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ABSTRACT

Nonlinear process identification techniques in the
time-domain are adopted in the study of space
plasma turbulence using multi-satellite measure-
ments. These techniques are applied to the analy-
sis of two point measurements from AMPTE UKS-
AMPTE IRM in the terrestrial foreshock to iden-
tify the dvnamical features in the turbulence, which
could not be determined using a frequency domain
approach previously applied to the same data.

ey words: nonlinear processes; plasma turbulence;
nonlinear interaction.

1. INTRODUCTION

I[dentification of linear and nonlinear processes in the
observed space plasma turbulence is an impartant
task for the Cluster WEC community. The nonlin-
ear process identification methods used so far in this
area, such as Fourier modelling and high order spec-
tral estimations, are based on frequency domain anal-
vsis of the data. In order to ensure reliable identifi-
cation. spectral methods often require very long data
sets, in particular when identification of cubic effects
which arise in four wave processes, is needed. An al-
ternative approach is to perform system identification
in the time domain. One of the most powerful meth-
ods for time-domain. nonlinear system identification
is based on the NARMAX (Nonlinear AutoRegres-
sive Moving Average with eXogenous inputs) model
introduced by Leontaritis and Billings (1985).

This study presents the first application (to our
knowledge} of nonlinear system identification tech-
niques based on the NARMAN model. in the identi-
fication of nenlinear processes in space plasma turbu-
lence. The measurements of magnetic turbulence ob-
tained by AMPTE UKS-AMPTE IRM in the vicin-
ity of the quasi-parallel part of the terrestrial bow
shock, are used to estimate a discrete-time nonlin-
ear model, It is shown that the identified model can
accurately predict the magnetic field measured by
AMPTE-IRM. the ourput of the model. based only

on the observations made by AMPTE UKS, regarded
as the mput of the model.

2. BRIEF COMPARISON WITH THE DIRECT
TRANSFER FUNCTION ESTIMATION
APPROACH

The existing approaches to determining the Genes-
alised Frequency Response Functions. using multidi-
mensional spectrum estimation. have several draw-
backs. These include the great computational bur-
den and the difficulties associated with the imple-
mentation of multi-dimensional Fast Fourier Trans-
forms and multidimensional windowing/smoothing.
In addition. the amount of data required to obrain
reasonable estimates. the number of parameters re-
quired to represent the higler order spectra. which
increases geometrically with the order of the nonlin-
ear frequency response function. and the assumprions
regarding the number of terms in the series are all
limiting factors. As a result. in practice it is often as-
sumed that only the first and second order Volterra
kernels exist and that these can be estimarted with
sufficient accuracy using the data available. Unfor-
tunately, the truncation of the Volterra expansion to
only two terms is in many cases not sufficient to fully
capture the underlying nonlinear interactions in the
data. The four-wave interactions in particular are
very important in the study of turbulence. so it is
essential to be able to model these types of processes
accurately, k-

‘
This task can be successfully accomplished by us-
ing nonlinear system identification techniques to esti-
mate a mathematical model of the process in the time
domain. The method proposed here to study plasma
turbulence involves the identification of a NARMAN
model from two-point satellite measurements. In
practice. this requires only a relatively small estima-
tion data set and Involves the estimation of a very
small number of model parameters. compared with
the direct frequency domain identification method.

The main advantage of this approach is that the
model can then be used to analvse the nonlinear pro-
cesses in a plasma both in the time and frequency do-
main. This can be achieved by analytically mapping
the identified time-domain NARMAXN model into the
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frequency domain. The NARMAN model can there-
fore be used to compute the nonlinear frequency re-
sponse functions up to any desired order without any
assumptions regarding the number of terms in the se-
ries. The analytical form of the frequency response
functions also makes it possible to analyse in detail
any particular frequency range and to study which
time domain model terms induced these effects.

Despite the much smaller parameter set, the NAR-
MAX model can provide an excellent approximation
to the entire underlying nonlinear process that is
modelled. hence it should be possible to study two-
four-wave and theoretically even higher interactions.

3. NOXNLINEAR SYSTEM IDENTIFICATION
"USING THE NARMAX METHOD

The only available information regarding a nonlinear
svstem 15 often in the form of a discrete set of in-
put and output observations u™ = (u(1), ... u(N))
and ¥ = (y(1). ... y{V')). Determining the function
or mathematical model which describes the causal
input/output dependence, that is the input/output
behaviour of a system. is of paramount importance
in svstem theory.

NARMAX is a parameter estimation methodology
for estimating both the structure and the parame-
ters of the unknown nonlinear system from the in-
put/output data alone. The NARMAX model pro-
vides a concise mathematical representation of the
observed discrete-time input/output behaviour. by
relating explicitly the sampled output signals of the
system to the sampled inputs applied to the svs-
tem. The class of behaviours that can be represented
using NARMANXN models is extremely large and in-
cludes many other nonlinear model classes. such as
the Volterra, Hammerstein and Wiener models, as
special cases.

The NARMAN model takes the form of a set of non-
linear difference equations, one for every output of
the system. It should be noted that the identifi-
cation methodology applied here for a Single-Input
Single-Output (SISO) system. works equally well for
Multi-Input Multi-Output (MIMO) systems.

The general form of the NARMAXN model can be
written as

yit) = Flylt—=1).....y(f - ny).

ult = 1), . u(t — ny). (1)
e(t = 1). .., e(t —n.)] +elt)

where £ @ Y v {7« x =" — ¥ is the unknown multi-
valued nonlinear function. u(¢) € U and y(t) € ¥ are
the input and the output vectors belonging to the
m- and [-dimensional vector spaces I{ and ) respec-
tively, e(t) € = is a vector of unobserved stochastic
variables. assumed bounded and uncorrelated with
the input. n,. n, and n. are the maximum input.
output and noise lag.

Unlike in linear system identification, where knowl-
edge of the model order is sufficient to define the
model and estimate the parameters. when the system
is nonlinear. the tasks involved are far more complex.

The black box syvstem identification method based on
the NARMAN model, requires solving the coupled
problems of selecting the structure and estimating
the parameters for the unknown nonlinear function

E,

Because of the immense number of possible combina-
tions. the difficulty involved in determining the form
and parameters of F is considerable. This difficult
problem is usually addressed using non-parametric
regression techniques. More precisely. F is expanded
in terms of a finite set of known (basis) functions or
regressors belonging to given function class F. Typ-
ical regressor classes include polynomial or rational
functions, neural networks or wavelets.

The polynomial implementation was used in this
study since it provides a siimple and convenient model
representation particularly suitable for both time-
and frequency domain analyses. For polynomial
models, equation (1) takes the form of a linear ex-
pansion in the polynomial terms gy,

yilt) =) Ogk(t) +eilt) (2)
k

(B

The selection of the model terms was performed us-
ing the Orthogonal Forward Regression (OFR) algo-
rithm. This least-squares based algorithm involves
a stepwise orthogonalisation of the regressors and a
forward selection of the relevant terms in {2) based on
the Error Reduction Ratio (ERR) criterion. The al-
gorithm also provides the optimum least-squares es-
timate of the corresponding parameter vector @ =

{0, ).
4. DESCRIPTION OF THE EXPERIMENT.

The data used in this study were collected by
the AMPTE (Active Magnetospheric Particle Tracer
Explorers) satellites URS (United Kingdom Sub-
satellite) and IR)M (Ion Release Module) on the day
30-10-1984. The data sets came from the magne-
tometer instruments on board each spacecraft. The
UKS fluxgate magnetometer (P1 D. J. Southwood)
[Southwood et al., 1985] was a modified version of
the ISEE 1/2 instrument. The [RM fluxgate magne-
tometer (Pl H. Luhr) was described in [ Luhr et al..
1983].

The crossing of the quasi-parallel shock on that day
was intensively studied. In particular. modelling in
the frequency domain was applied to the identifica-
tion of linear and nonlinear processes in the magnetic
field turbulence observed during that crossing [Dudok
de Wit. 1999].

5. BRIEF DESCRIPTION OF THE RESULTS
OF PREVIOUS STUDIES OF TURBULENCE
OBSERVED DURING THE CROSSING OF
QUASI-PARALLEL SHOCK ON 30.10.1984.

The plasma turbulence in the vicinity of the quasi-
parallel part of the front of the terrestrial bow shock
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fagure 1. The magnitude and three GSE components of the magnetic field measured by AMPTE IRM during the period

on 30.10.1954. Time in seconds after 10:50:00 UT

attracts considerable interest in various studies be-
cause 1t 1s rich with wave phenomena and various
linear and nonlinear processes including such fun-
damental processes as steepening of nonlinear waves
and generation of wave trains.

Different populations of ions reflected from the
shock are related to various low frequency waves.
Other electro-magnetic phenomena include Hot Flow
Anomalies (also referred to as Active Current Sheets
or Hot Diamagnetic cavities) which are characterised
by a region of hot plasma whose bulk flow devi-
ates cons]dmabl) from anti-sunward solar wind flow
[e.g. Schwartz, 1991]. Schwartz et al., [1988]. and
Schwartz, tlQQl] dmded nonlinear wave phenomena
observed in the vicinity of the front of the quasi-
parallel shock into two types. The first type includes
structures nested” relative to the shock. Nested
structures often are regarded as short bow shock en-
counters. The other type includes structures “con-
vected” with the solar wind. The other classification
proposed by them suhdivides wave structures into
relatively short (& 10 seconds) isolated or identifi-
able single excursions of the magnetic field (Short
Large Amplitude Magnetic Structures. "SLAMS")
and lunoer periods of cnlmnaed turbulent field " Long
Pulsations” (LPs). Often SLAMS are observed to
be embedded into Long Pulsations. Schwartz et al.,
[1988]. and Schwartz. {1991] showed that while LPs

often show a nested signature all SLAMS observed by
them including those embedded in LPs are convected
with the flow. LPs usually have a higher value of 3.
SLAMS grow from a ULF wavefield. Wave trains
often are observed to be attached to SLAMS. Some
models attribute primary significance to the SLAMS
in the formation of the shock front. Schwartz and
Burgess [1991] concluded that the front of a quasi-
parallel shock could be considered as a superposition
of SLAMS. which gradually decelerate the solar wind
and lead to the formation of the downstream state.

The magnitude and three components (GSE) of tlae
magnetic field as measured by AMPTE IRM on
30.10.1984 in the vicinity of the quasi-parallel shocl,
are plotted in Figure 1. A few SLAMS (e.g. at 550
seconds past 10: 30: 00 UT) can be seen on this figure.
A part of long pu]ﬂtlon has been observed at the
beginning of interval {unul 140 seconds).

6. IDENTIFICATION AND VALIDATION OF
THE NONLINEAR MODEL

As convected waves were first encountered hy
AMPTE UKS and then by AMPTE IRM, the data
set measured by AMPTE UKS and by AMPTE IR
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Figure 2. The By, GSE components of the magnetic field measured by AMPTE IRM ( solid line) and the outpui of the
derived time domain model (dotted line) for the time interval which was used to identify the model. Time in seconds after
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Figure 3. The By component (GSE) of the magnetic field measured by AMPTE [RM (solid line ) and output of the derived
time domain model (dotted line) the validation time interval which was not used in the wlentification of the model. Time
tn seconds after 10:50:00 UT on 30.10.1984.

were considered as the input and output of the svs- points from 525 seconds were used in identification.
tem. respectively. 1000 pairs of input/output data The nonlinear model was identified using data corre-



sponding the the B, component of the magnetic field
only.

The remaining data was reserved for validating the
nonlinear modPl If the hypothesis that the model
has generated the data (i.e. both the estimation data
aud the data reserved for validation) is true. then the
model should be able to predict well the dynamics
in both situations. The comparison between the real
AMPTE [IRM measurements of By used in estimation
(solid linej and the output generated by the identified
model (dotted line) is presented in Figure 2.

The model was also validated using the data set not
used 1n estimation. The comparison between the
model output and the real data is presented in Fig-
ure 3. This shows that the model predicts very \1ell
the magnetic field fluctuations measured by ANMPTE
IRM.

The visual evaluation of the model predictions does
not illustrate how the model performs over a partic-
ular frequency range. This is shown by performing
coherency analysis. More precisely the calculation of
the coherency function

(‘By P?'de; real)
<IBy pr"dl)('By realJ)

provides insight into the relationship between By pred
and By reqr, the spectral components at the fre-
quency f of the predicted and real data sets respec-
tively. () denotes averaging. The value of the co-
herency iz bounded between 0 and 1. A value of
coherency close to 1 means high correlation between
the spectral components of the two data sets. A value
close to zero means complete independence between
two signals at that particular frequency. The mag-
nitude and phase of the coherenm function calcu-
lated for the real measurements and the output of
the model are plotted in Figure 4a.b.

v(f) =

The coherency estimated from a finite point data set
Is a statistical value, the distribution of which is re-
lated to the real value of the colierency between the
two signals. In particular the variance of the phase is
determined by the real value of the coherency. It can
be seen that coherency is very high (> 0.9) up to the
frequency 0.6 H=z. i.e. in the frequency range which
contains most of the energy of the turbulence. That
frequency range contains both SLAMS for which the
frequency is usually less than 0.1 — 0.2 Hz, and im-
portant ULF waves such as for example whistler wave
trains or shocklets which are observed usually in the
frequency range 0.2 > f > 0.5 Hz. At the same time
the value of the phase is distributed around 0 for the
same frequency range implying the absence of an ar-
tificial delay in the derived model. As we mentioned
above the same interval of data was used in [Dudok
de Wit er al., 1999] for identification of the nonlinear
processes using modelling in the frequency domain.
Dudok de Wit et al., [1999] also used the coherency
function to validate their model. Although their co-
herency function 1s relative high for low frequencies.
which (uupx])ond to SLAMS f < 0.2 Hz. it is very
low < (.35 for the frequencies which correspond to
whistler wave trains. Such a low coherency implies
that their model does not de::(_l']bl"‘ the dynamics of
this second class of waves well. On the contrary high
coherency of our time- domdm models provides con-
fidence that this model represents well the dynamics

of both SLAMS, whistler packets and possible energy
transition between therm
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Figure {. The magnitude and the phase of the coherency
function calculated for the By component (GSE) of the
magnetic field measured by AMPTE IR and output of

the dertved time domain model.

7. ANALYSIS AND INTERPRETATION OF
THE MODEL ¥

Because the NARMAN identification procedure pro-
duced a particularly simple model form. which does
not include any delaved output terms in the structure
such that

y(t) = Fiult = D). oou(t — ny)) (3)
and the fact that F was identified as a cubic linear-in-
the-parameters polynomial model. allows the dynam-
ics of the system to be expressed as a superposition
of three types of interactions
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where F'. F7 and F¢ denote the submodels involving
only linear. quadratic and cubic polvnomial terms
respectively.

This decomposition approach was used to analyse in
more detail the structure and interactions involved
i the generation of one of the SLAMS measured by
AMPTE IRM. The measured SLAM (solid line). su-
perimposed with the model output (dashed line) and
with the linear (dashed—dotted) and the cubic (dot-

ted) output components y' and y° are plotted in Fig-
ure 5. Similar to Figure 2 it shows a good agreement
between the real output and the model predlded out-
put. It can also be seen that the linear part of the
model provides a relatively good representation of
the dynamics of the system. The cubic contribution
15 neoiac»ﬂ)le except in the regions where the magnetic
field omdlem is swmhcant. The real measurements
of the same SLAMS (dashed). and the cubic con-
tribution to the model (solid line) are also plotted
in Figure 6 together with the quadratic contribution
(dashed-dotted line) and the difference hetween the
real data and the output of the linear part of the
model Ayj,.qp (dotted line). Two further conclusions
can be drawn from Figure 6. The first one is that
for the dynamics the quadrdtlt contribution Is less
important than the cubic. It can alse be seen from
Figure 6 that significant cubic contribution almost
coincides with \yj,. ... Summarising. the dynamics
of SLAMS aud lower amplitude U LF waves appears
to be linear except in their interface region where the
cubic nonlinearity becomes important.
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Figure 6. The By, component (GSE) of the magnetic
field measured by AMPTE IRM (dashed line) . cubic part
of the model derived (solid line). quadratic part of the
model derived (dashed-dotted line) and a difference be-
tween real data and the output of the linear part of the
model (Ajinear) as (dotted line).for the SLAMS observed
at 335-363 seconds. The same time period as in Figure
4. Time in seconds after 10:50:00 I'T on 30.10.1954.

Similar conclusions can be drawn by considering any
other SLANS in our data (excluding those which are
embedded in LPj. The importance of nonlinearity at
the SLAMS boundary regions is a manifestation of
the fundamental process of steepening of a finite ani-
plitude wave due to the nonlinearity (usually it is
a simple hvdrodynamic nonlinearity). The dyvnam-
ics of SLAMS and the majority of ULF waves ob-
served during the data mmterval under investigation.
s mainly linear (outside the boundaries of SLANSs).
However a single exception was found in which the
nonlinear part of the model playvs a very important
role through the wheole structure. This exception is
shown n Figures 7-9.

The measurements recorded by AMPTE IRM (solid
line). the output of the identified model y (dashed

line) and the output y' generated by the linear part
of the model (dotted line ) are plotted in Figure 6.
There are two wave events observed during that in-
terval. One of these is a SLANS observed during
time interval 604-610 seconds. Its dynamics 1s sim-
ilar to that described above (See Figures 5 and ).
However for the second event a large amplitude wave
packet shows different dynamics. While the madel
provides a good representation of the evolution of
real measurements for that wave packer. there is an
obvious phase shift between the real data and the lin-
ear part of the model output. The real measurements
of the AMPTE IRM for the same rime interval | (solid
line). the output of the linear part ol the model l‘(JOi-
ted line) and eutput of the cubic part of the model
(dashed-dotred line) are plorted in Fiu'uu" 7. It can
be seen that cubic part “corrects” the phase of the
linear part of the model.
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This is even more obvious in Figure 8. where the
real measurements are superimposed with the cubic
component y° of the model output and the linear
model error Njjneqr (dotted line). In this case the
cubic nonlinearity has a significant role in changing
the phase \Plocn} of the wave.

These effects are well known in theory. Mjolhus and
Wyller (1486) for example. have shown that quasi-
parallel, circularly polarised MHD waves of finite am-
plitude obey the Derivative Nonlinear Schroedinger
(DNLS) equation :

..r;

b db

—I =
= Hag- (161%) + B i

J

dz”

Where o and J are some parameters. The solution
ol this equation takes the form:

b= Agerpi (ke — 1)
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Figure 3. The B, GSE components of the magnetic field
measured by A UFTE IRM (solid line), output of the lin-
ear part (dotted line j of the model and output of the cubic
part of the model (dashed-dotted line) for the SLAMS ob-
served af 60.4-610 seconds and nonlinear wave packet at
610-621 seconds. The same time period as in Figure 6.
Time in seconds after 10:50:00 UT on 30.10.1954.

-

where w = @43k — 3k?. Thus the dependence of the
phase velocity 15z = % with amplitude 4y exists due
to the cubic nonlinearity. Previously [Dudok De Wit
et al.. 1995] pointed out a similar effect as a pos-
sible explanation of differences between maxima in
the joint frequency-wave number spectrum and joint
frequency-wave probability density.
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Figure 9. The By, component ((75E) of the magnetic field
measured by AMPTE [RM (solid line) . the output of the
cubie part of the model [dashed-dotted line) and Njjnear
(dotted line) for the SLAMS observed at 604-610 seconds
and nonlinear wave packet at G10-621 seconds. The same
time period as in Figures 6 and 7. Time in seconds after
10:50:00 UT on 30.10.1984.



To summarise, the analysis indicates that linear pro-
cesses. such as propagation. linear growth due to the
plasma instability or damping. make a significant
contriburion to the dynamics of both SLAMSs and
ULF waves. Cubic nonlinearities are important at
the boundaries of SLANMS. where they are responsible
for steepening and energy transfer from SLAMS to
the ULF waves. A single high amplitude wave packet
was observed for which cubic nonlinearity made a
very important contribution to the apparent phase
velocity of the wave packet.

8. CONCLUSIONS

A time-domain identification approach based on the
NARMAN model was applied in the identification
and analysis of linear and nonlinear processes in space
plasma turbulence. The main advantages of this
method compared with the direct multi-spectrum es-
timation approaches previously adopted. are the rel-
atively short amount of data required for estima-
tion and the fact that the resulting NARMAX model
appears to provide a far more accurate description
of the dynamics with far less adjustable parameters
than the low-order truncated Volterra expansions.
This in turn means that it is easier to interogate the
model and to relate the model terms to the underly-
ing physical phenomena.

The NARMAX model identified from magnetic tur-
bulence data obtained by AMPTE UKS - AMPTE
IRM in the vicinity of the quasi-parallel part of the
terrestrial bow shock. provides important insight into
the fundamental nonlinear processes taking place in
the plasma turbulence including wave steepening and
nonlinear phase velocity shifts. Although these pro-
cesses have been known from theory for a long time.
until now there has not been much explicit experi-
mental evidence of their importance in the dynamics
of turbulence in space plasma .
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