well developed than phase-field, with

models generally being restricted to single phase, thermally controlled solidification. In

contrast multiphase, multicomponent phase-field models are now widespread (see e.g.

[34] for a review). Grid induced effects in the level set method are mentioned by Gibou

et al. [35], who claim that the implicitly introduced anisotropy is likely to be negligible

in their model. Certainly, the effects described by us above should not be present in a

sharp interface model. However, the ground for their assertion is a pair of simulations

in which an 8-fold symmetric seed with branche pointing towards the sides and corners

of their computational domain is allowed to grow under a 4-fold symmetric anisotropy.

In one case this is directed towards the sides of the domain in the other case towards the

corners. The authors assertion of low implicit anisotropy is based on their observation

that the resultant simulated morphologies are similar except for a rotation of /4. In

fact, this is likely to be a fairly insensitive test of implicit anisotropy and their assertion

is also somewhat inconsistent with their own results. In simulations performed with an

isotropic surface tension they produced a number of doublon like morphologies.

However, the primary growth direction for these was aligned along the co-ordinate axes,

clearly indicating a mesh induced effect. Moreover, the doublon is a low, but not zero,

anisotropy morphology. For sufficiently low anisotropy the expected morphology

would be fractal like dendritic seaweed.

It would therefore seem to us that, although the details of the mechanisms may be

different, mesh induced anisotropy effects are a potential hazard in computational

simulations of dendritic solidification, irrespective of the simulation methodology
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employed. Consequently, considerable care needs to be exercised, particularly when

studying the behaviour of inherently low anisotropy systems.

Summary & Conclusions

Phase-field modelling is one of the most powerful techniques currently available for the

simulation from first principles of solidification microstructures. Yet there is an

inherent problem that the nature, and indeed existence, of steady-state solutions is

dependant on a small parameter, namely the crystalline anisotropy. Moreover, the

effective value of this parameter can be influenced by the computational mesh used to

solve the set of partial differential equations that result from the phase-field formulation

of the problem.

In this paper we have demonstrated that this problem is far more acute for the

solidification of alloys than it is for the solidification of pure systems, where the mesh

induced anisotropy is barely detectable. In contrast, in solutal systems the mesh

induced anisotropy can be comparable to the explicit anisotropy, particularly if the

problem is not carefully posed. This mesh induced anisotropy has been quantified

above as a function of the diffuse interface width and of the ratio of conductivities in the

solid and liquid states. Moreover, by independently varying the order of the solver

employed for the transport and phase equations we have been able to demonstrate that

the primary source of the mesh induced anisotropy is the transport and not the phase

equation. A self consistent explanation of this, and the lack of a significant mesh

induced anisotropy in thermal solidification models, is that the anisotropy arises due to

the 'jump' in the solute concentration across the solid-liquid interface. In a sharp



23

interface model this would be a discontinuous change in c at the interface. However, in

phase-field, the assumption of a diffuse solid-liquid interface smooths out the

discontinuity over the width of the diffuse interface. Within the interface region very

large values of c are generated in the transport equation. As potentially very few mesh

cells are sampled within the interface region this appears to introduce a directionality in

the solution which is manifest as an implicit, or mesh induced, component of the

anisotropy, . A similar effect is also seen in relation to the discontinuity in the

diffusivity of the solid and liquid states across the interface.

Interestingly, even for a simple finite difference scheme employing a regular square

meshing, although the dominant component of the mesh induced anisotropy has 4-fold

symmetry, there are components with a higher order symmetry. This means that

cancelling the effect of the mesh induced with a counter directed explicit anisotropy is

unlikely to result in a genuinely isotropic system, although the magnitude of the mesh

induced anisotropy can be reduced in this manner. Consequently, where the effect of

the mesh induced anisotropy is likely to be important, for instance in the simulation of

low anisotropy structures, techniques for the minimisation of mesh induced effects need

to be considered.

References

[1] E. Brener & D. Temkin, Phys. Rev. E 51 (1995), 351.

[2] G.P. Ivantsov, Doklady Akademii Nauk SSSR 58 (1947) 567.



24

[3] D.A. Kessler, J. Koplik & H. Levine, Adv. Phys. 37 (1988), 255.

[4] Y. Pomeau & M. Ben-Amar, in ‘Solids far from equilibrium’ pp. 365-431,

Cambridge University Press, 1992.

[5] J.S. Langer, in ‘Directions in condensed matter physics’ (eds. G. Grinstein & G.

Mazenko), 1986, pp. 164-186, World Science.

[6] G. Caginalp, Phys. Rev. A 39 (1989) 5887.

[7] O. Penrose & P.C. Fife, Physica D 43 (1990) 44.

[8] R. Gonzalez-Cinca, Physica A 414 (2002) 284.

[9] A.M.Mullis & R.F. Cochrane, ActaMater. 49 (2001) 2205.

[10] L.N. Brush, J. Cryst. Growth 247 (2003) 587.

[11] J.A. Warren & W.J. Boettinger, Acta Metall. Mater. 43 (1995), 689.

[12] S.-L. Wang, R.F. Sekerka, A.A. Wheeler, B.T. Murray, S.R. Coriell, R.J. Braun &

G.B. McFadden, Physica D 69 (1993), 189.

[13] A.A. Wheeler, W.J. Boettinger & G.B. McFadden, Phys. Rev. A 45 (1992) 7424.

[14] R. Kobayashi, Physica D 63 (1993) 410.

[15] A.A. Wheeler, B.T. Murray & R.J. Schaefer, Physica D 66 (1993), 243.

[16] A.M. Mullis, ActaMater. 51 (2003) 1959

[17] A.M. Mullis, Phys. Rev. E 68 (2003) 011602.

[18] R.J. Braun & B.T. Murray, J. Cryst. Growth 174 (1997) 41.

[19] N. Provatas, N. Goldenfeld & J. Dantzig, J. Comput. Phys. 148 (1999) 265.

[20] R. Tonhardt & G. Amberg, J. Cryst. Growth 213 (2000) 161.

[21] T. Ihle, Eur. Phys. J. B 16 (2000) 337.

[22] E. Burman, A. Jacot & M. Picasso, J. Comp. Phys. 195 (2004) 153.

[23] M. Plapp & A. Karma, Phys. Rev. Lett. 84 (2000) 1740.



25

[24] M. Plapp & A. Karma, J. Comp. Phys. 165 (2000) 592.

[25] A. Karma & W.-J. Rappel, Phys. Rev. E. 53 (1996) R3017.

[26] A. Karma & W.-J. Rappel, J. Cryst. Growth 174 (1997) 54.

[27] A. Karma, Phys. Rev. Lett. 87 (2001) 115701.

[28] D.A. Kessler, J. Koplik & H. Levine, Adv. Phys. 37 (1988) 255.

[29] M.B. Koss, J.C. LaCombe, L.A. Tennenhouse, M.E. Glicksman & E.A.Winsa,

Metall. Mater. Trans. A 30 (1999) 3177.

[30] S.G. Kim, W.T. Kim & T. Suzuki, Phys. Rev. E. 60 (1999) 7186.

[31] S.G. Kim &W.T. Kim, Oral presentation at Euromat 2003, 1-4 Sept. 2003,

Lausanne Ch., Symposium S1.

[32] S. Chen, B. Merriman, S. Osher & P. Smereka, J. Comp. Phys. 135 (1997) 8.

[33] Y. -T. Kim, N. Goldenfeld & J. Dantzig, Phys. Rev. E 62 (2000) 2471.

[34] W.J. Boettinger, J.A. Warren, C. Beckermann & A. Karma, Ann. Rev. Mater. Res.

32 (2002) 163.

[35] F. Gibou, R. Fedkiw, R. Caflisch & S. Osher, J. Sci. Comp. 19 (2003) 183.



Figure Captions

Fig. 1. Schematic diagram showing the morphology of an initial circular nucleus

(dotted) as it grows out under the influence of a mesh induced anisotropy directed

towards the sides of the computational domain (solid). Also shown is the near circular

growth morphology (dashed) after a correcting counter anisotropy directed towards the

corners of the computational domain has been introduced. The region shown

corresponds to an area ( 200x)2, where x = 4.6  10
-9
m, as given in Table 1. This is

around half the computational domain actually used in the simulations.

Fig. 2. The 4-fold component of the mesh induced anisotropy, m4, as a function of the

ratio of the solute diffusivities in the solid and liquid states.

Fig. 3. The 4-fold component of the mesh induced anisotropy, m4, as a function of the

ratio of the diffuse interface width to the mesh cell size. The dashed line is the least

squares best fit power law curve, the exponent being  -2.6.

Fig. 4. Schematic diagram illustrating important differences between thermally

controlled and solutally controlled solidification; (a) that in the thermal case the

diffusing species is continuous across the solid-liquid interface while in the solutal case

it is discontinuous, with a fixed ratio between Cs and Cl given by the equilibrium

partition coefficient and (b) that in the thermal case the diffusivity is (approximately)

continuous across the solid-liquid interface while in the solutal case it is discontinuous.

In fact the thermal diffusivity in most metals is higher in the solid state than in the
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liquid, typically be a factor of 1.1-2.5, as indicated by the dashed line. However,

computationally these are often assumed to be identical.

Fig. 5. Growth morphology of from a simulation in which the 4-fold symmetric

component of the mesh induced anisotropy has been removed to reveal a small 16-fold

symmetric component. Note that the procedure used to remove the 4-fold symmetric

component would mask the presence of an 8-fold symmetric component, which may

also be present.

Table I. Computational and materials parameters used in the simulations reported in

this work.

Table II. The 4-fold component of the mesh induced anisotropy, m4, as a function of

the order of the solver employed on the transport, O(C), and phase, O(), equations.
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Table I

Quantity Symbol Value Units

Initial alloy concentration Co 0.408 -

Temperature of liquid To 1574 K

Liquidus temperature A A
mT

1728 K

Liquidus temperature B B
mT

1358 K

(Volume) latent heat A L
A

2.35  10
9 J m

-3

(Volume) latent heat B L
B

1.73  10
9 J m

-3

Interfacial energy A A 0.37 J m
-2

Interfacial energy B B 0.29 J m
-2

Kinetic coefficient A A
3.3  10

-3 m s
-1
K

-1

Kinetic coefficient B B
3.9  10

-3 m s
-1
K

-1

Diffusivity in the liquid Dl 10
-9

m
2
s
-1

Ratio of diffusivities Ds/Dl 10
-4

Molar volume vm 7.42  10
-6 m

3
mol

-1

Mesh cell size x 4.6  10
-9 m

Interface width parameter A 1.96  10
-8 m

Time step parameter  10

Radius of initial nucleus 40  10
-9 m
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Table II

O(C) O() m4

2 2 0.025

2 4 0.026

4 2 0.009

4 4 0.010
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Figure 1
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Figure 2
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Figure 3
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Figure 4a
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Figure 4b
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Figure 5


