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ABSTRACT

An explicit form for the solution
is given by using Duhamel’s princip
applied in the case of a nilpotent ge

of a nonauonomous linear system of differential equations
le and a generalised Campbell-Haudorff formula. This is
nerating Lie algebra to Lyapunov transformations.

1. Introduction

In this paper we shall apply Duhamel's principle ([Taylor, 1991}) relating the solution of a
nonautonomous linear differential equation to the limit of a repeated sequence of exponentials
and a generalised Campbell-Haudorff formula in order to obtain an explicit solution for a

nonautonomous linear differential equation. The solution will be given in terms of commutators
of the matrices A(t) defining the system. Thus, if the system is

T =A(t)r. z(0) = zq

then the solution will be expressed as an exponential of a matrix which belongs to the Lie
algebra generated by the matrices {A) : t € R}. As such. we obtain an explicit closed-
form solution in the case where this Lie algebra is nilpotent. The use of a svstem Lie algebra
generated by the matrices of a system has also been applied recently to nonlinear systems of
the form

T=A(z)z. z(0) = 2,

see the series
, 1999, Banks,

and a number of new results in chaos theory and stability have been obtained (

of papers [Banks and Al-Jurani, 1994, 1996, Banks and McCaflrey, 1998. Banks
2000]).

In the case of linear, nonautonomous s
of problems. We illustrate the a
leads to new stability results.

The general formula develo

ystems the explicit solution can be applied to a number
pplication here in the case of Lyapunov transformations, which

ped here requires the computation of a certain set of coefficients
- These are given by a complicated formula given in theorem 4.

vely computed by using the symbolic package Maple, and so in
the appendix we given a simple Maple program for their computation.

A S o Yoo T et

e TS



[

2. The Generalised Campbell-Hausdorff Formula

We begin by stating the well-known Campbell-Haudorff theorem, whose proof can be found
in [Miller, 1972]. (For the theory of Lie algebras, see |S.Helagson. 1962, N.Jacobson. 1962.
A.A.Sagle and R.E.Walde, 1973, S.Varadarahan. 1976)).

Theorem 1 If A. B are sufficiently close to 0. then (' — In(ee®) is given by

1
C=B+/ g[exp(t.{d‘—l)exp(AdB)](A)dt (2.1)
0
where
o 2 1. Lo e, & L oot e _
9z) = =7 =1+5(1-2)+ (1 -2)° —gf—;l( 1)z = 1), =

Corollary 1 If A. B are as in the theorem. then

o oo oC 0
(-1} 1
C = B4 e B S E T Ia
s e ¢ +1 21:;]}:0 w:%_[] z,—-:%:@ ?,1!1-2.’ ree 'L[!_]]UQ,’ e ][l(‘l‘ = 1]
(11.21)#(0.0) (15,59)5(0.0 (1£.27)%(0,0)
(AdA)" (AdB)" (AdA)=(4dB)* . .. (AdA)2(AdB)% . 4 (2.2)
where |i| =i +--- +14,.
Proof From (1) we have
£
C=B /1 i‘ =) i i 4 (AdA)'(AdBY | Adt
T Ty T | L 151
=0 1= j=0
(2.7)7(0.0)
and the result follows. O
We require a generalised Campbell-Haudorff formula for k& multiplicands, i.e. efiedz. .. o4k

To find this we shall use the argument in [Miller, 1972] which requires the following two lemmas.
also proved in [Miller, 1972];
Lemma 1 For matrices A B we have

eABe--f =efp = zx:(j!)‘l(AdA)j(B).

J=H
O
Lemma 2 If each element of A(t) is analytic and f(z) = (e —1)/z then
d ,
A2 eA0 = _ F(4dA(t))(Alt)).
E




Theorem 2 Given k matrices A,,--- Ak i a sufficiently small neighbourhood of 0, then »
Cr = In(efcete=1. .. e41) 45 given by

1
Ly = / g[exp(tAdAk)exp(AdAk_l)exp(AdAk_z)---exp(.ﬁldAl)] (Ag)dt
0

+Ch—q
where Ci_; = In(eM-1e4-2. .. ef1).
Proof Let
[(t) = In(e*edr-1 ... g)
so that
el“(t) - etAke.‘lk_l . 8‘41.
Then,

(exp[AdT(¢t))H = '™ He TM i
etAkeAk_l - eA]He—Al L e—.4k,18—tAk
by lemma 1. for any matrix H, and so
exp[AdI'(t)] = exp(tAdA) exp(AdAg-1) - --exp(AdA4,).
Also.

i d d
T(E) =) _ tAE Ap_y A —-A; —Ag_y —tA,
& b o = € € LT | g T € €
dt df( )

— —4

and so, bv lemma 2. '
F(AdT ()T (t) = A,

However.
f(lnz)g(z) =1, for 1 —z| <1,

and so )
f(InF)g(F) =1 or g(F) = (f(In F))~!

for any matrix F' with ||I - F|| < 1. Setting F = exp(AdtAg) exp(Ad Ax_)) - - -exp(Ad 4,)
gives

t
I't) = / g [exp(tAdAy) exp(AdAy_1) exp(AdAg_s) - - - exp(AdA, )] (Ay)dt
0

+constant .

The constant is given by ['(0) = In(e#-1e-2...¢41) = 0, O
Corollary 2 If Al -+, A are as in the theorem, then

e - 1
Z Z Z - Ha(1) + -+ 0 () +1)

i(1)=0  i(f)=0 |

\1(1)|;é0 |i(€)|#0
(Ad Ae)* ™M (Ad 4y_y)=0) (AdA )+ (Ad Ap) @ (Ad Ay_1)2@) ... (Ad A,)*®
- (Ad A )" O (Ad A, 1)12 - (Ad A)*O . 4,
where i(p) = (11(p). -+, ik(p)), i(p)! = 51.(p)!ia(p)! - - - ix(p)!. o

(If £ =0 we interpret the value as Ax.)
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3. Time-Varying Differential Equations

Next we recall Duhamel’s principle ([Taylor, 1991]) for the solution of a linear. time-varying

differential system:
Lemma 3 The system

z=A(t)r, z(0) = zg (3.1)

has solution given by
a8} = }1&% pAlm=1)R)h  A((m=2)h)h e AR GA(RA AR (3.2)
O

forany t > 0, where mh = t.
From corollary 2 and lemma 3. we have

Lemma 4 The solution of the system

&= Alt)z , z(0) = z

18 given by
z(t) = lim e“mz
h—0
where mh =t and
m oc oo} >0
(=1 1
ZZ Fa Z Z Wi (1) + -+ 41 (£) + 1
p=2 (=0 i(1)=0  i(H)=0 ; “h4l T4 1)
ji(1)j=0 lif€)|s£0
i(1)ERP i(£)sRP

(Ad 4p)" M (Ad 4y 1) - (Ad A1) "N (Ad A,) 2P (Ad A,_)22) ... (Ad 4;)»2)
_— (__1d__1p)11(f)(_4d ‘_1p_1)1°\ff . (Ad A )1p (&) Ap
+ A4 (33)

where
Aq = A((g— Dh)h. (3.4)

Combining lemmas 3 and 4 we have
Theorem 3 The solution of the nonautonomous differential equation (3.1) is given by

z(t;zp) = exp / d’+z DR /f f f

k=2 gk-1cg,

[A(Tak‘l(l)): [‘4(70*‘1(2 )r [ ' [A(Tok L(k—1) 4(7’,1;):[ J”dﬂrl 'di) Lo (35)

where Sk_; is the set of all permutations of 1,--- k — 1 and u(c*') is a number. depending
on k and the permutation, to be found later.
Proof This follows from (3. 2) and (3.3) since each multiple integral in (3.5) is the limit of
typical terms in (3.3) where each i ;(k) = 1. The latter condition follows from the fact that. for
a sequence |
(Ad AP)““)(AGT Ap_l)z‘z(l) .+« (Ad Al)iP(l)(Ad Ap)il(i) A
4




of a given total degree k = Zj:l(il(j) + 1 +ip(j)), any repeated factors will converge to a

zero integral since they are multiplied by A* and there are at most O(1/(h*1)) such terms. O

The only thing remaining, therefore, is to find the multipliers p(c*=!). This will be done
in three steps. Consider first the case of & = 2. Clearly for terms with brackets of the form
[A:, A;] we must have £ = 1 in the expression (3.3); thus we must choose these terms from the

expression

L 1 | - .
EPIPD DG ) 1) e )V (Ad Ay )20 (40 4,)50 4,

P=2 |i(1)|#0
i(1)ERP

Since we do not have to consider terms of the form [4,. A;] = 0. we must have 11(1) = 0. and

some 1,(j) # 0,7 # 1. In this case, all the factors m equal 1. so we have

Lemma 5 pu(o') = -1, ie. the second order term in (3.5) is

_%/Ot/o.r[}l(p)}A(T)]dpdT.
d

Next. terms of order 3 come from (3.3) with { < 2. i.e. from the expressions

. 2. 19 i(1)
Z i(l)f(ﬁ(l) T 1)(.4d.41p) 1(1)(_4(1"413_1) 2(1) . (Ad;—ll) . l’rip

E 1 .
T3 ully s 2l il
3 2 (DR (1) T i (2) = 1) 84" (Ad )20 (Ad )

=2 li(1)l=1.i(2)i=1
i(1)=3P

(Ad Ap) @) (Ad 4, )= ... (Ad AP A,

We will obtain brackets of the form [Ai. [A), Ak]] where (i) k > i > j or (ii) £ > 7 > 1.
Terms of type (i) can come from both the series above and fro any given fixed 1. ],k we
get a factor of -1/2 from the first and a factor of 1/3 from the second, i.e. a factor of -
1/6. Terms of type (ii). however, can only come from the second series because the terms
(Ad A,) " M(Ad A,_,)=20) ... (Ad A1) 4, in the first series are ordered so we must have k >
t > j. Hence for any term of the second type we have a factor of 1/3, and so we have
Lemma 6 The third order term in (3.5 ) is

_é/;/;3/072[‘4(@,[A(Tl),A(ra)]]dndT?d»rg+

é/ot/OTE/OTQ[A(TI),[.4(72),A(Tg)]}drldrgd'rg.
]

Consider next the case of the k% order terms. As before, each factor i(z)!-<-im!(n(11)7---T11r’£)—1;
will reduce to 1 and we will only get k** order terms for £ < k — 1. Hence we must choose k"

5




order terms from

(AdAp)(Ad Ap_y) - (Ad A)) A,

(AdAp) - (Ad Ay)(Ad A,) - (Ad Ay) A,

(=11 & k=1 .
o Y (AdAy) - (Ad A4 4,
p=k—1

Consider first the term B, - By A, where 4, > i > iy > . > k-1 and B, = Ad 4, for
some v depending on i;. This can be chosen in only one way from the first term in (3.6) and
in k — 2 ways from the second term in (3.6). (We must choose at least one B, from each group
of terms (Ad A,) - (Ad A,), so we could choose the first one, B;, from the first group and the
remaining k— 2 from the second, or the first two, B, Bi, from the first group and the remaining
k — 3 from the second, etc.) In the r** term in (3.6) we will have r groups (Ad A,)--- (Ad A4;),
Le.

(Ad4p) - (Ad A))(AdAy) - (AdAy) - (Ad A,) - - (Ad A,) A, (3.7)

= o
T

Suppose there are p(s.t) ways of selecting terms of the form (Ad A,) from ¢ groups. Then the
number of ways of selecting k& — 1 from 7. i.e. p(k—1.7)1is

k=2

plk=Lr)= 3" pli.r—1).

1=r—1

since we can choose 1 from the first group and k — 2 from the remaining. i.e. p(k —2.r—1) or
2 from the first group and & — 3 from the remaining, i.e. p(k —3.r — 1). etc.
Lemma 7 We have

plk—1.r) =

(T_h1)!(k—r)(k~r+1)...(k_g)_ r> 9,

Proof Note that p(v.1) = 1 for all v and p(v,2) = v—1 for all v. Hence the formula is correct
for » = 2. Suppose it is true for r — 1, ie

p(k—l.r~1)=(ng)!<k—r+1)(k—r+m--‘u;_z).
Then.
k-2
plk=1.r) = 3" pli,r—1)

= 1+p(r.r—1)+p(r+1.r—l)—i—---—%—p(kk?.r—I)

Il

1+

(7"—}-1—7‘+1)(r+1%7"+2)---(r—.1—2)+
6
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k

r

i -
_ 2 s Bl s B
g e =2 -
_ ! k-n-r+l)(k—rt+r—2)
- (r-2) (r=2) +1 '
Corollary The total number of terms of the form [Bi,.[Bi,. [ . B, _.. 'Am‘; . J]] which can be
chosen, where the indices 1,.1y, - - . ik-1 are decreasing is given by S oy

Proof The required number is given by

. ‘-1 k -1
=2 —1 L
Z( 12 plk—1.£~1) = Z( ) ! jE— €+ 1)(k—£4+2)0 . (k=2
£=2 £=2 '
k

k(k—1)

(The last sum can be found directly. or by using the symbolic package Maple- see the appendix.)

For the general case. let o*~! be a permutation of the set {1.... k — 1} and write it as
¥ =y e Ben) e pan partition the permutation in the form (i!.i2.... .17) where
o] 1 ; o : :
1= (4, ol ) - 1 = (Zyyoqer - | ——
such that
i* is a decreasing sequence for o« € A C {laews ]
i is a decreasing sequence for 3 & {1,--- v} \A =B
Le. if i% = (44, - .44,), then ey >l > > g, Moreover, we choose the partition so that

the sets i® for a € A are maximal. Let

m

=D [+ R(A)
Bes

v=]
are selecting from a term of the form () with ¢ repeated strings (Ad 4,) - (Ad 4;), then we
require ¢ < 4. Put ( = /¢ —¢. If ¢ > 0, let P; be the set of distinct partitions of ¢ into R(.A4)

pleces, i.e.
(=2 Ca

ac 4
/

where N(A) denotes the cardinality of A and if i’ = (Zkys - -+, %, ). then |if| = T2 ik, If we



where (, > 0. Then the number of possible selections in the £ term is

> Tt ca+1).

CEPg acA

where we take p(k.r) = 0 if r > k. Hence we have proved
Theorem 4 The number u(c*~!) is given by

&
—

1y )
uet) = S S o, +1
P T (eP; ac A
k=1 ;
=] - Sf Y _
= (E_’_)IZHF(!I_ga)(’il_fn}‘a‘l)'--_(!ll—*l).u
f=¢ (€EPacA @

Example Consider. for example, the permutation of {1,2,3,4.5} given by o° =(52341). Here
we have

(52341) =(iL.i% %)

where .
i'=(5.2). "=(3). = (4.1).
so A={1,2.3},B=0and € = 3. For £/ = 3 there is only one choice. so the contribution to

1(c®) is -1/4 in this case. For £ = 4 we have ¢ = 1 and the partitions are (0.1) and (1.0). so
the contribution from this term is

1 ; . .

g(p(Q. 1) p(2.2) +p(2.2) - p(2.1)) = 2/5.
Finally. for £ = 5 we have ( = 2 and the partitions are (2.0).(0.2) and (1.1). Hence the
contribution here is

=
{ {]
—
(="

since p(2.3) = 0. Hence we have pu(o%) = —iti— =&
Remark We obtain the same answer if we regard the singleton i* = (3) as increasing or

decreasing. We have regarded it as Increasing in the example.

4. Structure Constants and Nilpotent Systems

The explicit formula (3.5) in theorem 3 for the solution of a general non-autonomous differential
equation of the form

= A(t)z, z(0) = z, (4.1)

will now be applied to obtain some general results about such systems. First. let L4 denote
the Lie algebra generated by the matrices {A(t) : t € R}. It has been shown ([S.P.Banks and
D.McCaffrey. 1998]) that, if A(t) is analytic, so that we can write A(t) = >~ t'A; for some



matrices A;, then L4 is equal to the Lie algebra generated by the matrices {4, : 0 < ¢ < oco}.
Suppose that {Fy : 1 < k < r} is a basis of L4, so that

Alt) =) gr(t)Ex (4.2)

for some functions g, 1 < k < 7. Let ck be the structure constants of L 4. so that

™

BuBi = S EL

k=1

=) "> > cailt)g(r)Ex
i 7 k

and so

Then from theorem we have
Theorem 5 If A(t) is given by (4.2) then the solution of equation (4.1) 1s given by

eXP{Z/Qk dTEk+Z Z “/t/(‘-k---/m/m
I < U u
v3 ro v

z(t; zo)

k=2 gk-1c5,

LA_, ) 2 A
E : z : E : Z : : : illk 2 thk 3 Clk—zvzclkger:cfaA;H

e W Uk—2

Qil( Tok=1( ))gig( Uk—l(Q))"'gik 1( ok=1(k— 1)sz Ty d’l"'di}IO

- oy [wwnes = wen[ [ [

k=2 gk-1g5, _,
3 Y Ol i)
1 i w

9ir (Tor=1(1)) Gig (Tor-1(2)) * ** Gi_y (Tor-1(k=1))Gir (Tk) By - -dTi}za  (4:3)

where
C(U' Tt Z Z Coruk- i:v: 3’ ‘C:;s-swcgf—zl':(:?:-l?x:'
O
AS a specific example. consider the system with so(3) as its Lie algebra:
. [ T 0 —gs(t) —gaft) z1
x| = | %00 —g1(t) T
\ Z3 92(t) @(t) O T3
. .
= (q1(t)M1 + g2(t) M2 + g3(¢)Ms) | 2
I3
where
000 0 01 0 -1 0
V=00 -1|.My=|0 00| Msg=|120 O
010 -1 0 0 00 O

O —



Here,
[Ml, M?] = A’IB ) [ﬂ{lfzrﬂ‘/'[S] = Ml y [MB':M).] = ‘A"{Q

and we have the structure constants

1 2 3 1 _ 2
C?g = O3 =031 = —C = —C3p = —cj5 =1,
k . .. - . . . ¥
¢i; = 0if{i,5,k} is not a permutation of 1.2.3.
Hence.
C}k = Sk
where

1 if4,7,k is an even permutation of 1.2.3
gk =4 —1 14,7,k is an odd permutation of 1.2:3
0  otherwise

(the standard tensorial e-function). and so from theorem , we have

T t o<
z(t:zg) = exp{Z/ 9k(T)dTE) + Z ok / / / /
k=10 k=2 o ESk 1
3 3 3 3 3
Z Z o Z Z Y Z Swiyvi_ 2€vk_gigup_g """ 5L‘31k—3v25r2?k—2%‘1Svﬂk—lik

1 1
g’il('.‘—gk—l(l))gi?(Tgk—li‘g])"‘gzk ‘( Tak=1(k_ 1))911. Tk E a’,l d:;\}l‘@
t

- exp{kZIngk(T)dTEk+Z DI Ca // / /

k=2 gk-lgs,

3 3 3 3 3
PO IS M B = B
w=11;=1 =1 vg_o=1 v1=1

9ir (Tok=1(1)) Gig (Tor-1(9y) - - Gy (Tar-10e1)) s, (Ti)dry - - - d7} Eyzo

where

— (7':1’) = ET-Ui]Uk—ESUk—Q?QUk—:R o 'Evsik_3v25v2ik-2v1:vlik-ﬂk

- = %]
In the case of systems with nilpotent Lie algebra, we get an explicit closed form

k=2 gk— 1651;_1

'Uk s v3 vo u
B . c.l ;
"'-I'Uk 2 121?1: 3 Lk—3V2 Tle_2U] 13l

lk W Vg2

9@1( a*—1(1))912(Ta'=—1(2)) - 'Qik_l(”fak-l(k_n)gik (Tk) Epdry - - d’fk}xo

10




where K is the degree of nilpotency. For example, consider the system

g [ = -4 -2 2 -2 -1 0
= I = 12 8 0 |cost+| 4 2 0 sint
T3 0 0 2 0 0 0
00 -1 T
+{ 00 2 t? T 2] = 9
000 I3
Put
-4 -3 2 -2 =10 0 0 -1
Fi=(12 8 0 s bh=t 3 2  dg==| O @ 2
0 0 2 0 0 o0 0 00

Then Fi, Fy, Fy form a basis of a nilpotent Lie algebra with

[F1, F] = —2F;
and all other commutators zero. Hence
3 _ 3 _
Clg =€y = —2

are the only nonzero structure constants. It follows that the solution of the system is

t
z(t:zg) = exp (/ {FicosT+ Fasint + F37?}dr
0

1 t T \
o / / (—2cos psin7 — 2sin pcos .—)Fga’pdr)
< 40

t3
= exp (SintFl + (1 — cost)F; + ~3—F3 +sint(1 - cost)Fa) Zg.

5. Application to Lyapunov Transformations

Recall the basic properties of the Lyapunov transformation (see [Vincent & Grantham, 1997]).
Consider the linear. nonautonomous system

T = A(fi).’f . CE(O) = Iy

and let
y(t) = P(t)z(t)

for some invertible matrix-valued function P(t). Then,

y = Pz+ Pi
= Pz+ PA(t)z
= PP7ly+ PA(t)P Yy
= By
11



I—

M where )
B=PP '+ PA(t)PL,

Hence

P =—PA(t)+ BP, P(0) =1I.

Then the basic result is
Lemma 8 If HP(-)Hmem;an) and “P_l(')”LW(O,co;R”z) exist, then y(t) is asymptotically stable
if and only if x(t) is asymptotically stable. O

The usual application is to choose B to be time invariant and Hurwitz. so that y stability
immediately implies z stability. Unfortunately. choosing P so that lemma 8 holds is difficult.
in general. In this paper we shall split A(t) into two pieces, i.e. A(t) = Ay(t) + Ag(t). using
Lie algebra theory and select P in accordance with the first part Ay(t). Using the explicit
formula for the solution of a time-varying system we shall obtain a new stability result for these
systems. Consider the syvstem

z=A(t)z

and split the Lie algebra L4 generated by A(t) into its solvable and semisimple parts : A(t) =
As(t) + As(t). We then obtain the system

= (AS(I‘) + 4g(t))l'
We shall introduce a Lyapunov transformation for the system

£ = As(t)E,

so that y = P¢, where

P=_Pdg(t)+ BP (5.1)

Consider the operator 23 defined by
ASP = —PAg(t) + BP.

Lemma 9 ng = Lag, i.e. the Lie algebra generated by the operators A3 (t) is isomorphic to
a subalgebra of that generated by As(t).
Proof Consider the map 45(t) — %3 (¢). We have, for t1 # to,

[23(t1) U3 (0P = A (1)A(82) P — A3 (2,)25 (2,) P
= Ap(t1)(~PAs(ts) + BP) — %5(t,)(—PAs(t,) + BP)
= —(=PAs(ty) + BP)As(t) + B(—PAs(t,) + BP)
=(—(—PAs(t;) + BP)As(ty) + B(—PAg(t;) + BP))
= PAg(t2)As(ty) — PAs(t;)As(ts)
= P[As(ta). As(t1)).

Since P is invertible, the result follows.[]
Remark If we simply attempt to insert and remove a ‘stabilising’ matrix B into the equation,
le.
T=(B+ As(t) — B+ As(t))z
12



then the Lie algebra generated by {As(t),t € R} U {B} is bigger than L,_, since .

[As(t1) + B, As(tz) + B] = [As(t), As(ta)] + [B, As(ta)] + [As(t1). B]

and so any special properties of L4, are lost.
Now write
As(t) = An(t) + Ap(t)
where L 4 is nilpotent and Ap(t) is diagonalisable. (This is always possible since Ag(t) belongs
to a solvable algebra.) Note, however, that this splitting is not unique. Hence, the equation

becomes
T = (Ax(t) + Ap(t) + As(t))z.

From lemma we have
Lemma 10 ng , the Lie algebra generated by the operators

ANP = —PAy(t) + BP.

15 nilpotent. [J
The equation for P~! is easy to obtain:
Lemma 11 If P satisfies the equation

P=AN({#)P=—PAyx(t)+ BP

then .
Pr=Ax) Pt —P B,

Proof PP~! =] so PP~!+ PP~! =0 and so

PP = prlpp
= —PY—PAxy(t)+ BPYP?

= Agf)P'~PFIBO

If 2N is defined by -
AFQ = An(t)Q - QB
then Lz is nilpotent (just as in lemma 10).
B
Our main result is
Theorem 6 Suppose that B is a Hurwitz matriz so that ||eB|| < Me™" for some M > 0 and
w > 0. If we have
| P(Ap(t) + As(£)) P < w

where P satisfies ‘
P=—-PAy(t)+ BP

and ||[P71(t)|| is bounded for all t, then the system
z = (An(t) + Ap(t) + Ax(t))x

15 asymptotically stable.
13



Proof Put z = P(t). Then

3 = Pr+ Pi
= PP7lz+ P(An(t) + Ap(t) + As(t)) P12
= (PP 4+ PAN(t)P™Y)z + P(Ap(t) + As(t)) P~
= Bz+ P(Ap(t)+ Ag(t))P 'z

Now use Gronwall’s inequality to give the stability of z: then the boundedness of |P~1(t)| gives

the stability of z since
2@l < [|P7H@)]| - l1=()]].

O
Example Consider the system
11-t2 1 sint
—2/3 W10 W1
B = —‘7cost+ — -1 —cost | «r
t 2
cost — 51 = 0 —59/60

= (An(t) + Ac(t))z

where
=] 0 0
An(t) = —2cost+ 5z —1 —cost
cost 0 -1
1 11-t® 1 sint
3 30 1+t? 40 1=¢3
As(t) = ( ~2cost+ 1 0 0
1 _¢ /
T 34112 0 1,’60

Then. L, has basis

00 0 0 00 0 0 0
Av={101].AZ=-100|.4=[100]. 4=
00 0 0 0 0 0 0

S
O O
O = O
= O O

Note that L An 18 nilpotent; in fact,
[Al,,‘ﬁl?\,] = A.EV ) [A}VA?V] = [AQ :A?\] =0, [A?V 4}\} ={
for 1<1<3. If B=—1. then P(t) and P~1(t) are given by

¢t [ 0 00
P(t) = EXp —/ —200515-4-1 = 0 —cost | dt+
0 0

cost
0
0 dpdT
0

0
0
f / cospcosT —cospcosT) | 1
0

o O O



¢ [0 0 0
= exp —/ —2cost+ oz 0 --cost |dt
0

I cost 0 0
[+ /0 00
P(t) = exp / —2cost+ o 0 —cost |dt
0 \ cost 00

It is easy to check that
IP@) .|| P~He)|| < 5.2

The theorem now shows that the system is asmptotically stable.

6. Conclusions

In this paper we have studied nonautonomous linear differential equations and. using the the-
ory of Lie algebras, we have obtained an explicit expression for the solution in terms of an
exponential of an infinite series of integrals of commutators of the martrix of the equation. In
the case where the system matrix A(t) generates a nilpotent Lie algebra. we obtain an explicit
closed-form solution of the equation. The formula for the solution depends on a combinatorial
coefficient specified in theorem 4. This coefficient can be evaluated effectively by using Maple
and a simple program which performs this task is given in the appendix.

Using the formula for nilpotent systems. we have applied the theory to Lyapunov transfor-
mations and stability. Further applications will be given in a future paper.
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8. Appendix

In this appendix we shall give a Maple program for the computation of the coefficients u(c*-1).
The first procedure, noughts, simply produces a sequence of zeros. The procedure partit pro-
duces a list of all partitions of a given type by a recursive insertion of new numbers for the next
higher-order partitions, based on the procedure insert_number. The procedure _rho simply
computes the function p in lemma 7. Finally the procedure coeff mu calculates u(c*~1) from
the expression in theorem 4. Here is the program:

noughts:=proc(k)

local L.i;

L=tk

if k>1 then for i from 1 to k-1 do Le=I.0:0d:h:
L;

end:

#

#

insert_number:=proc(L,n)

local LL.i;

LL:=NULL:

for i from 1 to nops(L) do

LL:=LL,[n,0op(L[i])];
.od:

[LL);

end:

#

#

partit:=proc(n,m)

local L.LL.i:

L:=NULL;

if m=1 then RETURN(([[n]]):fi;

for i from 0 to n do

if n-i=0 then LL:=[[i.noughts(m-1)]] else LL:=insert _number(partit(n-i.m-1).i):f;
L:=L.op(LL);
“od;

[LJ;

end:

#

#

_rho:=proc(k,r)
local i;

if r>k then RETURN(0);f;
if r=1 then RETURN(1);fi;
product(k+1-r+i,i=0..r-2) /(r-1)!;
end:

#

16




#

decreasing_ subsequences:=proc(L)
local i,LL,LLL:

LL:=NULL:

for i from 1 to nops(L) do

if i=1 then LLL:=L[]]

else

if L[i]<L[i-1] then LLL:=LLL,L[j]
else

LI:=LL|LLL):

LLL:=Ll[i;

fi;
fi;

od;

end:

#

#

reduced _decreasing subsequences:= proc(L)
loeal i LL.LLL;
LLL:=NULL:
LL:=decreasing_subsequences(L);
for i from 1 to nops(LL) do
if nops(LL[i])>1 then LLL:=LLL.LL[i]: fi;
od:
[CLL:
end:
#
#
coeff _mu:=proc(L)
local LL.i,k.myepsilon,LLL,mymu,p,cardha,temp_sum,j,temp_prod;
# L is a permutation in the form of a list, e.g.[2,5,4,3,1]
LL:=reduced _decreasing subsequences (L);
k=0
card _a:=nops(LL):
for i from 1 to nops(LL) do k:=k+nops(LL][i]);od;
myepsilon:=nops(L)-k+nops(LL);
# find the lengths of the decreasing sequences:
LLL:=NULL;
for i from 1 to nops(LL) do LLL:=LLL,nops(LL[i]);0d;
LLL:=[LLL};
# compute mu
mymu:=0;
for 1 from myepsilon to nops(L) do
p:=partit(i-myepsilon,card _a):

17



temp _sum:=0;

for j from 1 to nops(p) do

temp prod:=1;

for k from 1 to card_a do

temp prod:=temp_prod* _rho(LLL[k],p[j][k]+1)
od;

temp sum:=temp_sum-+temp_prod;

od;

mymu:=mymu-+temp sum*((-1)"1)/(i+1);
od;

mymu;

end:
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