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Abstract

Stability theorems for an adaptive iterative learning control (ILC) system are motivated and
described in compact terms that relate the properties of the schemes to systems structure and
other important aspects of systems dynamics. The use of high gain feedback is reviewed and
a full proof of the convergence of a ‘Universal’ adaptive scheme based on adaptive gain
concepts 1s given. The results indicate clearly that successful ILC can be achieved in the
presence of substantial uncertainty in the detailed knowledge of plant parameters and order.
They also suggest that the form and success of the controller will depend crucially on the
plant’s relative degree and also on its minimum-phase properties.
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Abstract

Stability theorems for an adaptive iterative learning control (ILC) system are motivated and
described in compact terms that relate the properties of the schemes to systems structure
and other important aspects of systems dynamics. The use of high gain feedback is reviewed
and a full proof of the convergence of a "Universal’ adaptive scheme based on adaptive gain
concepts is given. The results indicate clearly that successful ILC can be achieved in the
presence of substantial uncertainty in the detailed knowledge of plant parameters and order.
They also suggest that the form and success of the controller will depend crucially on the
plant’s relative degree and also on its minimum-phase properties.
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1. Introduction

One aspect of learning that has grown out of the area of robotics is that of iterative learning
control (ILC) [1], [2] where the problem for the control algorithm is to construct (or learn)
inputs that generate required outputs from a dynamical system. The mechanism of learning
is that of repeated trials and the updating of control inputs from trial to trial based on
observed performance. That is, given a dynamical system (assumed linear in this paper)

#(t) = Ac(t) + Bu(t) € R*, 2(0)==go€ R", y(t)=Cz(t)€ R". wu(t)e R (1)

and a desired output signal 7(¢) on a fixed (finite) time interval 0 < ¢ < 7. construct an
iterative experimental procedure that automatically generates a sequence of input signals
(uk(t))k>0 and a corressponding sequence of outputs (yk(?))x>0 With the properties that:




—

(a) CAUSALITY: The input u,41(t) at time ¢ on trial/experiment/iteration k + 1 is gen-
erated from only known trial data and the previous trial input ug(?).

: (b) CONVERGENT LEARNING: The experiment has the exact convergence property
Jim (r() = gx(+)) = 0 (2)

the limit being taken with respect to a chosen topology in a suitable linear vector space
of output signals.

(c) CONSISTENCY: The input sequence converges to an acceptable limit that generates
the required output r.

(d) REALIZABILITY: Any parameters associated with adaptive or other time varving
elements converge in the limit as the iteration index k — oc.

The ILC problem can be approached by a wide variety of techniques, some described in [1].
[2] and others elsewhere including frequency domain techniques [3], [4]. optimal control-based
methods [1], [6], [7] and, less frequently seen. adaptive schemes [1], [2], and [5]. In general.
the 2D nature of the problem [8]. [9] makes analysis more complex than in the non-/L(’
case. In particular, the recursive/iterative/2D nature of the JL(' problem combined with the
inevitably nonlinear nature of any adaptive schemes suggests that. even in the special case
of a linear plant, a mathematical analysis of the problem is likely to be very challenging.
At this point in time, only a limited number of results are available and the relationship

b ‘ between systems structure and the choice of adaptation mechanism is poorly understood.
What is known is that, in the non-adaptive case. systems structure is a vital contributor to

£ convergence and algorithm performance. This issue can only become more important when
uncertainty is introduced into the problem.

In the following paper, section 2 presents the background to the problem and states the main
result and its relationship to high gain stabilization ideas [10], [11],13]. The results are seen
to be an extension of previous work in the area by the authors. Section 3 is devoted to a
proof of this result using a recursive description of the algorithm and a "comparison system”
argument. This section contains most of the technical detail of the paper. The paper con-
cludes in section 4 with a brief discussion of the practical need for minimum-phase properties
of the plant.

The stability analysis is global (in the state and parameter product space R x R) and is
based on high gain concepts. It also includes the possibility that the open loop system is
unstable. The consequence is that the analysis, in the form presented, does not allow the
possibility of control saturation.

2. Statement of the Problem and The Main Stability Result

The paper aims to address issues of adaptive iterative learning control (AILC') through a
special case that sets the scene for future, more general, algorithms. The special case has
three aspects described as properties of the class of systems I:

Definition: The system class £; is defined by the statements




1. The system to be controlled is linear and time-invaria t.

2. The system is single-input-single output i.e. m = =1

3. The first Markov parameter C'B # 0.

Definition: The system class Eg—) is defined to be the sub-class of £; of systems that are
also minimum-phase.

Note: The relevance of the minimum-phase assumption is discussed in section 4.

The adaptive controller is in the spirit of Universal Adaptive Stabilization (U"AS). More
precisely, for any system in Eg_)‘ it is known that the adaptive (I AS) control law [10]:

u(t) = —sgn(CB)K (1)y(1).  K(t)=cy?(t), ¢>0, K(0)= Ko (3)
has the properties that, for all values of z¢ and for all choices of Ko,

lim y(t)=0. & lim K(t) = Aw(®o. o) < (4)

k—roc 1o
That is. the nonlinear control algorithm (consisting of a proportional controller with time-
varying adaptation on the gain) is capable of stabilizing any system with the desired structure
from any initial conditions #(0) = w¢ and K (0) = K of the plant state and control “gain”
K (t). This stabilization of both the system output and controller parameters is achieved
without more than a scrap of knowledge of the detailed plant dynamics and without any
attempt to identify plant dynamics or embed additional information into the control struc-
ture or parameters. It is natural to conclude that the convergence of the adaptive rule is
a consequence of the compatibility of the control law with the structure of the plant. Au
underpinning intuition of this paper is that similar observations can be derived and stated
about ATLC'.

It will be shown that the above UAS result can be transferred into an AILC context by the
introduction of algorithms of the type described below. In what follows. no attempt is made
to derive "the best” or "the most general” adaptive rules. Instead, attention is focussed on
a simple case to indicate the form of result that can be obtained and the theoretical proce-
dure underpinning the analysis. The issues of performance and optimisation of the available
parameters is left for further research.

The first decision is the choice of data to be used in the update algorithm. An important
aspect of the proposed algorithm is the inclusion of current error feedback i.e. the use of the
signal €441 in the construction of the update rule for w4 on trial k+ 1. Without the use of
such feedback. any high gain analysis can be expected to fail. It can also be argued that the
inclusion of current error feedback is beneficial in practice for several reasons including:

e the most recent error data more closely reflects current performance of the system.

e the use of traditional feedback could enable the stabilization of unstable plants during
each trial and




e it may offer the opportunity to reduce the effects of noise and modelling errors on
algorithm performance.

Although based on non-adaptive reasoning, there is no reason to expect that these observa-
tions will not be valid for adaptive ILC.

PROPOSED AILC ALGORITHM

1. The control input on the (k4 1) trial is given by the update rule
uks1(t) = uk(t) + sgn(CB)[(Kiqrext1)(t) + (Frgrex) (1)), 0<1<T  (5)

where K41 is a causal feedback "learning”™ operator feeding back the current trial error
signal ex41 = T — Yk41 and Fiyy is a feedforward learning operator feeding forward the
previous trial error data ex = r — Y.

2. The feedback control operation is simply a varying gain (sequence) with variation gen-
erated by the (nonlinear in data) update law

Kipr = Ky + c|lex]]? c>0 (6)

which bases the gain choice on trial £ + 1 on its previous value and a measure of the
magnitude of the recorded tracking error on trial k. The process is initiated by the
choice of a gain Kg for & = 0. In theoretical terms. this choice can be arbitrary.

3. The feedforward control operation is taken simply to be a constant gain F.

Note on Notation: In the above and in what follows the notation ||f|| = (fDT f2(t)di )2 denotes

the Ly(0.T) norm of its argument f € Ly(0.7"). The notation < f1.f, >= fUT frlt) falt)dt
denotes the associated inner product.

The similarity between the above AIL(" algorithm and the [ AS algorithm lies essentially
in the use of quadratic update rules for adaptive system’s gains. The details differ as the
AILC problem has a 2D structure but it will be seen that the effects on closed-loop systems
dynamics are essentially the same. This similarity is formally expressed through the following
theorem that forms the main result of this paper:

Theorem 1:

Suppose that the plant is in £; and the AJLC algorithm described above is applied with
an arbitrary choice of input ug € L;(0,T") generating an initial error eg € Ly(0.7'). Suppose
also that the reference signal r can be generated exactly by an input u.. € L,(0.7) (i.e.
r € R(G)). Under these conditions, the resultant closed-loop, nonlinear iterative system has
the following properties:

1. The tracking error converges to zero in Ly(0,T") in the sense that

o
Z Hﬁk(')uiz(o(ﬂ <o
k=0

and hence




e The error (norm) sequence {||e||}x>0 is * ounded in L,(0,T).

e Convergence of the error to zero is guaranteed in the norm topology in L,(0,T)

2. The monotonically increasing adaptive feedback gain parameter sequence {Kk} k>0 con-
verges in the sense that a limit gain A’ (dependent on Ky and zq) exists i.e.

klim Higy = By €66 (8)

3. There exists a gain K~ with the property that, whenever K > K™, the error norm
sequence {||ek||}k>k+ is strictly monotonically decreasing.

4. If the plant is in Eg_}, then it is possible to choose K™ to be independent of trial length
.

Note: The first two statements are formal descriptions of the convergence and realizability
of the algorithm. The third statement provide somes information on the form of convergence
under high gain conditions whilst the fourth suggest the effects of minimum-phase charac-
teristics.

The proof of the theorem is given in the next section. It is worth noting that the basis of the
proof is a proof of the convergence of the formal series

"
Koo = Ko+ lexll? (9)
k=0

To conclude this section, note that the authors have shown in a previous paper that the gain
update law

Kiyr = Ky + c|ler — exq Hig(D.T]a c>0 (10)
based on the error difference ¢, — ¢;_; leads to a convergent adaptive gain but it could
only be proved that convergence of the error is in the weak topology in L;(0.7T). The proof
required additional assumptions such as boundedness of the error sequence in L,(0.7T) or
that the plant is positive-real. The previous paper also did not include the feedforward term
in the control update rule. The 'nain contribution of this paper is hence a substantia) gen-
eralisation of previous work and Lence a clear demonstration of the theoretical potential of
AILC'. The paper does not propose that the algorithm discussed is ideal for practice. Rather.
it demonstrates the potential for achieving convergence of I L(’ under conditions of extreme
uncertainty. With this in mind. the community can confidently address the issue of improved
general purpose algorithms based on more complete systems information (possibly derived
from identification procedures).

3. Proof of the Main Theorem

The proof is approached using two stages. Firstly. the iterative properties of the algorithm
in the case where the gain sequence diverges are derived. This result (Theorem 2) provides
vital properties of the error difference sequence in this situation of "instability”. A parallel
"comparison” process is then used to demonstrate that convergence of an appropriate error
difference algorithm implies the convergence of the algorithm described above in this paper.

Note: To simplify the presentation, the following assumptions and notation will be assumed:




o It is assumed without loss of generality that C' B > 0 and hence that sgn(C'B) = 1.

¢ Note [6], [7] that, with no loss in generality, it is possible to assume that z(0) = 0.

e It is also possible to write ¥y = (u where the convolution operator (G maps L,(0.T)
into itself. This operator notation has been shown to be useful in deriving the basic
relationships governing the [/ L(" evolution.

With the above notation, a little algebra and the update rule uryy = up + Kpqpi€p41 + Fep
leads to the following relationship between errors:

€41 = 5';;4.16:“ Skt1 = Sk = GF), i1 = +G Ky (L1)

Note the presence of the well-known sensitivity function 5 = (I + GGK)~!in the update rule.
It is useful to introduce the complementary sensitivity and a number of related identities

Ligi o= & Bl = L4 B VB Ky = B B8Ry (12)

and, in a parallel manner, whenever h'yq # 0,

: x F o s 3 : e
Lk+1 =T = 5k+1 = LA-+1(1 - I ) = .‘7;‘-+1(7{]\j\-+1 + F] = S;\-+1(I&,l;+] + F}(] - (7F) 1(1

Vit
(13)
Note that L has a state space realization of the form S(A— BRA (. BA ;. (') and hence that
Ly has a state space realization of the form S(A - BK('.B(K + F).("). Note also that the
signal )
T = —{€hga — €)= L £} (14)

Theorem 2 - The Case of Unbounded Gain Sequences

Suppose that the following conditions hold:

1. the plant is in 4,
2. the control law takes the form u(7) = —sgn(CB)(Kjp1ep11(t) + Fer(t))

3. and the gain sequence { A’ };>o is monotonically increasing and unbounded.

Then the error difference sequence satisfies the condition

Z llex — ex— ||§42(0‘T} <o {13)
k=1

Proof: Without loss of generality, assume that C'B > 0 and hence that sgn(C'B) = 1. The
proof is similar inﬁstructure to that given in previous work and goes as follows: note that. in
-”'LZ(OET).a

leks1ll? = llerll? = 2 < vrgr. €x > +||vrga ||? (16)




In a similar manner to previous results [10], |13] the relationship » = Le has a representation
of the form (trial indices dropped for notational convenience)

A1 — CBR Aqg

z(t) = [ w() ] . A-BEC = . l
421 22

2(t) B(K + F) = [ CB(K +F) }

0

(17)
(Note: With this description, the eigenvalues of Aj; are the zeros of the original system ¢
and hence the system is in E(l_) if. and only if, the matrix A,; is asymptotically stable.)

The relationship veyy = Lk+]e~A. can now be written in the form
Pp41(t) = (A1 — CBR )1 (1) + dga(t) + CB( Ry + Fer(t) (18)

where
Ze41(1) = Azzzirr (1) + Anvrga(t),  Beg1(t) = Ar22641 (1) {(19)

where the initial conditions on hoth differential equations are zero.

Note that the map vgy; — 9iy1 maps Ly(0,7) into itself. The fact that T is finite ensures
that the map is norm bounded. More precisely. there exists My > 0 (independent of vfyq)
such that ||Dg+1|| € M7||vesll-

A more detailed analysis also vields:

e In general Mt depends on 7.

e For minimum-phase systewms (i.e. systews in ng) ), Mt can be chosen to be independent
of T
It is easily seen that
% (%“Eﬂ(ﬂ) = kg1 (1) 0k41(1)
= (An — CBRgp) e () + vegpr ()01 (1) + e () CB(Kpgr + Fep(t)

(20)
Integrating on [0, 7] then gives

0 < 394(T)

fUT[(An - ('BKA-H‘)T‘L]H) + g1 (D) Dpgr (1) + Vg (1) CB(Kgqr + Feg(t)]di
(,Al'l . (,-rB}LF,l;_;_] )| T"ﬁ_ﬁ_l“'k < TJA-+1.'E)k+1 > +C‘B[A—k+1 + F) < Vg1, €k >

(21
or, writing < ves1, Oka1 > < [|vkgr|] - [|0ke1]] € M||vesa]|?, it follows that, for all sufficiently
high values-of trial index k, Kty 7 + F > 0 and hence

{A/f + .41] - (rBA'k_i,] )
CB(Kp + F)

{M+A11}+C-'BF_1 TR
CB(Ki1 + F) e
(22)

f2<’0k+1,€k >< 2 Hvk-i-1||2:2|:

As a con sequence,

2(M + Ay + CBF) , y
CB(Kim + F) 1] 241 (23)

0 < llexaall? < llexll? + [



The Theorem now follows from an induction argument and noting that Ay =

%%%%?) —1| < 0 for all large enough values of k. More precisely, let k= be any

integer such that Ay < —%. An inductive argument then yields the observation that

k*+N

: ; 1 .

2 7

2> |lexs4n|l* + 5 E [lo;l]* > 0 (24)
T=k*+1

€k
the result follows by letting N — oc. O

The following corollary plays an important role in the development.

Corollary (Unbounded Gain and the Error Sequence)

Under the conditions of Theorem 2. the following inequalities hold true whenever the reference
signal r € R(G) (C Ly(0.T1))

oo

Z“WHQU\'A-%-F)E <R (25)

k=0
In particular.
[&
D ekl < o (26)
k=1

(Note: The first inequality implies the second)

Proof: If r € R(G), then g = r—gyo = r— Gug € R((G'). Note that R(G) = R((I - GF)™ ()
and write eg = (I — GF)~'Gég with ég € Ly(0.T). Now note that the operators {Sg}i>y are
a commuting set and consider the iteration €ty1 = Sps1€x. k > 0. to obtain the formula

Ep = Broy = SA ..... 5"'15.0 — 1. B
= Sk ....5‘,(5;. — T'¥én
= —.Svk_l....g]i;k&o (27)
= —SgaudiSil Ky + Pl - GF-1Ge
= *(I\"k + F).ék...,gleg

Note that Theorem 1 applies for any initial error and hence applies to the modified iteration
with initial error éy. Using Theorem 1 then gives

oo 00 .

%> ) |l ~ ex-1lZ,07) = D Il = Sk 51 (Kk + Feg||? = > eIz, 0.y (B + F)? (28)
k=1 k=1 ) k=1

where €14y = S'qu for & > 0. The result follows as this is just the required recursive

formula for the original error sequence {er}r>0. O




Turning now to the proof of Theo.em 1, it is important to note that the gain adaptation
algorithm leads to the formula

k-1

Kp=Ko+ec) llelf (29)
=0

and hence to the observation that the convergence of the gain sequence is closely linked to
the convergence of the infinite series

7= Ko—Ka)=)_llell? (30)
o

Proof of Theorem 1:

Parts 1 and 2: As the gain sequence is monotonically increasing, it either converges to a finite
limit K, or it diverges to +oc. If it converges, then the infinite series ¢ converges and the
conclusions of the theorem are valid for this case. If the gain diverges, then the corollary to
theorem 2 indicates that ¢ is finite and hence K, is finite which is a contradiction. Divergence
of the gain sequence is hence not possible and parts 1 and 2 of the theorem are proved.

Part 3: Using the notation of the proof of theorem 2, note that the inequality (23) is valid for
any sequence {K;} and does not depend on its monotonicity or divergence. However. if the
sequence is monotonic and ultimately exceeds a value K™ derived by ensuring that A™ < 1.

2
then the monotonicity of {||¢4||}i>0 is guaranteed for all large enough trial indices k.

Part 4: The "sufficiently large™ gain required for Part 3 is dependent on T only because Mr
can depend on T. In the case of minimum-phase systems this is not the case. O

4. A Note on the Minimum-phase Assumption

A review of the statement and proof of Theorems 1 and 2 suggests that. at the formal level.
the minimum-phase condition is not necessary for stabilization and realizability of the AILC
algorithm. The minimum-phase property was reflected only in the observation that the bound
My on the map vpp; — @41 was then independent of trial length 7. This suggested that the
asymptotic properties of the algorithm (in the special case of sufficiently high values of A’
are beneficial in the sense that error convergence can be both monotonic and independent of
the trial length 7. This says nothing about any possible problems for non-minimum-phase
systems. The reality is that one of the implications of using the algorithm on a non-minimum-
phase system include the possibility that, for large values of limit gain A'... the algorithm
will be using a destabilising feedback gain! The assumption of minimum-phase is therefore
required for practical reasons as it guarantees that:

o The feedback gain is ultimately stabilising (proved by the analysis at least for the
situation when R’y is sufficiently large) and

e the error convergence (equation (23)) is ultimately monotonic in Ly(0.7') norm for all
trial lengths T' whenever the limit gain is sufficiently large.

5. Discussion and Conclusions




The paper has formulated, clarified and extended previous work by the first author in an
area of adaptive iterative learning control (A/LC'). For a well defined class of systems. it
has been demonstrated that Ly(0,T) error norm convergence is possible under conditions of
extreme uncertainty of plant parameters and order. In particular, it is seen that convergence
is possible without the use of plant identification algorithms. All that is required is a knowl-
edge of plant structure as defined by the set ¥; and an adaptive scheme that uses a fixed
feedforward term (arbitrarily chosen) and an adaptive proportional feedback gain updated
between trials.

The effects of minimum-phase characteristics have been included in the analysis with the
conclusion that, although convergence does not depend on this system property. it should be
anticipated that convergence rates and the acceptability of the limiting gains do make it a
practical requirement.

The possibility of convergent learning in the presence of extreme uncertainty underlines the
inherent robustness of the ILC process. The study also underpins the possibility of high qual-
ity adaptive control in the /L' context. The proposed algorithm is unlikely to be "optimal”
in its present form but its analysis provides a bedrock of theoretical support to initiate the
development of more easily implementable adaptive schemes.

Finally, for brevity, the paper has concentrated on one of the simplest special cases. With
more technical effort,

1. Using techniques similar to those seen in references [12], [13] the class of systems can be
extended to include multi-input/multi-output systems with symmetric, positive definite
Markov parameter matrix ('B.

2. The adaptation algorithm can be extended to include adaptation laws of the form
Kiy1 = K+ p(|lex]) (31)

and
K1 = Kil + (K + F)2p(]lecl]) (32)
where p(-) is any polynomial (or more generally any entire function) with the property

that p(a) > ea® for some ¢ > 0 and any a > 0.

Much of this work relies on similar principles but requires much more technical computation
in the proofs. These proofs will be reported separately.
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