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Abstract

Some convergence issues concerning wavelet multiresolution approximation of random pro-
cesses are Investigated together with the properties of the stochastic coefficients associated
with the multiresolution decomposition of second-order processes. FExisting convergence re-
sults derived for orthonormal wavelet multiresolution approximations are extended to more
general non-orthogonal multiresolution approximations. The mean and covariance functions of
the stochastic expansion coefficients of second order processes are derived explicitly and it is
shown that for white noise processes the variance of the coefficients is invariant across the scale.
Simulation results illustrate the theoretical findings.

1 Introduction

It is often desirable to represent random processes as a weighted sum of basis functions. An
example of such a representation is the wavelet multiresolution decomposition (7,3,9, 2] in
which the random process is expressed in terms of dilates and translates of a scaling and a
wavelet function.

The convergence of such representations has been addressed for several types of stochastic
processes in the context of orthonormal wavelet multiresolution approximations implemented
using compactly supported wavelets [6]. Explicit expressions for the approximation errors for
deterministic and random signals have also been established [1]. In this paper it is shown
that the convergence results can casily be extended to more general non-orthogonal classes of
wavelet multiresolution decompositions.

The main focus of previous work however was the study of the expansion coefficients. The
coeflicients of the approximation define, at each resolution level, a discrete stochastic process
that can be characterised in terms of mean, correlation and covariance functions. In this context
the correlation structure of the wavelet coefficients of Brownjan motion [4, 10] and more general
random processes [8, 5] has been studied assuming orthogonal wavelets with compact support.

In this study, the stochastic properties of wavelet coefficients of second-order random pro-
cesses l.e. the mean and covariance functions are derived in the context of general non-
orthogonal wavelet multiresolution decompositions. It is shown that the coefficients associated
with a wide sense stationary process also constitute wide sense stationary processes at every
resolution level. As a special case, the second order properties of the coefficients of white noise
processes are investigated. It is shown that the variance of the white noise coefficients is in-
variant across the scale. If the decomposition is orthonormal it 1s inferred that the coefficients
define a discrete white noise process with the same variance as the continuous-time counterpart.




2  Wavelet Multiresolution Approximations of Random
Processes

It is well known [1] that many random processes do not have sample paths in L2(IR), that is,
the signals are not square integrable over the real line, and therefore the wavelet approximation
framework does not apply in such cases.

However, stochastic processes which are square integrable with probability one over the
real line, i.e. finite energy stochastic processes, and the sample functions of stationary and
nonstationary random processes with finite (mean) power, which are square integrable with
probability one over every finite interval, can be represented meaningfully as multiresolution
wavelet series. In this context the issue of convergence will be addressed for more general
non-orthogonal wavelet bases.

2.1 Finite Energy Stochastic Processes

A measurable random process with finite energy z(t,w) satisfies

| Ellattw)yet = [~ R(t,8)dt < oo (1)
where £{-} and R(-) denote the expected value and covariance function respectively. From
Fubini's theorem it follows that z(t,w) defined on IR x {2 is square integrable with probability
one i.e. almost every realisation z(t,w) with w € Q will be a square integrable function in
L*(IR).

Previous studies [6] have shown that such random processes can be represented meaningfully
in terms of orthonormal wavelet series. In what follows, it will be shown that the convergence
results still hold if the orthogonality constraints are dropped.

The main difference is that for non-orthogonal MRA’s (Multiresolution approximations) the
basis functions used for analysis are not identical with the basis functions used for synthesis.
Each wavelet and scaling basis function used in the reconstruction corresponds to a dual wavelet
and scaling basis function used in the analysis. The roles of the dual bases are normally
interchangeable, each pair defining a MRA.

The following lemma considers the convergence with probability one of a non-orthogonal

MRA of a finite energy random process, extending the applicability of the original lemma due
to Genossar (1991).

Lemma 2.1 Let (4(t), ¢(t)) and (%(t),%(t)) be pairs of dual scaling and wavelet functions
corresponding to a multiresolution analysis, mot-necessarily orthogonal, in L*(IR). For any
measurable, finite energy random process z(t,w) defined on R x § the following hold:

o The coefficients
e = (a(t) dia(t) = [ 2(®)da(t)ds

— 00




are well defined for any 5,k € Z

e The approzimation

zi(t) = 3 cindin(t) = i > dixtin(t) (3)

ke l=—co keZ

is well defined for any 7 € Z and converges with probability one to z(t) that is

lim [ |2(t) — z;(8)%dt = 0 (4)

170 J—e0
with probability one.

Proof: Using a similar approach to that in the original proof due to Genossar (1991), since
each realisation of z(t) is square integrable with probability one it follows that with probability
one, the coefficients of the approximation can be calculated as an inner product (z, ¢; (t))
and (z,;(t)) involving the dual scaling @, x() and wavelet ¥ x(t) functions respectively. The
approximation z;(t), which is the projection onto the scaling subspace V; expanded in terms of
scaling and wavelet functions respectively, converges to z(¢) in the L*(IR) norm according to
the wavelet theory.

The theorem regarding the convergence of the approximation in the quadratic mean [6] can
also be modified accordingly

Theorem 2.1 Let (6(t), $(t)) and (b(t),%(t)) be pairs of dual scaling and wavelet functions
corresponding to a multiresolution analysis, not necessarily orthogonal, in L*(IR). For any
measurable, finite energy random process z(t,w) defined on R x Q with associated covariance
function R(t,s) satisfying [Z2, R(t,t)dt < oo the approzimation

n
~—

zi(t) = D ciudie(t) = ZJ: Y diwtbii(t) (

kel l=—co e/

converges to z(t,w) in the L*(IR x Q) norm, that is,

T :E{lw(t) — a;(t)P}dt =0 (6)

J—OOC -

Proof: Similar to Genossar (1991), define e,(t), the approximation error at level j,

ei(t) = z(t) — z;(t) = z(t) — D cindin(t) (

keZ

~1
s

Clearly, e;(t,w) is a random process defined on IR x  hence the squared error at resolution j,

defined as 5
e = le = [ les(t)Pat (8)
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1s a random variable in Q. From Lemma (2.1) it follows that almost any realisation z;()
converges to z(t) in L*(IR). Hence

lim e;(¢) =0 (9)
J—rco
with probability one. This means that
imigy=0 (10)
J—eo

with probability one. Regardless of whether the multiresolution is orthogonal or not, by def-
inition, z;(t) is the orthogonal projection of z(t) onto V; = ... + W;_2 + W;_;. This means
that e;(2) is the projection of z(t) onto the orthogonal complement of V; in L*(IR) such that

ity = z,(t) & e;(t). Hence
12013 = lles(8) + 25(£)13 = lle; (412 + Il (2)]|2 : (11)

Consequently
& = lles(lz < llz(2)]13 (12)
with probability one.
Since R(t,t) is integrable

E“dﬂﬁ}:[:Rﬁjﬁhqm (13)

Equations (10), (12), (13) state that the sequence of random variables {;} which converges to
zero with probability one, is dominated by {|z(t)|3 with probability one and lz(t)||5 has finite
expectation. By the Dominated Convergence Theorem [11]
lim &{¢;} =0 (14)
J—oo
Equation (6) follows since the value of an absolutely convergent iterated integral is independent
of the order of integration (Fubini’s theorem).

2.2  Finite Power Random Processes

Random processes with finite (mean) power,

Zﬂh@@ﬁﬁ:lH@ﬂﬁ<m (15)

for any compact interval I € IR, are square integrable over every finite interval. The wavelet
representation over a finite interval of such processes 1s relevant in practice since real life pro-
cesses are usually observed over a finite time interval.

Using Fubini’s Theorem, it can be shown that with probability one the sample paths z(t,w)
of these random processes are square integrable over every finite interval,

The following lemma, and the subsequent theorem are generalisations of the original results
derived in the context of orthogonal wavelet approximations [6].
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Lemma 2.2 If(¢(t), g;(t)) and (¥(t),9(t)) are pairs of dual scaling and wavelet functions which
define a multiresolution analysis not necessarily orthogonal, then for any finite (mean) power
random process z(t,w) defined over L*(IR. x Q), the following statements hold:

o The coefficients

ik = (a(t), ia(t))r = [ 2(O)Bsu(t)et
(16)
dis = (@) bialhs = [ a(tVPsu(t)it

are well defined for any j,k € Z

o The approzimating series

z;(t) = ) cik biult) = i Y dinthk(t) (17)

keZ l==co e
is well defined for all and j,k € Z

o For any compact interval I € R,

lim [ |z(t) — z;(¢)|*dt = 0 (18)

I JT
with probability one.

Proof: The integral used to calculate the coefficients is convergent (finite) for any compact
interval, since z(¢,w) is square integrable over every compact I with probability one. It follows
that the approximating sums are well defined and converge to z(t) in the L*(IR) norm.

The following theorem guarantees convergence in the mean of the wavelet approximation of
a finite (mean) power random process.

Theorem 2.2 Let (¢(t), (t)) and (%(2), D(t)) be pairs of dual scaling and wavelet functions
which define a multiresolution analysis not necessarily orthogonal. For any random process
z(t,w) defined over L*(IR x Q) which satisfies the finite (mean) power requirement, the approz-
imation _
J
25(t) = 2 (2(), din(t)rdin(t) = 3 3 (@(8), %in(t))r s u(t) (19)
keZ l=-cokeZ

satisfies

lim | € {|a(t) - 2;(t)]2} dt = 0 (20)

J—royl T

for any compact I € IR.




Proof: The truncation zo(t) of the random process over the interval I, such that zo(t,w) =
z(t,w) when t € I and zero elsewhere, is a finite energy process hence the results of Theorem

(2.1) hold. Thus,

lim [ € { [2o(t) = 3 (aol2), é;.k(ﬂ)@gk(t)lz} dt =0 (21)
J —CO keZ
Because the integrand is everywhere nonnegative and I C IR, the previous expression is equiv-
alent to
lim [ { ) = 3 fooft), g%j.k(wj.k(t)l?} d=0 (22)
keZ

Since zo(t,w) = z(t,w) for t € I and (zo(t), §; x(t)) = (z(2), ¢; 5(t))1 it follows that

lim | & {fﬁ(f) - 2 (=(¥), ¢j.k(t)>f¢;.k(t)J2} dt =0 (23)
j—oo JI ez

Note that if the analysis scaling and wavelet functions are compactly supported, only a
finite number of nonzero scaling and wavelet function coefficients exist. It follows that at
every resolution level only a finite number of synthesis basis functions, which may have infinite
support, are practically used.

In contrast when the analysis functions are not compactly supported, the number of nonzero
coeflicients is theoretically infinite, although their values vanish rapidly outside the interval of
interest. However, if the scaling and wavelet functions used in reconstruction have compact
support, only the basis functions that cover the interval of interest are useful to approximate
z(t). Hence, at every resolution level, the expansion will include a finite number of scaling and
wavelet functions.

2.3 Properties of Stochastic Wavelet Coefficients

The coefficients associated with a multiresolution decomposition of a random process are
stochastic variables. If such a decomposition exists (is meaningful) the coefficient sequence
at every resolution defines a discrete random process over the space of square summable se-
quences [*(Z x Q). The correlation properties of these coefficients are induced by the correlation
structure of the continuous-time process.

Consider z(t,w) a second-order random process (£{|z(¢,w)|?} < co) with mean p(t) corre-
lation function r(¢, s) and covariance function R(t,s).

If z(¢,w) is measurable and

[ Eflatt,w)}d0)ldt < oo (24)
1s convergent the following integrals
/ z(t,w)@(t)dt < oo (25)

/_O; 2(t,w)d(t)dt < oo (26)




are well defined so the coeflicients

Gr= [ altw)ist)d < oo

—CcOo

(27)
dj,k:/:: 2(t,w); 4()dE < o0

are finite.

At each resolution level 7, the integrals in (27) define two discrete stochastic processes
¢j(k,w) and d;(k,w) respectively, with k,j € Z, which can be characterised in terms of mean,
correlation and covariance functions.

The mean of the random scaling and wavelet coefficients in (27) can be calculated at each
resolution as follows

et ={ [~ abut)at) = [ ela®buatier =27 [~ ur)dv)e

(28)
(it = €{ [~ alWbhia®)it) = [ efa@ia(tat =277 [ u(tyh(tyat

where Fubini’s Theorem has been applied to change the order of integration. In particular,
assuming p(t) = p is constant if follows that £{c;z} = 279/2p||@|l, = 277/?x (usually ||4|l; = 1)
and E{d;x} =0

A far as the second-order properties are concerned it is always possible to assume that z(t, w)
1s zero-mean with little loss of generality. In this case the correlation and covariance functions
coincide. :

The covariance function R, (I,m) of ¢; where j,k,I,m € Z can be calculated as follows

R.(l,m)=E{ciGm} = & {/_o; /D:O qwﬁj,g(u)gzgj_m(u):n(u)x(v)dudv}
= [ ] du)dim(v)E{a(w)a(v)}dudv (29)
= [ $iu)dsum(0) Rl v)dudo

Note that equation (29) can be used to calculate the correlation structure of the coefficients
across the scale by simply changing the analysis functions accordingly.

If the random process z(t,w) is assumed to be wide-sense stationary, that is, the covariance
function R(¢,s) is a function of only the time difference

R(t,s) = R(t — s) (30)

after a change of variable equation (29) can be written as

/ / (]53{ T+ ) ¢Jm( VR(7)dTdv
= [ Bmyr |7 Gulr +0)3im(v)do (31)
= [ Ry, 5, ()

—00
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where 7 = u — v and 'yéﬂ’éjm(T) 1s the correlation function between qgjl,_: and qTDJ-,m. Since

Y4,..4,..(7) depends only of the difference (I — m) (the functions gr;jlg(t) can be obtained from

$;m(t) by a translation with (I — m)) it follows that R, (I,m) depends only on (I — k) and
therefore the discrete-time process c;(k,w) is also a wide-sense stationary process.

The covariance function Ry (I,m) of d; ;. can be calculated in a similar manner. In particular
the variance of the scaling and wavelet coefficients at every scale is

Re(kk)= [ Ry, 4, (n)dr

Ra,(k, k) = /_m R(rYyg . (7)dr (32)
where V3, 11 and Vi, b, o€ the autocorrelation functions of ;i and ix which are inde-
pendent of k.

A special case of a wide-sense stationary process, which is extremely useful in practical
applications, is the white noise process. By definition, the spectral-density function of a white
noise process is given by

for all v where S(v) is defined as
=2 —127uT
Bl = f R(r)dr (34)
Although in this case
/ S(v)dv = R(0) = oo (35)

indicates that a white noise is not a second order process, heuristically, equation (35) suggests
that R(7) must be given by
R(r) = 6(r)S (36)

where 6(7) is the Dirac § function. In practice [11], one deals with random processes z(t,w)
that are approximately white noise and for which the integral

/ F(t)z(2)dt < oo (37)
is convergent for every square integrable function f.

In what follows some specific properties of wavelet representations of white noise will be
derived. If z(¢,w) is white noise then the covariance function R(7) = Soé(7) can be substituted
in equation (37) to give

o]

N 5'05(7)753.11%7“ (7)dr

Re(1-m)= |

(38)
Ry (l—m) = fo; So8(T )15, 15, (T)dr

9




Using the ’sifting’ property of the delta function

[ 8oy = £(0) (39)

the integrals in (38) can be evaluated as
B, [ —11) = 507&,;,&,,":(0)
(40)
Rdj([ = m) = SGT"L],("J’],?R(O)

In particular the variances of the scaling and wavelet coefficients are

£e,(0) = S0, , 4, ,(0) = Sol| ;x| 2 _
Rq,(0) = Sovg,, 5, ,(0) = Sollull (41)

This result motivates the following proposition:

Proposition 2.1 The variance R, (0) and Ry (0) of the discrete-time random processes c;(k,w)
and d;(k,w) defined by white noise integrals involving the dual scaling and wavelet basis func-
tions @;x and ¥, of o multiresolution approzimation are scale (j) invariant.

Proof: Since the dual scaling and wavelet functions ¢ and ) generate a multiresolution de-
composition it follows that ||@; |2 = 14]|? and similarly ||4; ]2 = 19]|2 for all j, % € Z hence
the proposition is proven.

If white noise is superimposed over a bandlimited deterministic signal, this property could

be used as a practical means to detect the resolution (wavelet) subspaces in the wavelet mul-
tiresolution decomposition, which mainly account for the noise.

In particular, for orthonormal multiresolution decompositions [|¢||; = [|4]|. = 1 and |2 =
%]l = 1. Hence R, (0) = So = R(0) and R4 (0) = So = R(0) i.e. the transformation preserves
the variance. Moreover, since in this case R, (I=m) =6, and R, (I —m) = & .50, where
65,k is the Kronecker symbol defined on Z x Z, it follows that ¢; and d; define at every scale a
discrete white noise process.

3 Simulation Results

The theoretical results presented in the previous sections are illustrated here by means of a sim-
ple experiment. A white noise process with mean x4 = 10 and unit variance was represented as a
orthonormal multiresolution approximation. The mean and variance of the resulting coefficients
were calculated and compared with the theoretical results.

The white noise signal consisted of 21¢ data samples. The projections of the signal over
9 wavelet subspaces W, j = —1,...,—9 and 10 scaling subspaces Vi, 7 =0,-1,...,—9 were
calculated using a pair of 6th order Daubechies filters. The mean and variance of the scaling
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and wavelet coefficients corresponding to each subspace, listed in Table 3, match very well with
the theoretical findings.

Scale g{CJ"k} E{dj'k} RCJ(O) RdJ(O)

=0  10.000 =g - 1.007 «
Jeol 14048 =983 0.001 1.005 1.003
=2 20.000 =24 0.013 1.010  1.003
j=-3  28.284 =2%/%, 0.010 0.991  1.029
j=-4 40.000 =2%x -0.005 0.982  1.001
j=-5 56.568 =25/,  0.008 0.946 1.018
j=-6  80.000 =2°4 -0.030  0.910 0.981
j=-7 113.137=2"%,  0.044 0.917 0.904
j=-8 160.000=2%4 0.080 0.936 0.895
j=-9 226.274=2%7y  -0.023 0.880 0.997

Table 3

4 Summary

The convergence of general, non-orthogonal wavelet multiresolution approximations of random
processes has been investigated. The convergence results, introduced by Genossar et al (1991)
for orthonormal wavelet bases with compact support, have been extended to less restrictive
multiresolution decompositions.

The second order properties of the stochastic coefficients associated with a wavelet multires-
olution decomposition of a second order random processes, namely the mean and covariance
function, have been derived as functions of the mean and covariance function of the original
second order random process. It has been shown that the variance of the coefficients of a
white noise process is invariant across the scale. In particular, in case the MRA is orthonor-
mal the corresponding coefficients at every scale are also white and have the same variance as
the original white noise process. Simulation results were provided to illustrate the theoretical

findings.
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