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Abstract

A phase-field model of non-isothermal solidification in dilute binary alloys is used to study

the variation of growth velocity, dendrite tip radius and radius selection parameter as a

function of Lewis number at fixed undercooling. By the application of advanced numerical

techniques we have been able, for the first time, to extend the analysis to Lewis numbers of

order 10000, which are realistic for metals. A large variation in the radius selection parameter

is found as the Lewis number is increased from 1 to 10000.

PACS: 81.30.Fb, 64.70.dm, 02.60.Cb

Introduction

The growth of dendritic structures during solidification has been a subject of enduring interest

within the scientific community, both because it is a prime example of spontaneous pattern

formation and due to the pervasive influence of dendrites on the engineering properties of

metals. As dendrites are self-similar when scaled against the tip radius, , the ability to

accurately predict  is a problem of central importance to the theory of dendritic growth.

However, the prediction of  has proved exceptionally challenging. Early analytical

solutions
[1]
predicted that it was the dimensionless Peclet number, Pt = V/2D, (V = growth

velocity, D = diffusivity in the liquid), that was related to undercooling, T, during growth,

leading to a degeneracy in the product V not observed in nature. Various models based on



the stability of planar solidification fronts were proposed
[2, 3]

to break this degeneracy,

although ultimately the application of boundary integral methods established that it is

crystalline anisotropy
[4]
rather than stability per se that is responsible for breaking the

degeneracy. The analysis reveals that in the limit of vanishing Pt an equation similar to that

arising from stability arguments is recovered, but with a radius selection parameter, *, that

varies as 7/4, where  is the anisotropy strength.

In recent years significant progress towards understanding solidification processes has also

been afforded by the advent of phase-field modelling. However, the application of phase-

field modelling has largely been restricted to two limiting cases; namely the thermally

controlled growth of pure substances and the solidification of relatively concentrated alloys

[e.g. 5] where growth is sufficiently slow that the problem may be considered isothermal.

However, this omits alloy solidification problems where the isothermal approximation is not

valid, specifically the solidification of very dilute alloys and rapid solidification processes.

To date, relatively few attempts have been made to use phase-field techniques to simulate

coupled thermo-solutal solidification due to the severe multi-scale nature of the problem

(typically Lewis number, Le = /D, is 103 – 10
4
, where  is the thermal diffusivity).

Loginova et al.
[6]
have developed a coupled model using a derivation based on the solutal

model of Warren & Boettinger
[7]
, although there are doubts about the quantitative validity of

this model
[8]
as the numerical results appear to suggest excess solute trapping and have an

unresolved interface width dependence. This methodology has been extended by Lan et al.
[9]
,

who introduced an adaptive finite volume solver, which allowed them to use realistic values

of Le, although this did not overcome either the excess solute trapping or the interface-width

dependence of the solution. An alternative formulation of the coupled phase-field problem

has been presented by Ramirez & Beckermann
[8, 10]

, based on the Karma
[11]

. thin interface

model. As the thin interface model has been shown to be independent of the length scale



chosen for the mesoscopic diffuse interface width, it is capable of giving quantitatively

correct predictions for dendritic growth, although Ramirez & Beckermann only used the

model at relatively modest Lewis numbers (typically 40).

In a previous paper
[12]

we used a fully implicit, adaptive finite difference implementation of

the model due to [8] to investigate the dependence of  upon T at Le = 200, demonstrating

for the first time that  pass through a minimum with increasing T, as predicted by stability

models such as that due to Lipton, Trivedi & Kurz
[3]
(LKT). We also showed that the radius

selection parameter, *, not only varies with T, but that the variation is non-monotonic.

In this paper we now consider the extent to which , V and * vary as Le is increased at fixed

T. This quantitative analysis of the Lewis number dependency has previously been

considered in [8], albeit in the restricted range 1  Le  200, wherein it was found that the

predictions of the LKT
[3]

theory were valid for Le  5, with significant deviations thereafter.

Here we extended the analysis to higher values of Le, including for the first time values up

to 10
4
, which are of appropriate order for metals, in which dendritic growth is most common.

Description of the Model

The model adopted here is based upon that of [8] in which, following non-dimensionalization

against characteristic length and time scales, W0 and 0, the evolution of the phase-field, ,

and the dimensionless concentration and temperature fields U and  are given by
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where, for 4-fold growth, A() = 1 + .cos(4), d0 is the chemical capillary length, kE is the

partition coefficient L and cp are the latent and specific heats respectively and  is a coupling

parameter given by  = D/a2 = a1W0/d0 with a1 and a2 taking the values 52/8 and 0.6267

respectively [11]. U and  are related to physical concentration, c, and temperature, T, via
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The governing equations are descritized using a finite difference approximation based upon a

quadrilateral, non-uniform, locally-refined mesh with equal grid spacing in both directions.

This allows the application of standard second order central difference stencils for the

calculation of first and second differentials, while a compact 9-point scheme has been used

for Laplacian terms, in order to reduce the mesh induced
[13]

anisotropy. To ensure sufficient

mesh resolution around the interface region and to handle the extreme multi-scale nature of

the problem at high Lewis number local mesh refinement (coarsening) is employed when the

weighted sum of the gradients of , U and  exceeds (falls below) some predefined value.



It has been shown elsewhere that if explicit temporal descretization schemes are used for this

problem the maximum stable time-step is given by t  Ch
2
, where C = C(, Le, T), with C

varying from  0.3 at Le = 1 to C  0.001 at Le = 500
[14]

, leading to unfeasibly small time-

steps at high Lewis number. Consequently, an implicit temporal descretization is employed

here based on the second order Backward Difference Formula with variable time-step.

When using implicit time discretisation methods it is necessary to solve a very large, but

sparse, system of non-linear algebraic equations at each time-step. Multigrid methods are

among the fastest available solvers for such systems and in this work we apply the non-linear

generalization known as FAS (full approximation scheme [15]). The local adaptivity is

accommodated via the multilevel algorithm originally proposed by Brandt
[16]

. The

interpolation operator is bilinear while injection is used for the restriction operator. For

smoothing the error we use a fully-coupled nonlinear weighted Gauss-Seidel iteration where

the number of pre- and post-smoothing operations required for optimal convergence is

determined empirically
[14]

. Full details of the numerical scheme are given in [12, 14, 17].

Results

To explore the effect of Lewis number on V and  the model has been run at a fixed

undercooling of  = 0.15, over a wide range of Lewis numbers from 1 to 10000, the latter

being the typical order for metals. A coupling parameter of  = 5 has been adopted in all

simulations and in order to simulate kinetic free growth via the relation  = D/a2 we set

D = 3.1335, which also fixes the interface width of  5.6 d0. The required variation in Le is

effected by varying . All other material and computation parameters were held constant

across all simulations. We have taken  = 0.02, which is widely used for the anisotropy

strength of many metals, while kE andMc have been taken as 0.3 and 0.05 respectively, these

being typical of the alloy Cu- 5wt.% Ni (for Cu-Ni, we have at Cu rich compositions kE  0.3,

|m| = 6.2 K/wt.% and L/cp  430 K
[18]

, giving M = 0.01 /wt.% and T = 65 K). The minimum



grid spacing of h = 0.78 is held constant across all simulations although the size of the domain

is varied such that there is no interaction between the thermal field and the domain boundary.

The largest domain used was  = [-3200, 3200]
2
, wherein 13 levels of refinement are

required to achieve the desired h. This is equivalent, were a uniform mesh to have been used,

of a mesh size of 2
13  2

13
. This compares with our previously reported largest equivalent

grid
[12]

of 2
12  2

12
, with therefore correspondingly longer run times.

We obtain from the model the two key parameters characteristic of dendritic growth, namely

the velocity and radius of the tip. The latter we obtain by fitting a parabolic profile to the

 = 0 isoline using a 4
th
order interpolation scheme described in [14, 12], as this has generally

been felt
[8, 19]

to be more directly comparable to analytical dendrite growth theories
[3]
, than the

curvature directly from the derivatives of  at the tip. From empirical trials we estimate the

error associated in determining  from the parabolic fitting process to be around  4%.

The dependence of V and  on Le are shown, in dimensionless form, in Figures 1 and 2

respectively (dimensional values for the Cu- 5wt.% Ni example system can be obtained by

taking D  3.2  10
-9
m

2
s
-1
[20] and d0 = 3.7  10

-10
m [18]). For both  and V we may

delineate high and low Le behaviour, with this boundary occurring around Le = 1000. For

high Lewis numbers  is essentially independent of Le with a logarithmic dependence at low

Le. At the lowest values of Le studied (< 5) there is possibly a trend towards a levelling off

again, although this has not been investigated as there is no significance for values of Le < 1.

Relative to the results found by [8] we observe a much larger variation in  over the

comparable range of Lewis numbers (to Le = 200 [8] observed  to drop by 30% of its Le =

1 value, whereas we observe a 67% drop). We attribute this to the fact that we have

conducted our investigation at much lower undercooling, which is consistent with LKT

predictions of  as a function of Le [see e.g. Fig. 6 in ref. 12].



At low Lewis numbers Vd0/D varies, to a good approximation, as a simple power law with an

exponent close to 2.5, levelling off somewhat in the high Lewis number regime, although

unlike , V continues to increase with Lewis number up to the highest values studied. For

comparison with [8] we have also shown Vd0/ which as in [8] shows little variation over the

range 1  Le  200 (note however that the scaling factor d0/ is dependant on Le).

In addition to V and  an important auxiliary quantity that may be calculated is the radius

selection parameter, *. Following the methodology proposed in [8] we evaluate * based on

the LKT
[3]
definition, where the supersaturation at the interface is evaluated without reference

to the Ivantsov
[1]
solution by considering Ui, the value of U ‘frozen in’ at the interface (taken

as  = 0). The resulting variation of * with Le is shown in Figure 3, where the error shown

is  8% (based on  4% error in  with * varying as 1/V2
). At low Lewis number * may

initially show a slight increase with increasing Le, although the errors associated with

determining * are such that the results would also be consistent with * being constant,

which is as found by [8] at similar Lewis numbers. In the limit of Lewis number of unity we

find that * = 0.0604, in very close agreement with the value found by [8]. We find that this

value is, as noted by [8], also close to that for a dendrite growing under solute only control

(the coupled model can be used for solute only growth at solutal undercooling  by fixing the

system temperature everywhere at sys = - withMc = 1 - (1-kE)  [see 14]).

For Le > 10 we find, in agreement with [8], that the assumption of constant * breaks down.

However, at high  ( = 0.55) [8] found that * (LKT definition) first decreased slightly

before increasing markedly as Le is increased. In contrast we find that at  = 0.15, beyond

Le = 10 * decreases monotonically with increasing Lewis number, dropping to 0.025 at

Le = 10000. This represents a variation of around a factor of 3 over the range of Le studied.



Summary & Discussion

We have used a phase-field model of non-isothermal solidification in dilute binary alloys to

study the variation of V,  and * as a function of Lewis number at fixed undercooling. By

using advanced numerical techniques such as mesh adaptivity, implicit time-stepping and

multigrid methods we have been able to extend the analysis to Lewis numbers of order 10000

for the first time, these values being typical of metallic systems. Moreover, the formulation

of the non-isothermal problem based on the thin-interface model which we have adopted from

[8] means that these results should be independent of the width assumed for the diffuse

interface, giving them a quantitative validity which cannot be claimed by formulations of the

problem not based around the thin-interface model, such as [6, 9]. We find that the tip radius,

, drops monotonically with increasing Le, becoming almost constant at high Le with a value

in this case close to 70d0, while V increases monotonically with increasing Le, reaching a

value of 0.1 d0/D at the highest values of Le studied. For the example system of Cu- 5wt.%

Ni this would correspond to a dimensional growth velocity (the primary quantity measured

during rapid solidification experimentation [see e.g. 21, 22]) of 0.9 m s
-1
, although direct

comparison with experiment is not possible as 2-D and 3-D solidification are quantitatively

different. For the radius, and to a lesser extent the tip velocity, qualitatively different

behaviour is seen in what we may define as the low Lewis number regime (Le < 1000) to that

in the high Lewis number regime, and this value therefore defines a minimum level at which

simulations may be classed as approaching 'realistic' for metallic systems. This transition,

albeit rather gradual, presumably delineates which of the two transport processed is dominant.

The radius selection parameter, *, has been calculated as a function of Le and a variation of

a factor of three is observed over the range of Lewis numbers studied. This further highlights

the potential limitations of assuming constant * in analytical models of solidification to

predict dendrite length scales. Moreover, for Le > 10, * decreases monotonically with

increasing Le, raising an apparent contradiction as in the limit Le the dendrite should



return to fully solutal control and the value of * appropriate to the solute only model should

be recovered. In both this and previous studies
[12, 14]

the model has produced results in close

agreement with other authors (for Le  200, see [8, 10]), giving us reasonable confidence in

the numerical scheme employed. Currently therefore we are unable to offer a definitive

explanation for this anomaly, although it may be that in the case studied here the maximum

value of Le is not sufficiently high to recover the limiting case of Le. This would be

consistent with experiment where at low undercoolings (i.e.  = 0.15) the solidification of

metals (Le  10
4
) would still be expected to be under coupled thermo-solutal control.
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Captions

Fig. 1. Calculated variation of the dimensionless radius of curvature at the tip as a function of

Lewis number.

Fig. 2. Calculated variation of the dimensionless tip velocity as a function of Lewis number

(left-hand scale and solid markers non-dimensionalised against d0/D, right hand scale and

open markers against d0/).

Fig. 3. Calculated variation of the radius selection parameter, *
, as a function of Lewis

number.


