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Abstract

Early phase trials of complex interventions currently
focus on assessing the feasibility of a large RCT and
on conducting pilot work. Assessing the efficacy of
the proposed intervention is generally discouraged,
due to concerns of underpowered hypothesis testing.
In contrast, early assessment of efficacy is common
for drug therapies, where phase II trials are often
used as a screening mechanism to identify promis-
ing treatments. In this paper we outline the chal-
lenges encountered in extending ideas developed in
the phase II drug trial literature to the complex in-
tervention setting. The prevalence of multiple end-
points and clustering of outcome data are identified
as important considerations, having implications for
timely and robust determination of optimal trial de-
sign parameters. The potential for Bayesian methods
to help to identify robust trial designs and optimal
decision rules is also explored.

1 Introduction

Complex interventions contain several distinct and
potentially interacting components, each of which
may contribute to the efficacy of an intervention as
a whole [21]. For example, psychotherapy may be
viewed as being composed of two treatment vari-
ables, namely techniques described in a therapy man-

∗Corresponding author: D.T.Wilson@leeds.ac.uk

ual together with a therapist delivering these tech-
niques [71]. This contrasts with typical drug treat-
ments, where the drug is the only treatment vari-
able to consider. While drug regimens may be com-
plex [46], randomisation and blinding allow the ef-
fects of a drug to be separated from the context
in which it is provided. Broad classes of com-
plex interventions include surgical, behavioural, psy-
chological, educational and physical interventions.
The evaluation of a complex intervention raises spe-
cific challenges, and several frameworks have there-
fore been proposed to guide this process. These
include a widely used framework proposed by the
MRC [15, 21]; the IDEAL initiative aimed at sur-
gical interventions [5]; and the Multiphase Optimi-
sation STrategy (MOST) [17, 18]. The most recent
MRC framework is summarised in Figure 1.

As shown in Figure 1, ‘feasibility and piloting’ is
identified as one of four key stages in the develop-
ment and evaluation of complex interventions. While
the definitions of, and distinctions between, feasibil-
ity and pilot studies are not always clear [3, 65, 7], the
MRC guidance states that the purpose of this stage
is to inform the design of a subsequent large, defini-
tive trial assessing the effectiveness of the interven-
tion. Several parameters required for designing the
definitive trial may be estimated at this stage, includ-
ing the variance of the proposed outcome measure(s),
recruitment and follow up rates, and intra-class cor-
relation coefficients (ICCs) in trials with clustering
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Figure 1: Current MRC guidance on the development
and evaluation of complex interventions, adapted
from [21].

effects. Characteristics relating more directly to the
intervention, such as its acceptability and the level of
adherence, may also be assessed. Gathering informa-
tion relating to these factors reduces the likelihood of
the large trial failing due to poor design.

While MRC guidance recommends evaluating a
complex intervention following feasibility or pilot
work, in practice it is not uncommon for feasibility or
pilot studies to include evaluation through hypothesis
testing. For example, a recent review found that 21
of 26 feasibility and pilot studies surveyed included a
hypothesis test [3]. However, the size of these studies
is often derived using generic rules of thumb [32, 10]
rather than through formal power calculations, with
the review finding that only 9 of the 26 studies re-
ported a sample size calculation [3]. As a result, hy-
pothesis tests are likely to be underpowered [36] and
the typical recommendation is that such tests should
be de-emphasized, interpreted with extreme caution,
or avoided altogether [36, 4, 3, 38].

It could be argued, however, that a formal assess-
ment of potential efficacy or activity should be car-
ried out in pilot and feasibility studies, and that such
studies should be properly designed to address this
objective. In this manner, feasibility or pilot work
could not only ensure that subsequent large scale ran-
domised controlled trials (RCTs) of complex inter-

ventions are well designed, but could also reduce the
rate at which such trials fail due to an inherently inef-
fective intervention. Moreover, this approach would
clearly be more efficient than conducting a feasibility
or pilot study and then a separate study assessing
only efficacy. To begin developing such designs, one
may look to methods developed in the drug setting.
There, small ‘phase II’ trials which focus on making
an early assessment of efficacy, identifying promis-
ing and discarding unpromising drug treatments, are
commonplace.
The application of phase II designs to the com-

plex intervention setting is not straightforward due
to challenges that are commonly encountered in com-
plex intervention trials. For example, the assumption
that patient outcomes are statistically independent is
often violated as a consequence of cluster randomisa-
tion [8], a group-based intervention [72], or therapist
variation [48]. The associated implications for pre-
cision are compounded in cases where only a small
number of clusters are available, as is often the case
in feasibility or pilot studies [53]. Furthermore, the
multi-component nature of complex interventions will
mean that an assessment of efficacy will often have
to be based on multiple endpoints [21], in contrast to
the single binary indicator of ‘success’ often used in
phase II studies.
An example which serves to illustrate each of these

points is the OK-Diabetes (OK-D) feasibility trial of
a supported self-management intervention for adults
with type II diabetes and learning disabilities [28].
The OK-D study involves first developing a man-
ualised intervention and then carrying out a ran-
domised feasibility study whose objectives include es-
timation of recruitment rates, testing of data collec-
tion forms and assessment of the feasibility of deliv-
ering the intervention. While the feasibility study
individually randomises treatment packages to pa-
tients, diabetes specialist nurses provide the inter-
vention and may, therefore, induce a clustering effect
in the intervention arm. Furthermore, as the inter-
vention is newly developed only two nurses will be
involved. The intervention is targeted at three as-
pects of poor diabetes self-management, and as a re-
sult there are a number of possible outcomes to be
considered when assessing efficacy.
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It has been proposed that the OK-D feasibility trial
be extended to allow for a preliminary assessment of
the efficacy of the developed intervention as a formal
objective, highlighting the need for appropriate trial
design methodology. In this paper we will review the
approach to assessing efficacy developed in the con-
text of phase II trials for drug therapies, setting out
the key methodological challenges to their applica-
tion in feasibility and pilot studies of complex inter-
ventions, and thereby outlining future directions for
methodological research. In Section 2, an overview
of phase II designs and their key characteristics will
be provided. In Section 3 multiple endpoints and
clustering will be discussed in detail, considering the
formulation of decision rules, difficulties arising from
nuisance parameters, and practical difficulties in de-
termining sample size in a timely manner. Finally, in
Section 4 conclusions are drawn and further avenues
for future research are suggested.

2 Efficacy evaluation in oncol-

ogy drug trials

Following the determination of a safe dose in phase I,
but before a definitive RCT in phase III, phase II tri-
als typically act as a screening mechanism to screen
out ineffective drugs at an early stage and progress
only the most promising treatments to phase III.
Phase II designs tend to employ a decision-focussed
approach to inference, with an emphasis on determin-
ing if a subsequent phase III trial is warranted as op-
posed to estimation of underlying parameters. This
approach is typically sustained through the use of
Neyman-Pearson hypothesis testing or, alternatively,
through Bayesian decision-theoretic methods [41].

In the case of hypothesis testing, trial design fo-
cusses on ensuring type I and II error rates remain
within pre-specified nominal bounds. Perhaps the
simplest phase II design to employ hypothesis testing
for a single binary outcome was proposed by Fleming
[23], then extended by A’Hern [2] from an approxi-
mate to an exact test. To use the design, one must
first specify a success rate p0 which, if true, would
mean the new intervention would not be worthy of

further investigation. An alternative hypothesis pA
must then be given, corresponding to a success rate
which would certainly merit a full evaluation in a
definitive RCT. Applying this to the OK-D problem,
we could set p0 = 0.05 and pA = 0.2. The A’Hern
design for this problem, guaranteeing a type I error
rate of 5% or less and a power of at least 90%, would
be a single arm trial with a sample size of n = 38. De-
cision making at the end of the trial is then based on
counting the number of successes observed, denoted
s, and comparing this with the design-derived cut-off
point c. In this example, if s ≥ c = 4 the interven-
tion should proceed to a definitive RCT, otherwise
its evaluation should be terminated.

A wide range of alternative phase II designs have
been published, accounting for the variety of prob-
lems to which they may be applied [9]. Only a
brief overview of the main differences between de-
signs, with references to examples, is considered here.
One point of differentiation between the designs is in
the number of stages. While the A’Hern [2] design
described above involved a single decision point, de-
signs such as those proposed by Simon [57] include
an additional interim analysis to allow for the phase
II trial to terminate early due to futility. Single
arm designs may be contrasted with randomised de-
signs [58], which allow a concurrent as opposed to
historical control to be used. Multi-arm designs, for
cases where multiple treatments are available for eval-
uation at once, have also been described [33]. While
the majority of phase II designs focus on a single end-
point relating to efficacy, several have been proposed
which can consider additional measures relating to,
for example, toxicity [13, 63] or further aspects of
efficacy [56].

In addition to hypothesis testing designs there are
also a number which adopt a Bayesian framework.
These vary in the extent to which Bayesian method-
ology is employed, from allowing some prior infor-
mation to be incorporated in the form of probabil-
ity distributions [64] to full decision-theoretic frame-
works [12, 62]. The multitude of designs available
requires a thorough assessment of the key design cri-
teria specific to the trial in question, to ensure an
appropriate design is selected.

3



3 Efficacy evaluation in com-

plex intervention trials

When applying ideas from phase II trials in an early
phase complex intervention setting, it is important
to take account of complexities relating to (i) preva-
lence of multiple endpoints and (ii) recruitment- and
treatment-related clustering effects.

3.1 Multiple endpoints

Multiple endpoints, on which the decision of pro-
ceeding to phase III should be based, arise due to
several reasons. In addition to an assessment of ef-
ficacy requiring several endpoints, due to the multi-
component nature of the intervention, endpoints re-
lating to safety, acceptability and adherence are of-
ten required. Further to these, endpoints relating to
the feasibility of a phase III trial, such as measure-
ments of the recruitment and follow up rates, should
be taken into account. Thus, while phase II drug tri-
als are not always limited to a single endpoint, early
phase evaluations of complex interventions may rou-
tinely involve more.
As an example, the original design of the OK-D fea-

sibility study included three feasibility criteria which
were to be met to consider progression to phase III.
These took the form of threshold values of recruit-
ment rate, numbers lost to follow up, and adherence
of participants in the intervention arm. In addition to
these three endpoints, a further four endpoints were
of interest in terms of assessing efficacy. Specifically,
continuous measurements of glycated haemoglobin
(HbA1c), blood pressure, total cholesterol and body
mass (BMI) are all proposed as potential efficacy end-
points, with no single one anticipated to be sensitive
to all components of the intervention.

3.1.1 Decision rules

In the single endpoint case, a decision rule regard-
ing progression to a phase III trial can be defined
by a single cut-off point, as was illustrated in the
example in Section 2. Where several endpoints are
present, specifying the form of the decision rule for
progression to phase III becomes more complex. This

problem has been addressed to a limited extent in the
drug setting. In the case of two binary endpoints de-
scribing efficacy and toxicity, phase II designs such
as that of Bryant and Day [13] consider separate null
and alternative hypotheses for the two endpoints, re-
sulting in four ‘states of nature’. Specifically, defining
‘unacceptable’ and ‘acceptable’ levels of both efficacy
and toxicity as pE0, pE1, pT0, pT1, the four states are
defined as Hij : pE = pEi, pT = pTj for i, j = 0, 1.
The design aims to ensure that the probability of re-
jecting the drug when it has satisfactory efficacy and
toxicity, i.e. the type II error, remains within a nom-
inal bound. Two separate type I errors are also kept
within nominal bounds, relating to the probability of
proceeding to phase III with an ineffective or a toxic
drug. The resulting design specifies a cut-off point
for each endpoint, both of which must be reached for
the drug to proceed to phase III. This can be illus-
trated graphically as an acceptance region, as shown
in Figure 2a.

In cases where two binary measures of efficacy are
of interest, phase II designs such as that of Sill et
al. [56] employ a rule whereby we proceed to phase III
if either quantity reaches the specified cut-off point.
The form of the resulting acceptance region is illus-
trated in Figure 2b. Again, the form of this rule dic-
tates the possible types of errors, with a single type
I error rate in this case and two type II error rates.
One advantage of these decision rules is the ability to
discriminate between endpoints through their nom-
inal error rates. For example, in the case of the
Bryant & Day design, progressing to phase III with
a toxic treatment may be considered more of a risk
than progressing with an ineffective treatment, and
so the nominal type I error rate relating to toxicity
could be set to a lower level to ensure this error is
less likely. Similarly, in the case of two efficacy end-
points and the Sill et al. design, one could set the
nominal type II error of the preferred endpoint to be
lower than the other to ensure the trial will be more
likely to detect a treatment which is promising in this
respect.

Beyond this use of nominal error rates, designs such
as those of Bryant and Day [13] and Sill et al. [56]
do not provide any means with which to describe any
relative preferences between different qualities of the
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X 

Y 

CX 

CY 

(b) x ≥ Cx OR y ≥ Cy

Figure 2: Example decision rules arising from phase
II designs for two endpoints, where the shaded area of
the sample space represents the decision to progress
to phase III.

treatment. With multiple endpoints to consider, it
is possible that the decision to progress to phase III
could involve trading off one aspect of the treatment
against another. For example, one may be happy to
accept a slightly toxic treatment if it demonstrated
substantial efficacy, but not if efficacy was only mod-
erate. Phase II designs allowing for such a trade-off
were proposed by Conaway and Petroni [19, 20]. Con-
sidering binary efficacy and toxicity endpoints with
parameters pE and pT , the authors propose dividing
the parameter space 0 ≤ pE , pT ≤ 1 into two comple-
mentary subspaces defining the null and alternative
hypotheses. They propose a statistical test based on
the ‘I-divergence’ measure [49], with the statistic be-
ing analogous to the distance of the observed sample
from the null hypothesis subspace. Type I and II
error rates are defined (the latter with respect to a
point alternative hypothesis), and the choice of sam-
ple size made to ensure error rates remain within pre-
specified bounds. It is noted that the method may be
applied to general specifications of the null hypothesis
space, and is suggested that future research consider
extending the design to allow for more general loss
functions than the 0− 1 loss implicit in the proposed
method. While providing more flexibility when spec-
ifying trade-offs between endpoints, in comparison to
the design of Bryant and Day [13] this design has

been shown to lack robustness to misspecification of
the degree of correlation between them [67].

An alternative approach to acknowledging the
presence of multiple endpoints is proposed by Sar-
gent et al. [51]. In this phase II design, the decision
space related to the trial is expanded from {stop, go}
to include a third, intermediate decision. Considering
an explicit primary endpoint, if the corresponding ob-
servations are strong enough (in either direction) the
trial will lead to one of stop or go. If the observations
are less conclusive, it is suggested that the decision
should now be made by considering other endpoints
of interest. This design therefore provides a formal
mechanism to allow for the inclusion of more than one
endpoint without requiring any specification of their
nature or relationship to one another at the design
stage. All that is assumed is that a partial ordering
of preference exists, with the primary endpoint con-
sidered more important than all other endpoints. As
such, it represents a flexible methodology which could
be applied to the complex intervention setting where
many endpoints are of interest. The extra complex-
ity of the decision rule does require that two addi-
tion nominal probabilities, relating to the minimum
probability of making correct decisions under the null
and alternative hypotheses, are specified. By way of
illustration, in the same setting as that described in
Section 2 (i.e. p0 = 0.05, pA = 0.2, nominal type I
error and power 0.05 and 90% respectively), a design
which guarantees correct decision rates of 0.8 would
specify a total of 27 participants. If s ≤ 2 the decision
is made to stop, while if s ≥ 4 the decision is made
to proceed. If 2 < s < 4 an ‘inconclusive’ decision is
made based on the primary endpoint, and additional
endpoints considered.
A further option which should be considered as a

means with which to effectively address the challenge
of multiple endpoints is to use a Bayesian decision-
theoretic framework, as employed by Stallard et al.
[63] and others in the drug context. This involves the
specification of a utility function u(d, θ) which assigns
a quantitative value to each possible decision d un-
der every state of nature θ. For example, consider the
case of two binary endpoints relating to toxicity (pT )
and efficacy (pE), as discussed by Bryant and Day
[13]. We now wish to assign a utility to each of the de-
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cisions {stop, go} for each value of (pT , pE) ∈ [0, 1]2.
If beliefs regarding the likely values of parameters pT
and pE can be specified through probability distribu-
tions, it is possible to calculate the expected utility of
any decision d by averaging the utility function over
the parameter space. Then, when faced with decid-
ing whether or not the intervention should progress
to phase III, the decision with Maximum Expected
Utility (MEU) can be selected. The same MEU prin-
ciple can be applied when determining the sample
size of the trial in question. In order to do so, prior
distributions on the parameters of interest must be
elicited, after which the trial design which maximises
expected utility over all possible trial outcomes can
be found [40]. In the context of the present discus-
sion, the specification of a utility provides a highly
flexible means with which to encode the preferences
of the decision maker(s). Allowing us to explicitly
quantify any acceptable trade-offs between different
endpoints, this approach will lead to decisions which
are optimal with respect to these preferences. Whilst
the specification of an appropriate subjective util-
ity function may be difficult [61], it should be em-
phasised that Frequentist trial design can also in-
volve subjective judgement when selecting nominal
error rates, and that this may be less intuitive than
the Bayesian alternative [6]. Moreover, recent ex-
amples such as the early phase drug trial described
by Thall et al. [66] demonstrate the feasibility of em-
ploying Bayesian decision theoretic designs in prac-
tice. Where it is not feasible to specify a utility func-
tion, alternative Bayesian methods for sample size
determination are available [1].

3.1.2 Trial specification

A further difficulty arising from the use of multiple
endpoints is encountered when setting the specific de-
sign parameters for the trial. As illustrated in Fig-
ure 2, increases in the number of endpoints can corre-
spond to increases to the dimensions of space in which
the decision rule is defined. Accordingly, the num-
ber of potential decision rules which could be consid-
ered can increase. This feature can been seen in the
phase II context when comparing the two stage design
of Simon [57], which accounts for a single endpoint,

with its extension to the two endpoint setting pro-
posed by Bryant and Day [13]. In that case, given
a proposed maximum sample size for each stage of
the trial, n, the two endpoint design will have a fac-
tor of n2 more possible parameterisations than the
single endpoint design. As a result, the task of find-
ing the specific ‘best’ parameterisation becomes more
demanding and less amenable to simple, exhaustive
search methods. This point is noted by Sill et al. [56],
who propose heuristic methods to find good parame-
terisations of their two-endpoint phase II design.
In the complex intervention setting, the presence

of several endpoints will compound this difficulty and
lead to more sophisticated optimisation routines be-
ing required as standard. The design of any such al-
gorithms will be strongly influenced by the nature of
the endpoints considered. Binary endpoints will lead
to integer trial design parameters (e.g. the thresh-
old number of observed successes), whereas continu-
ous endpoints will lead to continuous design param-
eters (e.g. the threshold of a t-test). Optimisation
algorithms are typically tailored to specific problem
types [74], and so different methods will generally be
required to solve different problem types efficiently.
Metaheuristic algorithms such as genetic optimiza-
tion, as implemented in the R package ‘rgenoud’ [44],
may provide a flexible solution methodology to ad-
dress this difficulty, requiring only the tuning of al-
gorithm parameters to ensure good performance.
Where a Bayesian decision-theoretic framework is

employed, a decision rule does not have to be speci-
fied in advance. The aforementioned method of MEU
does not require one [40], instead determining the
decision by choosing that which, conditional on the
observed data, has greatest expected utility. As a
result, when determining the best specification for
a trial one will not need to explore different decision
rules. The addition of further endpoints will therefore
not lead to a more challenging trial design problem,
in contrast with some Frequentist cases.

3.2 Clustering

Clustering is a common feature of complex interven-
tion trials and may arise with or without cluster ran-
domisation [47]. For example, while the OK-D feasi-
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bility trial is individually randomised, the assumption
that patient outcomes are independent is question-
able. This is due to the fact that, in the intervention
arm of the trial, each participant is allocated to one
of a limited number of trained research nurses whose
role is to provide support in the delivery of the inter-
vention. The study design is summarised in Figure 3.

Intervention 

P P P P 

Control 

P P P P 

N N 

randomised 

allocated 

Figure 3: Clustering within the OK-D feasibility
study, where patients are randomised to intervention
or control and those within the intervention arm are
allocated nurses.

The OK-D study may be described as having an
individually randomised, two level, partially nested
hierarchical design and is one of many possible sce-
narios where one or more sources of clustering are
present [72]. By partially nested, we refer to the fact
that clustering by research nurse is present in only
one of the two arms, and by hierarchical we mean
that there is a single research nurse per patient. More
generally, the relationship between clusters and pa-
tients may be hierarchical, cross-classified (where pa-
tients are allocated to more than one type of clus-
ter) or multiple-membership (where patients are al-
located to more than one cluster of the same type).
In terms of the relationship between treatments and
clusters, this could be described as partially or fully
nested, partially or fully crossed, or a mix of these
for trials with more arms [72]. Specifically, nested
designs have different clusters in each arm. For ex-
ample, Schnurr et al. [52] describe a nested trial com-
paring Prolonged Exposure to Present-Centred Ther-

apy for women with Posttraumatic Stress Disorder,
where each therapist delivered only one of the treat-
ments. Crossed designs have different arms associ-
ated with the same clusters [24]. Cohen and Mannar-
ino [16] describe one such trial, comparing Cognitive
Behavioural Therapy with Nondirective Supportive
Therapy for sexually abused children, where thera-
pists delivered both treatments.
In seeking to apply a phase II design to a problem

where clustering is present, the simplest approach
would be to ignore the clustering and apply the de-
sign ‘off-the-shelf’ without any modification. How-
ever, this can lead to inaccurate estimates of the type
I error rate of any proposed trial [73] with the actual
rate being higher than that calculated when design-
ing the trial. As such, this approach would lead to
ineffective interventions being taken forward for fur-
ther evaluation in a phase III trial. A phase II design
could be extended to account for clustering by in-
cluding fixed cluster effects. However, such an anal-
ysis would imply a restricted focus on the specific
clusters considered in that trial, preventing any gen-
eralization to a wider population. In the case of the
OK-D feasibility study, this would correspond to re-
stricting attention to only those nurse therapists par-
ticipating in the experiment, as opposed to consider-
ing the larger population of therapists from which
they are ‘sampled’ [53, 54, 55]. While it has been ar-
gued that this perspective in appropriate in the early
phase of development [54], it is possible to improve
the generalizability of the analysis by using random
cluster effects rather than fixed. This approach has
been recommended to account for clustering in indi-
vidually randomized trials [39, 47], but will lead to a
more complex linear mixed effects model.

3.2.1 Complex likelihoods

The hypothesis testing approach typical of phase II
trials requires the specification of a test statistic and
the derivation of that statistic’s sampling distribution
under the null and alternative hypotheses. Given an-
alytical formulae describing these distributions, er-
ror rates for any decision rule can then be found
by examining their tail areas. This approach is fea-
sible in cases such as those considered by Fleming
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[23] and A’Hern [2], where the distribution of the
test statistic (a count of binary ‘successes’) is sim-
ply the binomial distribution. In multilevel statis-
tical models, as found in trials where clustering is
present, statistics such as a mean difference in a lin-
ear mixed effects model fitted by maximum likeli-
hood will not necessarily have known analytical sam-
pling distributions [43, 37], particularly in our setting
where low sample sizes preclude the use of asymptotic
results [22].
When analytical results describing the sampling

distribution of the test statistic are not available,
Monte Carlo simulation may be employed to estimate
type I and II error rates [30, 37]. This involves sim-
ulating a number of hypothetical data sets according
to a population model which corresponds to either
the null or alternative hypothesis and, for each data
set, calculating the test statistic. Implementing the
proposed decision rule, the resulting action can be
compared with the hypothesis used to generate the
data and any error, type I or II, counted. This gen-
eral technique is highly flexible. It can be applied to
almost any multilevel structure encountered in prac-
tice [11, 27], using any proposed statistic in the anal-
ysis. However, this flexibility comes at the expense of
a computational burden. The Monte Carlo method
can require a significant amount of CPU time in or-
der to perform enough simulations to provide an ac-
curate estimate of error rates. The binary nature of
both type I and II errors implies that the width of
a confidence interval around an estimated error rate
will decrease at a rate of K/

√
r for a constant K and

r simulations. For example, to ensure a 95% confi-
dence interval of ±0.05 around an estimated type II
error rate of 0.2, one would require r = 24586 sim-
ulation runs. In practice, this may impose a limit
on the number of trial specifications which can be
considered and evaluated before one is chosen.
The computational burden of simulations may be

reduced through their implementation in efficient
programming languages such as C++. However, it
has been argued that the resulting lack of trans-
parency and difficulties in interpretation, in compari-
son to popular statistical programming packages such
as R, should be taken into account when consider-
ing this option [59]. Alternatively, one may expedite

the process of selecting an appropriate sample size by
simplifying the problem. This technique is used in the
freely available MLPowSim [11] software, which iden-
tifies a sensible choice of sample size by calculating
the power of a restricted grid of designs, incrementing
sample size parameters such as the number of clus-
ters and the number of patients per cluster in large
steps. By not considering every possible combination
of sample size parameters, precision is sacrificed for
speed. In the Stata routine SimSam [27], the prob-
lem is simplified by assuming all but one sample size
parameters are known and fixed. Using heuristics
to increase the efficiency of the search process, the
optimal value of the remaining parameter (e.g. the
number of patients per cluster) can be found in a
timely manner. An alternative approach would be
to use optimization algorithms which employ surro-
gate models, such as Efficient Global Optimisation
(EGO) [31] and its variants to search over the full
space of sample size configurations. These algorithms
rely on fitting models, such as Gaussian process, to
the simulated data obtained over a limited number of
initial sample size configurations. Optimisation then
takes place over the surrogate model, increasing effi-
ciency as each evaluation now requires a simple cal-
culation as opposed to a full simulation process. As
these algorithms and their components have been im-
plemented in R packages [50] and C++ libraries [42],
they can be employed for this purpose without sig-
nificant difficulty.
The simulation approach may be difficult to imple-

ment in cases where ‘nuisance parameters’ are present
in the statistical model. This will often be the case
where clustering is present. For example, in a fully
nested design one would require a value for the ICC
to be used in the population model when generating
the data at each step. While it has become increas-
ingly common for ICCs to be reported in the results
of trials [14], the early phase context of feasibility
and pilot studies implies that little information will
be available for the intervention in question. Indeed,
gathering information to inform future estimates of
ICCs is a common objective of feasibility studies [3].
Thus, calculations of error rates may be dependent
on parameter estimates in which there is significant
uncertainty. The effect of such uncertainty in ICC

8



estimates on type II error rates and required sample
size has been shown to be considerable [60, 68]. One
approach to address this difficulty would be to carry
out a sensitivity analysis, using several values of the
nuisance parameter covering an appropriate range in
order to identify its effect [37]. However, this would
further contribute to the computational burden of the
simulation approach.
In cases where some information regarding the

likely values of nuisance parameters is available, a
Bayesian approach would allow for this to be in-
cluded formally via prior probability distributions [1].
This would fit naturally into the simulation method
described thus far, allowing the data generated by
the population model to encapsulate uncertainty in
the nuisance parameters, leading to more robust es-
timates of error rates. In the case of ICCs in cluster
randomised trials, the use of a prior distribution has
been shown to significantly affect both design [69, 70]
and analysis [60, 68]. In addition to acknowledging
uncertainty in parameters, a Bayesian approach will
also facilitate the incorporation of information from
other sources. Recent methodology has been devel-
oped to allow for the weighting given to such prior be-
liefs to be adaptively changed in response to the data
observed in the current trial [26], where the weight-
ing will decrease as the observed data becomes less
commensurate with the historical data [25]. Com-
putationally, the Bayesian approach will require the
use of Markov Chain Monte Carlo (MCMC) meth-
ods and, as a result, may be present difficulties with
respect to timely analysis .

3.2.2 Sample size

In addition to leading to complex statistical models,
clustered trial designs present difficulties when inter-
preting the notion of sample size. In phase II designs,
sample size is commonly used as a metric with which
to compare the quality of any two trial specifications.
Typically, the setting of trial parameters is done in
such a way as to minimise sample size subject to type
I and II error rates remaining within nominal bounds.
Trials with clustering, however, will induce further
measures to be minimised by the trial designer. For
example, the OK-D study involves k research nurses,

each of whom has been assigned m patients. We wish
for both k and m to be kept as low as possible whilst
ensuring error rates remain within nominal bounds,
but these measures are clearly in conflict - reducing
one will require increasing the other in order to main-
tain error rates.
One approach to this problem is to combine the

measures into a single weighted combination. This
may be achieved through translating each measure
to a common scale, such as cost [29, p. 175]. This
would then allow one to focus on minimising cost
(subject to constrained error rates). Where such a
transformation is not available or appropriate, one
may still employ a weighted combination method, al-
though it may be challenging to elicit and represent
the preferences of the decision maker(s) in this form.
An alternative approach would be to set a limit on
one measure, so that the other may be minimised
subject to this constraint. For example, one could
look for the trial with smallest m such that k ≤ 5
and error rates remain within nominal bounds. Both
methods induce an ordering of preference on the set
of all possible trial specifications, thus defining the
best. An alternative approach would be to consider
the minimisation of m and k as independent mea-
sures, and attempt to identify a set of trial speci-
fications representing a range of potential trade-offs
between them whilst maintaining error rates within
nominal bounds. This technique, known as Pareto
optimization [45], may be a more realistic reflection
of trial design in practice, where it is common for
a range of scenarios and options to be explored and
presented to the decision maker(s) before a final trial
specification is selected. More generally, it should
be noted that the error rates of trial configurations
are measures which we aim to minimize, and that a
constrained approach is typically used (e.g. requiring
α < 0.1) in addressing them. The benefits of relax-
ing error rate constraints to encourage the designer
to trade-off different performance measures has been
illustrated previously [35]. Furthermore, this general
framework would extend easily to allow for further
objectives to be specified. For example, as illustrated
by Jung et al. [34], the specification of a two-stage
trial following the Simon [57] design could consider
minimising both the expected sample size and the
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maximal sample size simultaneously.

3.2.3 Design space

In Section 3.1.2, additional complexity in the specifi-
cation of decision rules was shown to lead to a more
difficult optimisation problem due to an increased
number of parameters. Similarly, increasing complex-
ity in terms of multilevel structures due to clustering
will also require further parameters or dimensions to
be considered when searching for optimal trial spec-
ifications [29], and so again it may be beneficial to
implement sophisticated optimisation routines rather
than exhaustively searching through all possible op-
tions. Practically, the impact of increased numbers
of design parameters may be limited by bounds on
their values. For example, the number of therapists
available to deliver an intervention may be fixed, and
so when designing the trial one will not have to con-
sider its variation. While such a feature will lead to
a simpler optimisation problem, it may also lead to
difficulties with regards to parameter estimation and
inference.

4 Conclusions and further work

Currently, guidelines for the development and evalua-
tion of complex interventions suggest that early phase
experimental work focuses on assessing the feasibility
and optimal design of a planned phase III definitive
RCT. This contrasts with the drug development set-
ting, where phase II trials are commonly used as a
screening mechanism, designed to assess the efficacy
of a new treatment and decide if a phase III trial will
be worth conducting.

In this paper we have considered how the efficacy
of complex interventions could be assessed in the con-
text of current early phase feasibility or pilot studies.
With reference to a range of phase II trial designs,
challenges to their adaptation to the complex inter-
vention setting have been discussed. The presence
of multiple endpoints on which a decision must be
based, and the clustering of outcomes in multilevel
data structures, have been reviewed in detail. Two
recurring themes have emerged. Firstly, the potential

benefits of Bayesian methods have been highlighted
in the context of decision theoretic approaches to trial
design, incorporating uncertainty in trial design pa-
rameters and providing robust methods of estimation
when only limited numbers of clusters are available.
Secondly, we have emphasized the practical need for
a sophisticated approach to defining and locating the
‘optimal’ trial specification for a given problem, in
order that the best possible trial specification can be
determined in a timely and robust manner.

In addition to difficulties arising from multiple end-
points and clustering, there remain several other fea-
tures which could be explored in future work. One
could consider widening the set of decisions of the
study from the simple {stop, go} to encompass the
refining of the intervention’s components or param-
eters [17], or to include the design specification of
the planned phase III study in response to feasibil-
ity findings. Further details such as the impact of
learning curves could be explored, and the appropri-
ate place of efficacy assessment in the larger devel-
opment and evaluation framework proposed by the
MRC [21] should be considered.
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