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Identification of Nonlinear Processes in the

Magnetospheric Dynamics and Forecasting of D, Index

O.M. Boaghe, M.A. Balikhin, S.A. Billings, H. Alleyne

Department of Automatic Control and Systems Engineering, University of Sheffield

Abstract. The NARMAX approach is used to analyse simultaneous measurements
of the geomagnetic Dy, index and V B,, the merging rate of the IMF and the

geomagnetic field. The nonlinear discrete relation which describes the dynamics of
the D,; index driven by V B, is identified directly from experimental measurements.
This identified model is then used to forecast the evolution of the Dy; index. Analysis
of the identified model in the frequency domain provides information about the

types of nonlinearities involved in the energy storage process in the magnetosphere.
It is also shown how the nonlinear frequency response functions derived from the
data can be used to validate theoretical models proposed to describe the evolution

of the magnetosphere.

Introduction

Two complementary approaches to the investigation of the dynamics of the magnetosphere
und:ar the influence of the solar wind exist in the current literature (see the review [Klimas et
al, 1996]). One approach is based on deriving a mathematical description of the dynamics
of the magnetosphere from basic physical principles. Once derived the mathematical model
can then be used to forecast disturbances of the ground magnetic field caused by the solar
wind. Thus it would be possible to forecast magnetic storms and substorms which affect our

everyday life causing currents in pipelines, problems in communications and even blackouts

in the electrical power supply. However, magnetospheric events such as storms or substorms




represent chains of complex physical processes (e.g. [Fairfield et al,1992]). If all the links
in these chains could be completely understood they could be conjugated into a theory of
magnetospheric dynamics. However at the present time even a complete quantitative the-
ory of some individual processes, links in this chain, are far from completion. Difficulties
in finding a solution to these important problems from basic physical principles stimulated
the second approach based on the identification of dynamical analogue models of the mag-
netosphere, which can in turn be used both for physical interpretation and for forecasting.
In this approach the magnetosphere is considered as a gray box nonlinear system with so-
lar wind as the input and indices of geomagnetic activity as the output. Continuous time
dynamical models were constructed using this approach, both for magnetospheric storms
and substorms by considering simplified physical analogies, for example the dripping faucet
model [Baker et al,1990], directly driven model [Goertz et al, 1993], Faraday loop model
[Klimas et al, 1996] for auroral electrojet indices or the Burton model [Burton et al, 1975]
for the evolution of the Dy, index. Once the physical structure of the analogue model has
been formulated, data from the measured solar wind parameters and geomagnetic indices is
used to estimate the unknown parameters in the model. Finally the relevance of the models
derived is usually assessed by the performance over a data not used in the estimation.
However consideration of physical analogies is not the only way to construct dynamical
models. The dynamics of the system can be identified directly from the input-output data.
One approach which has become very popular recently is to use a neural network. The ap-
plication of neural networks leads to significant progress in forecasting geomagnetic activity
in general and the evolution of D,; in particular, see for example Wu and Lundsted [1997].
Neural networks are known to be good approximators for predictions, and the multi-layer
perceptron network can approximate arbitrarily well any continuous function. However, in
application to magnetosphere data the goal of system identification is not only to provide

accurate forecasts but also to yield a mathematical model which can be related back to




the underlying physics. This involves determining the mathematical representation of the

system from the data and often leads to models which forecast well, which provide good
generalisation characteristics, and which can be used to provide insight into the underlying
system. Such mathematical models are more difficult to estimate than training a neural net-
work for example, but the reward is a parsimonious mathematical model which can readily
be analysed to reveal the characteristic dynamical features of the system under investigation.

If some assumptions about the dynamical structure of nonlinear system are made local
linear predictions can be used to identify a model of the system [Klimas et al, 1997]. However
in the present paper a more general method is used to identify nonlinear discrete difference
equations which describe the dynamics of the D,; index under the influence of the solar
wind. The analysis of the data sets which led to the identification of these equations, was
not based on any apriori information about physical processes in the magnetospheric system.
The structure, form and dynamical features are learnt from the data. It is shown that these
models can then be readily mapped into the frequency domain to reveal energy transfer
mechanisms that characterise the magnetosphere dynamics. Finally these results are used
to derive a continuous time nonlinear differential equation model of the D, evolution driven

by the solar wind as we will do in our next publication.

Brief introduction to the identification of nonlinear dynamical

systems with applications to the dynamics of the magnetosphere

Assume that the system can be represented by a nonlinear black box system which is
characterised by a state vector & of dimension n. In many cases the values of the state
vector and procedures to measure the states are not available. Sometimes the dimension n
is unknown. What is usually known is that the evolution of #(¢) is determined by previous

values, by external factors %(t) and by noise € (t) so that

dz —— =
G e F (Z(t);4(t); €1(2)) (1)




If there are some unknown inputs to the system these can be considered as a part of the

noise. The nonlinear system can usually be observed by making some measurements y(t)

which are assumed to be a function of the state of the system, and can be corrupted by
errors €3(t)

g(t) = G(Z(t)) + é2(t) (2)
It is customary to refer to y as the output of the system. In the vast majority of cases the

only available information are discrete data sets of previous values of the input
sy Wity Wy Wiy w5

and the output
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The identification of a nonlinear system, as described above, involves problems such as:
1. Forecasting: What will be the future evolution of the output yj, Ykl oot
2. Model validation: If some theoretical models for functions F' and G are derived how is it
possible to validate them?
3.1dentification of the system dynamics: If theoretical models of the nonlinear system are
not clear, how to derive an analytical relation between @ and 7 which can be used to uncover
the physical processes underlying the dynamics of the system under investigation.

In the case of the terrestrial magnetosphere the state of the system Z(t) is unknown.
There is not even a clear understanding of what minimal set of parameters completely
determines the state of the magnetosphere. However it is known that the evolution of the
magnetosphere is determined by its history and by the solar wind. Thus parameters of
the solar wind can be considered as an independent variable or an input that affects the
magnetosphere. Geomagnetic indices are the output of such a system.

It is well known that the evolution of a linear system is determined by the impulse response




function hy(t). The output is related to the input through the convolution integral

y(t) = ]:0 hi(r)u(t — 7)dr

The Fourier transform of hy(t) is the linear frequency response function Hi(f) and if U(f)

and Y (f) are the Fourier transforms of input and output then

Y(f) = Hi(HU(S)

Thus the absolute value and the phase of Hy(f) determines the amplification of a spectral
component at the frequency f and its phase respectively. Both descriptions, the impulse
response function in the time domain and the linear frequency response in the frequency
domain, are equivalent. Thus the output of linear systems is fully determined by the input
and by either the impulse response function hy(t) or the linear frequency response Hi(f).

The Volterra series representation is a generalisation of this approach to nonlinear systems

y(t) = fom hi(r)u(t — 7)dr+
+ [ f he(m, m)ult — m)u(t — m2)dridra + .. (3)
+ fom .. .fom By 5 TRt =71) s alt= gldn . .+ ..
where h;(r,..., ) is referred to as the ith order Volterra kernel.

In the case of discrete measurements (3) takes the form

y(k) = Trsohilr)u(k—ri)+
K ok - - (4)
+ Erl,r;EO Q(T'l,Tg)u(t Tl)u(t T2)+
+ Zr{{l,r'z....,r.‘zo hi(ri,72, ..., ri)u(t — r)u(t — ra) .. u(t — ) + ...
In the frequency domain the system is characterised by taking the Fourier transform of

equation (3) to yield
Y(f) = H(AUW) + ), faisiegaey H2(f1, f2)U(F1)U (f2)+

fo Saifaifitfatfa=f HB(fl: f?: fS)U(fl)U(fQ)U(fS) T snm (5)

L Hi(fy, fay s UV (f2) - U(f) + -

+
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where H,(f1, fa,..., fi) are referred to as higher or nonlinear frequency response functions
or more commonly Generalised Frequency Response Functions (GFRF). H 1(f) is equiva-
lent to the well known linear frequency response function. The absolute value and phase of
H;(f) determine the amplification and phase delay for each spectral component of the out-
put. The magnitude of Ha(f1, f2) determines the strength of coupling between two spectral
components f; and fa of the input that transfer the energy to the spectral component on
the summation frequency f1 + f2 in the output. Similarly H; describes the energy transfer
from [ spectral components in the input to the summation frequency fi + fo 4 ... + f; in the
output etc. Similar to the linear systems, the infinite sets of hy; ha; ha;...hy;.... in the time
domain or Hy; Ha;...; Hi; ... in the frequency domain provide a complete description of the
nonlinear system. They can be used to determine the future output of the system if the
input is known. Interpretation of Ha(f1, f2), H3(f1, f2, f3) and higher order GFRF’s exposes
energy transfer effects and often provides considerable insight into the physical mechanisms
associated with the underlying system.

Time domain analysis is more convenient for forecasting the output of the system. But
the frequency domain analysis is designed to reveal invariant system features which should
exist irrespective of the model or the estimation method. The GFRF’s can also be used to
reconstruct continuous time nonlinear differential equation models from discrete data sets.
Such models can be built term by term, again with the objective of finding the simplest
model which represents the system.

In practice the Volterra decomposition must be truncated to a finite number of terms.
The class of systems which can be approximated by Volterra series was studied by Boyd
and Chua [1985]. They concluded that systems with fading memory may be approximated
arbitrarily well by truncated Volterra series. Mathematically the condition of fading memory
is a stronger version of continuity [Pearson and Ogunnaike, 1997]. The precise definition can

be found in [Boyd and Chua, 1985]. Generally speaking a fading memory system is one



where the dependence on the input decreases rapidly enough with time.

The NARMAX (Nonlinear AutoRegressive Moving Average models with eXogenous in-

puts) model is more general than the Volterra series. NARMAX models can represent a wide
class of nonlinear systems and there is no restriction to systems with properties of fading
memory. Once the NARMAX model of the system has been determined this can be used
to analytically calculate any component H; of the GFRF’s. The NARMAX representation,

proposed by Leontaritis and Billings [1985], is given as

y(k) = Fly(k=1), ..., y(k—ny),u(k = 1),...,u(k = ny),{(k = 1),...,E(k — n)] +£(k) (6)

where F[-] denotes a nonlinear function, u and y are the discrete-time input and output sig-
nals with corresponding maximum lagged values of n, and n,. The quantity £(k) accounts
for possible noise, and uncertainties, ng represents the maximum noise lag. The nonlin-
ear function F can be a polynomial or rational function, radial basis functions, wavelet
decomposition or any other function.

It has been shown that a large class of nonlinear systems accept a NARMAX representa-
tion. In particular Hammerstein, Wiener, bilinear and Volterra systems can be regarded as
special cases or subsets of the class of NARMAX systems. The NARMAX representation
of nonlinear systems has sound theoretical foundations and many algorithms for structure
detection, parameter estimation and model validation of the NARMAX model have been
developed.

The structure and parameters in the NARMAX mathematical model can be identified
using an orthogonal least-squares algorithm, which searches through all the potential model
terms and selects the final model terms according to the contribution that they make to the
variance of the system output. This allows the user to build the simplest possible model
using the most significant model terms. Model validation techniques are then applied to
confirm that the model is adequate. These involve high order correlations which insure that

the residuals are unpredictable from all past values of the input and output.
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It is the NARMAX approach which will be used in the present work to identify features
of the nonlinear dynamics of the terrestrial magnetosphere.

Magnétic storms and substorms are the result of the transfer of directed kinematic energy
of the solar wind flow initially into magnetic energy stored in the magnetotail and then
into thermal energy in the plasma sheet, ring current, auroral particles and Joule heating of
the ionosphere [Gonzalez et al, 1994]. 1t is believed that the largest portion of this energy
during geomagnetic disturbances goes into the buildup of the storm ring current. The D,;
index was proposed to quantify the intensity of the ring current. However magnetopause
currents and maybe induced currents in the solid Earth, also affect the D,; value.

The reconnection of the geomagnetic field and the southwardly directed interplanetary
magnetic field is widely accepted as the mechanism for energisation of the magnetosphere
and for magnetic storms [Gonzalez et al, 1994]. Previous studies have led to an understand-
ing about the rate of energy transfer from the solar wind into the magnetosphere via the
reconnection processes. A list of the main coupling functions between the solar wind and
the terrestrial magnetosphere can be found in the review [Gonzalez et al, 1994]. Numer-
ous studies of correlations between solar wind parameters and magnetospheric disturbances
have resulted in the conclusion that the product of solar wind velocity V and the southward
component of the magnetic field represented by B, (B, = 0 if B, > 0 otherwise B, = B;)
represents the input to the magnetosphere reasonably well.

Klimas et al [1997] proposed the use of local-linear filters to capture the underlying dy-
namics of the terrestrial magnetosphere which lead to the evolution of the D,; index. This
approach was based on the fact that any nonlinear system can be linearised in a small local-
ity of any point in the phase space. Thus the input-output relation can be represented by
a linear polynomial (4) in the vicinity of any point of phase space. This linear polynomial
can be used to estimate the linear frequency response function Hy(f). Klimas et al [1997]

mapped Hi(f) into a continuous linear differential relation between VB, and D;; of the




form

dmD d™=1D;
_a’t—”‘u + @m_1 _dtm——lt + oDy = BV B,

But local linear models cannot always capture the correct underlying nonlinear characteris-
tics, and they do not reveal any information about nonlinear energy transfer mechanisms. In
the present study therefore nonlinear mathematical representations will be identified. These
will then be used to compare the corresponding generalised frequency response functions,

and to provide an interpretation of the dynamics of the terrestrial magnetosphere.

Data Analysis in the Time Domain

The input-output data analysed in this paper will consist of 4344 hours of data for D,
and the solar wind V B, over the time period from January to June 1979. The data is
illustrated in Figure 1. The data with an initial resolution of 5 minutes were provided by A.
Klimas and Y. Kamide. The D;; data has not been pressure corrected, and the V B, data
has been propagated ballistically to the magnetopause. Inspection of Figure 1 shows that
a few strong magnetospheric storms D,; < —100 took place during the time period under
investigation.

Initial preprocessing of the data led to the conclusion that the data were oversampled.
The data were therefore decimated by a factor of 12, to yield a data set of 4344 points
sampled with a 1 hour resolution. This data set will be used as the basis for all the results
in the present study. The set of 1000 points between samples [501;1500] of the data set
was chosen as the estimation data. Applying the NARMAX procedure to the data, using

the Orthogonal Least Squares estimation and a polynomial expansion of F[-], the model of



process terms was identified in the form
D(k) = 1.18D7%(k—1)—4.64VB,(k—1) - 0.12D%(k — 2)V B, (k — 1)+
+ 0.07D%(k—3)VBs(t—1) —0.73D7}(k — 2) + 0.67D7} (k — 3)—
— 0.41Dg(k —4) +0.19D7(k — 5) — 1.03V B, (k — 1)V B, (k — 6)+
+ 0.93VB,(k—2)+0.96VBs(k~1)VB;(k—7)+0.81VB(k — 1)V B, (k — 13)
— 0.6TVB;(k —3)VB;s(k — 15) — 0.85V B,(k — 1)V B, (k — 8)+

+ 0.31VB,(k — 3)VB,(k — 8)
(7)

The model (7) consists of 15 process terms, and these contributed with 98.95% to the
total variance in the output. The notation DJ} is used for the identified geomagnetic index.
The validity of the model equation (7) can be assessed in two ways, based on the perfor-
mance of the model as predictor for the rest of the data set and by the statistical properties

of the one step ahead prediction errors
e(k) = Dur(K) — D3 (k)

where Df} denotes the identified geomagnetic index, while the notation D,; is used for
the measured geomagnetic index. If the identified model in equation (7) has captured the
dynamics of the system which is present in the data set, e(k) should be unpredictable from
all past inputs, outputs and predictions errors. This can be tested using the model validity
tests developed by [Billings and Voon, 1983] and these are illustrated in Figure 2 for the
model in equation (7). It can be seen that all correlations in Figure 2 are inside the dashed
95% confidence bands, which suggests that the polynomial model in equation (7) is a good
representation of the input-output relation between D, and V B;. Validation based on more
recent tests which are based on the output D,; and the residuals are illustrated in Figure 3.
These tests are more sensitive and it can be seen that the first test is just outside the 95%
confidence bands at lag 3, while the second test is outside at approximately lag 20. Since

the true confidence bands bell out, the latter test is probably acceptable. Fine tuning of the
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model did not improve the validation tests and the model was accepted as the best fit.
The reliability of the identified model equation (7) can also be judged by the predictive

performance of the model. The simplest type of prediction is one-step ahead forecasting, in

which the predicted values of the storm index at the moment & D;} (k) are calculated from

previous measured values of D,; and V B, using the identified NARMAX model (7
D;i (k) = F4[Dy(k — 1), .., Dys(k — ny); VB,(k—1),...,VB,(k — n;)] (8)

The result of such a prediction is plotted in Figure 4a (a) where the one step ahead predic-
tions, in blue, are compared to the real data, in red, over the whole data set. Figure 4a (a)
clearly shows that the predictions are in excellent agreement with the measurements. The
agreement is particularly impressive for points outside the data used for estimation, interval
[501; 1500].

However, while this is often the only type of pendulum used by many authors to validate
identified models, previous experience shows that sometimes even poor models give good

one step ahead predictions. This is because the prediction is essentially reset, using the data

ms

set, at each step. A much better test is to compute the many steps ahead predictions 1rns,

often called the model predicted output. This is computed without using any measured

output values, except a few initial values, and is defined as
Dt (k) = FU[DR* (k= 1), .., D1 (k = n,); VB, (k- 1),..., VB, (k —n))] (9)

The identified discrete relation (7) depends upon 5 previous output measurements, there-
fore only the initial 5 measured output values are required to compute the many steps ahead
predictions. The results of the many steps ahead predictions over the whole data set are
illustrated in Figure 4a (c). As expected the agreement is not as good as with one step pre-
dictions, but these are good long term predictions and they give confidence in the identified
model.

The disagreement between these predictions and the measured values of D;; should be




attributed to the existence of other inputs to the system. In practice one step ahead (or 1-

hour ahead) predictions are not very useful, as it is difficult during a few minutes to collect
all data from both satellite measurements and ground based magnetometers and to feed
them into relation (7). On the other hand forecasting D,; half a year ahead of the real
measurements is not required. To be practically useful, the prediction should be made on
some time scale which is intermediate between these two extreme cases. A ten hours ahead
prediction based on (7) is plotted in Figure 4a (b). These predictions are almost in the same
good agreement with the real measurements over the whole data set as the one step ahead
predictions.

Summarising the results represented in Figures 2, 3 and 4a it can be concluded that the
discrete relation (7) appears to provide a very good representation of the dynamics between
the input VB, and the output Dy, index. It is important to emphasise that the model
equation (7) was identified based only on the data in the interval [501; 1500] but the model
prediction tests show good agreement over the whole data set [1;4344], and not only on the

estimation set.

Frequency domain analysis

The time domain relation (7) is convenient for forecasting and validation purposes. But
frequency domain analysis is more suitable for analysis of physical aspects of the dynamics.
Once the NARMAX model (7) has been identified and validated a simple analytical proce-
dure can be applied to calculate any order of the GFRF’s. This avoids all the limitations
and assumptions required in FFT based methods. The first three GFRF’s are plotted in
Figures 5 a,b (H,(f)), Figures 4 b,c (H2(f1, f2)) and Figure 7 (Hs(f1, fa, fa))-

The magnitude of H;(f) plotted in Figure 5a represents the linear amplification of the
spectral components. The maximum amplification occurs at very low frequency 1/f >

100hours. The second local maximum can be seen at f &~ 0.3hour—!. The transfer function




resembles that of the linear system with two resonance frequencies one of which is very low.
For example a double pendulum with two characteristic lengths will have such a resonance
curve if one of the lengths is infinitely long. The phase of H;(f1) is plotted in Figure 5b.

The second order frequency response function is plotted in the Figure 4b as an isometric
surface plot from which it is easy to see the relative magnitudes of the various peaks, ridges
and valleys in Hy. However a plan view of this surface, shown in Figure 4c, is more suitable
to study the positions of these maxima. The physical interpretation of the maxima in
Hoy(f1, f2) observed at the coordinates f; = fx and f; = f; is that a nonlinear coupling
between two spectral components of the input observed at frequencies fi and f; is present
with a transfer of energy from these spectral components to the spectral component of the
output at the summation frequency f; = fi + f&.

Analysis of any sets of measurements taken with a sampling frequency of fiamp can not
provide information about frequencies higher than the Nyquist frequency fnyq = 1/2fsamp-
Data sets which were used to identify the NARMAX model in equation (7) have a sampling
frequency of 1/hour and so Ha(f1, f2) can only be determined for f; and fz such that the
sum does not exceed the Nyquist frequency. Thus H» in Figure 4b-4c is plotted only for
points for which f; + fo < 0.5hour™!. Maxima which are located along the line f; = —f;
prevail on the Hy surface. These positions of the main maxima indicate that the dominant
three-wave process in the dynamics of the system under consideration is the coupling of the
spectral components observed at frequencies of virtually the same magnitude but opposite
signs. Interaction between these components should result in the transfer of energy to the
summation frequency Fyum = F1 + (—Fi) = 0 that is to zero frequency, which corresponds
to the main maximum in H;.

This process has a very simple interpretation in terms of energy storage. If energy in
the signal is stored at the spectral component f the characteristic time of release T of this

energy is proportional to 7 o 1/f. Assume that energy is supplied to a linear system by




spectral components f; and f;. As the linear system is not able to transfer energy between
spectral components the energy will be released on the time scales r; o< 1/f; and 5 o 1 /T2
that is on the same time scales at which energy is consumed from the input. However if the
system is nonlinear and frequencies f; and f; have almost the same magnitude but opposite
sign, then the coupling between these two spectral components will transfer energy to the
summation frequency fi + fa = € < |f1],|f2|. In this case the characteristic scale on which
energy will be released is Thontin o 1/€ which is much higher than the temporal scale on
which energy is supplied. Thus the storage of energy by a nonlinear resonator will take
place.

Another much less prominent feature of the H(fi, fa) surface is a ridge-like local maxi-
mum around frequency fi = 0 for |fi| < §f & 0.03hour—! and 0 < f, < 0.15. This indicates
nonlinear coupling which involves spectral components at very low frequencies which trans-
fers energy to higher frequencies. This processes is opposite to the storage described above
and will be referred to as the release of energy.

The third order GFRF H3(fi1, fa, fa) is defined on the three dimensional space R! x R! x
R!. Thus the only way to plot this is to plot slices. The plots of Hz on 16 slices which
correspond to planes f3 = const as plan views are shown in Figure 7a. Values of f3 are shown
above each sub-plot. Hjs(f1, f2, f3) is plotted only for points for which fi + fo + f5 < Ffvyg-
All plots are dominated by a maximum ridge defined by the line f; + fo = —f3. On the
upper left plot (f3 = —0.5) the dominate maximum is along the line f; + f> = 0.5. With an
increase in f3 the position of the maximum shifts to the left, until it almost disappears in the
bottom left hand corner of the f3 = 0.4375 plot. The intensity of this maximum increases
as fs approaches 0. Similar to the case for H3(f1, f2) this dominant feature of Ha(fi, fa, f3)

also corresponds to the processes

H+f24+f3=0,

that is interaction of three waves in the input with the transfer of energy to the spectral
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component at a very low frequency. This can again be interpreted as energy storage.

Another feature of H3(f1, f2, f3) which can be seen in Figure 7a are the maxima located
around the lines fi = fo, =0, fi = f3 =0, fo = f3 = 0. The last two of these are most
evident in the plot which corresponds to the f3 = 0 as maxima around the lines f; = 0 and
fa = 0, particularly in Figure 7b where Hj is plotted on a larger scale. The third maximum,
fi = f2 =0, is represented by local maxima around points f; = 0; f, = 0 on the plots for
f3 € {—0.0625,0.0,0.0625,0.125} in Figure 7b. These maxima represént processes similar to
the release of energy discussed above in relation to H 2(f1, f2), that is the transfer of energy
from very low frequencies to higher frequencies.

In numerical methods various discrete difference equations can correspond to the same
continuous one. Similarly different polynomial relations of the type (1) can correspond
to the same continuous dynamical process. However if all these relations are derived by
proper methods their representations in the frequency domain should be very close to each
other. Thus to study if the described features of Hy, Hy and Hs are real properties of the
dynamical system or are related to the concrete discrete representation (1), we have derived
other discrete representations. In order to derive these other discrete representations we have

changed the decimation factor and the training interval. For example the representation

DE(k) = 116D (k—1) = L9TVB,(k — 2) — 0.45D7 (k — 2) + 0.25D7 (k — 3)
+ 0.75V B, (k — 4) — 0.058V B (k — 2)V B, (k — 6)V B, (k — 6)
+ 0.29VB,(k — 2)VB,(k — 8) — 0.0093V B, (k — 9)V B, (k — 9)VB, (k — 9)
~ 0.03VBi(k = 3)VB,(k — 3)V B, (k — 3) + 0.0035V B, (k — 5)V B, (k — 5)V B, (k — 10)
— 0.0047D7(k — 1)V B (k — 2)V B, (k — 2) + 0.33V B, (k — 6)
+ 0.0018D7; (k — 3)V B, (k — 1)V B, (k — 4) — 0.20V B, (k — 2)V B, (k — 2)

+ 0.012D7(k — 3)VB,(k — 2)
(10)

was derived by using 4000 training points with a 40 minutes sample time (decimation factor




8). One step ahead, 10 hours ahead and model predicted output for the model (10) are
shown in Figure 4a (d)-(e). Visual comparison of the measured values of D,, with the

predictions again shows good agreement. The coherency

(Yf P"'Cde* reat)
(lYf2 pred!)(lyj? real ')

provides insight into the relationship between Y} pred and Yy rcq1, the spectral components

v(f) =

at the frequency f of the predicted and real data sets respectively, and (-) denotes averaging.
The value of the coherency is bounded between 0 and 1. A value of coherency close to one
means high correlation between the spectral components of the two data sets. A value close
to zero means complete independence between two signals at that particular frequency. The
magnitude and phase of the coherency function calculated for the real measurements of
Dyt and for Dt are plotted in Figure 8 a,b. The coherency estimated from a finite point
data set is a statistical value, the distribution of which is related to the real value of the
coherency between the two signals. In particular the variance of the phase is determined
by the real value of the coherency. The coherency between the real measurements and the
predictions computed using the NARMAX model (10) exceeds 0.8 for the low frequencies
(f < 0.1hour=!). For higher frequencies it is slightly lower, but still mainly has values
between 0.5 and 0.75. The phase of the coherency function varies in the vicinity of 0,
indicating the absence of time shift between the model (10) and the actual data. The small
variance of the phase is in accordance with high values of the magnitude of coherency.
Figures 4a (d)-(e) and Figure 8 suggest that the identified model in equation (10) can be
used for the reliable prediction of the D,; index. Hi(f), Ha(f1, f2), Hs(f1, fa, fa) for the
model equation (10) are illustrated in Figures 4d-4e and Figures 9-11. The main maximum
of Hi(f) in Figure 9a is also located at very low frequencies. The second distinct local
maximum observed in Figure 5a at J 7~ 0.25 — 0.3hour™! is absent in Figure 9a. However
the change of the slope of H; at frequencies 0.2 — 0.3hour 'may be an indication of a

weak resonance at these frequencies. Similar to the previous model the storage maxima




fi+fa = 0and fi+ fa+ fa = 0 dominate both Ha(f1, f2) (Figures 4 d-e and Figure 10) and

Ha(f1, f2, fa). However the release maxima f + 0+ 0 = f are not visible in Hs(f1, f2, f3).
The relative amplitude of the release maximum in Hy (f40 = f) is higher than in the
previous model. Note that the limits of the gray scale in the plan view of Hz(f1, f2) (Figure
10) were suppressed to make these effects more evident.

In addition to model equations (7) and (10) other discrete relations were fitted to the
data using various training intervals and decimation factors. In spite of the fact that the
discrete relations differ, as expected because of the sample rate, the representation in the
frequency domain through Hi(f1), Ha(f1, f2) and Hs(f1, f2, f3) have a close resemblance
to the two models discussed above. The linear part of the transfer function always had the
main maximum at the very low frequencies, with secondary maxima or changes in the slope
at frequencies 0.2 — 0.3hours™1.

The dominant feature of Hy(f1, f2) and Ha(f1, f2, f3) for all the derived GFRI’s were
storage processes of the type 3 fi = 0. However the release processes were visible only in

some plots.

Discussion

The most prominent features of GFRF’s for the identified NARMAX models were storage

maxima observed in both Hs(f1, f2) and Ha(fi, fa, fa) corresponding to the process

S fi=df (11)
where & f is almost zero. The fact that all the derived GFRF’s had this feature strongly sug-
gests that the process of equation (10) is important in energy storage by the magnetosphere.
Such processes of energy storage have been discussed often in relation to various nonlinear
systems. For example in the process of the Langmuir collapse, energy from a collapsing
cavern is transfered to a low frequency condensate by the so called inverse cascade which is

the same type of process as equation (10) [Zaharov, 1972]. The simplest differential equa-




tion which has similar features in the GFRF’s is a linear oscillator with a nonlinear external

input u(t) for which the output y(t) satisfies

% + ad’:’i—g) + By(t) = Plu(t)]

where P[u(t)] denotes a polynomial in the input variable u(t), of an order higher than 2.
The imaginary parts of both eigen frequencies of such an oscillator should be much higher
than the real parts.

The process of equation (11) is not the only possibility which can result in energy storage.
The simplest storage is a time delay ¢4(f) for each spectral component with no energy
transfer between them. In that case the storage will be a linear process which will be
reflected only in the phase of the linear part of the GFRF, ®, (f). For example, if the time
delay does not depend upon the frequency component then @, (f) will increase with the
frequency as @y, (f) = ftq.

The release of energy feature of the derived GFRF’s is not as certain as the process
in equation (11). The processes which correspond to the release of energy from very low

frequencies (df1;8f2) & 0 to the finite frequency f are described by
fHéfitdfa=f (12)

This process was observed only in some of the GFRE’s, and the intensity was always
much lower than for the process in equation (11). The above analysis does not provide
confidence that energy release via process (12) is a significant part of D,,. It is also possible
that the time resolution of the data sets analysed was too coarse to provide comprehensive
information about this type of energy release. As mentioned above a second paper will be
devoted to the derivation of a continuous time nonlinear model relating Dy; to VB, and
these interpretations will be revisited then.

The features in the generalised frequency response functions can be considered as finger-

prints of the nonlinear processes which characterise the system. To illustrate this consider




the model of D;; dynamics proposed by Burton et al [1997]. In this model the evolution of

the D;; index under the influence of solar wind is governed by the following equation

dDg(t d
d:( ) = —Clet(t) + Clczwfp(f) + d—th\/P(t) =+ C4Eeff(t —td) + Cs, (13)

where P(t) is the solar wind dynamic pressure, {4 is some time delay due to the magne-
tospheric processes, the effective E.ff component of the interplanetary electric field, and
c; represent various constants. The interplanetary electric field E, is proportional to V B;.
In Burton et al [1975] E.;; = 0 during periods of northward IMF. When the IMF has
a southward component Burton considered E ;s = E, except for time intervals in which
strong high frequency oscillations in Ey, were observed. For later periods E.;; was the result
of filtering of Ey, with a low-pass filter. In the case of the assumption made regarding the
statistical independence between E, (V B;) and P, equation (13) represents a linear relation
between V' B; and D;;. Thus for this mathematical model all of the GFRF’s except the
linear H;(f) case must vanish. Hence the nonlinear storage process (11) cannot be incorpo-
rated into (13). According to the GFRF’s identified in the present study, the correct model
of Dy must include nonlinear relationships between Dy; and V B,. In fact the existence
of a nonlinear relation between these was proved by Klimas et al [1996] by demonstrating
temporal changes in the coefficients of the local linear continues time models.

In the model of Burton et al [1975] the energy storage from V Bg in (13) is provided via
a time delay {y which is the same for all spectral components. As discussed above such
a constant delay should lead to a linear increase of the phase of H; with frequency which
was not observed in the GFRF’s. On the contrary in the derived H; the phase decreases
with frequency, see Figure 5b. The rate of this decrease also depends upon frequency. That

corresponds to a more complex process than a simple time delay.




Conclusions

The identification of a mathematical model relating the geomagnetic index D,; to the geo-
magnetic field V B, has been performed using methods from nonlinear systems identification.
A concise representation of the system was identified using the NARMAX approach and
model validation procedures produced good short and long term model predictions of D,;
index. The dominant nonlinear characteristics of the geomagnetic index were studied using
the Generalised Frequency Response Functions computed directly by mapping the identified
NARMAX model into the frequency domain. This has revealed the existence of processes
of energy storage which involve multiwave coupling.

This is just the first part of this study which will be continued in a companion paper
where the identification and interpretation of a nonlinear differential equation model will be
investigated.
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Figure Captions.
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- 1. Input to the system V B, and output D,; plotted during the studied time interval
. 2. Correlation between input V B, and residuals e for the model (7)

- 3. Correlation between input D,; and residuals e for the model (7)

4a. Predicted (blue) and real values (red) of D,

4b Magnitude of Hj for the model (7) - isometric projection

4c Magnitude of Hy for the model (7) - plan view

4d Magnitude of Hs for the model (10) - isometric projection

4e Magnitude of H3 for the model (10) - plan view

5 Magnitude of H3 for the model (7) - plan view in expanded scale

6a Magnitude of H; for the model (7)

6b Phase of H; for the model (7)

- Ta Magnitude of H3 for the model (7) - plan view

g. 7b Magnitude of Hj for the model (7) - plan view in expanded scale

. 8a Magnitude of coherency between real and predicted values of D,, for the model (10)
. 8b Phase of coherency between real and predicted values of Dy for the model (10)

. 9a Magnitude of H for the model (10)

. 9b Phase of H; for the model (10)
- 10 Magnitude of H» for the model (10) - plan view in expanded scale
- 11a Magnitude of Hj for the model (10) - plan view

. 11b Magnitude of H3 for the model (10) - plan view in expanded scale
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