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Abstract

Bayes factors (BF) are becoming increasingly important tools in genetic association studies, partly

because they provide a natural framework for including prior information. The Wakefield BF

approximation (WBF) is easy to calculate and assumes a normal prior on the log odds ratio (logOR)

with a mean of zero. However, the prior variance (W ) must be specified.

Because of the potentially high sensitivity of the WBF to the choice of W , we propose several

new BF approximations with logOR ∼ N(0,W ), but allow W to take a probability distribution

rather than a fixed value. We provide several prior distributions for W which lead to BFs that

can be calculated easily in freely available software packages. These priors allow a wide range of

densities for W and provide considerable flexibility. We examine some properties of the priors and

BFs and show how to determine the most appropriate prior based on elicited quantiles of the prior

odds ratio.

We show by simulation that our novel BFs have superior true positive rates at low false positive

rates compared to those from both p-value and Wakefield Bayes factor analyses across a range of

sample sizes and odds ratios. We give an example of utilising our BFs to fine-map the CASP8 region

using genotype data on approximately 46,000 breast cancer case and 43,000 healthy control samples

from the Collaborative Oncological Gene-environment Study (COGS) Consortium, and compare

the SNP ranks to those obtained using WBFs and p-values from univariate logistic regression.

Key words: expert knowledge, elicitation, sensitivity, hyperparameter, flexibility, single nucleotide polymorphism,
filtering, empirical, fine-mapping
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Introduction

Recently, several methods have been published for analysing genotype data at the fine-mapping

level [Udler et al., 2009] [Vignal et al., 2011] [Maller et al., 2012]. These data consist of hundreds

or thousands of single nucleotide polymorphisms (SNPs) in a small region of the genome, where

associations with a disease have previously been found, commonly in a genome-wide association

study (GWAS). Bayesian methods [Stephens and Balding, 2009] have the advantage of naturally

allowing for the inclusion of prior functional genetic information which could inform the probability

of a SNP being causal. This could help to overcome the problems faced in fine-mapping, where it

is expected that the causal SNPs not yet identified are likely to have small effect sizes (odds ratios

of the order of 1.1 or less) and the results are likely to be confounded by high levels of short range

linkage disequilibrium (LD). Furthermore, some causal SNPs may have low minor allele frequencies

(MAFs). These factors make it difficult to identify causal SNPs, even using the tens of thousands

of subjects that are currently being analysed by international consortia.

We previously carried out a thorough investigation of several different frequentist fine-mapping

filtering methods [Spencer et al., 2014]. Filtering is a general framework in which the SNPs are

ranked according to a given statistic, a threshold value of that statistic is chosen and SNPs with

a value below this threshold are removed from the set of candidate causal SNPs. This results in a

more manageable number of SNPs which can be investigated for causality in further biological tests,

such as the analysis of gene expression in cell lines. The Bayes factor (BF) is a Bayesian statistic

which can be used for filtering [Kass and Raftery, 1995], and it has already been used as a tool

for use in genetic association analyses [Wakefield, 2008] [Wakefield, 2009] [Stephens and Balding,

2009]. The calculation of BFs is now implemented in genetic analysis software such as Snptest2

[Marchini et al., 2007] and their use is becoming increasingly popular as a filter in fine-mapping

studies [Maller et al., 2012]. The BF is a ratio, which compares the probabilities of the data under

two models or hypotheses. In this setting they compare two models, one in which a SNP is not

causally associated with a disease and the other in which it is. They can be used alone or used to

update prior odds of the SNP being causal. BFs often have to be approximated due to intractable

integrals and, although current methods of approximation are good, they restrict the form of the

prior on the effect size.
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We consider the use of Wakefield’s approximate BF [Wakefield, 2008] [Wakefield, 2009], which

requires that each SNP has a prior on its log odds ratio of the form N(0,W ) for some fixed W .

When eliciting a value of W from experts it may be the case that there is some uncertainty in

W , perhaps because several quantiles have been elicited giving inconsistent values of W . Because

of this we examine several families of prior distributions on W , which result in novel tractable

BFs. Such priors on W can be thought of as providing a weighted average of the BF over each

value in the support of W . We examine the properties of these priors on W and give the novel

BF approximations in forms which are easily calculable in commonly used software. Although this

removes the problem of specifying a fixed W value, most of the novel BFs require hyperparameters

to be specified. We demonstrate how appropriate values may be obtained via expert elicitation.

The BFs we describe could be used in any genetic association study, but we give an example

with simulated fine-mapped data to show how effective the use of these BFs can be in filtering.

We compare the results to those using the Wakefield BF and examine the effect of the choice of

hyperparameters. We give an example of eliciting the prior hyperparameters and using the BFs as

a fine-mapping tool using breast cancer case-control data from an international consortium. We are

able to show that our methods may be used to describe a variety of uncertainties and appropriately

incorporate these into a Bayes factor analysis. Not only this, but they can potentially produce

better results than if the uncertainty were not taken into account.

Materials and Methods

Bayes factors and the Wakefield approximation

Bayes factors compare the probability of the observed data under two models or hypotheses. For

our purposes, the BF can be defined as

BF =
P (data|H1)

P (data|H0)
. (1)

Bayes factors are also used to update prior odds (δ/(1 − δ)) to posterior odds (∆/(1 − ∆)) via

∆/(1−∆) = δ/(1− δ)×BF, where in our case ∆ and δ are the posterior and prior probabilities of

‘true’ association respectively. By ‘true association’ we mean causally linked to disease risk rather
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than being associated through LD or sampling variation. Here a BF greater than one indicates that

the data is more likely under the alternative than the null hypothesis. BFs require the specification

of a likelihood and prior on all model parameters. Both BFs and posterior probabilities can be used

to fine-map genomic regions in case-control studies by using the likelihood from a logistic regression

model. For SNP i in single-SNP logistic regression models, the probability (yij) of subject j, with

xij copies of the minor allele, being a case is

yij =
eβ0i+β1ixij

1 + eβ0i+β1ixij
. (2)

With this definition, β1i can be interpreted as the SNP-specific per-allele natural logarithm of the

odds ratio (OR) comparing the minor to the major allele. For SNP i, BFi is calculated comparing

the hypotheses H0 : β1i = 0 and H1 : β1i 6= 0 [Stephens and Balding, 2009].

The BF, as given in Equation (1), is the ratio of marginal likelihoods which can lead to in-

tractable integrals for many prior densities. For non-tractable BFs it is common to use a Laplace

approximation [Kass and Raftery, 1995]. The Laplace approximation is implemented in software

packages, including Snptest2 [Marchini et al., 2007]. Wakefield [Wakefield, 2008] [Wakefield,

2009] derived a tractable approximation to the BF (which we abbreviate as WBF). We found ex-

cellent agreement between the WBF and Laplace approximations from Snptest2 for sample sizes

≥ 10, 000 for a variety of ORs and MAFs (data not shown). Both methods are based on asymptotic

approximations and, given the large sample sizes in the types of dataset we consider, should provide

accurate approximations to the true BF.

Using the definition of the BF in Equation (1), the Wakefield approximate Bayes factor is

WBF =

√
V

V +W
exp

(
β̂1

2
W

2V (V +W )

)
. (3)

In Equation (3), β1, the logOR of causal SNPs in the genomic region under consideration, is as-

sumed to follow a normal distribution given by β1 ∼ N(0,W ). β̂1 is the maximum likelihood

estimator (MLE) of β1. Rather than consider the logistic likelihood, Wakefield used the asymptotic

distribution of the MLE: β̂1 ∼ N(β1, V ) which leads to the WBF given in Equation (3). Note that



6

the WBF we specify in Equation (3), and use in the rest of this paper, is the reciprocal of the WBF

given by Wakefield [Wakefield, 2009].

Motivation for the study

To use the WBF, one needs to specify W (e.g. through elicitation) and be prepared to accept

that the the prior distribution of the logOR is Gaussian. For a percentile β1,p, such that p(β1 <

β1,p|β1 ∼ N(0,W )) = p, W is calculated using W =
{
β1,p/Φ

−1(p)
}2

where Φ is the distribution

function of the standard normal distribution [Wakefield, 2009]. When performing elicitation about

W with an expert, they may express some uncertainty about the value of W . For example the

expert may believe that the 80th percentile of the prior distribution for the OR is between 1.05

and 1.3 which implies that 0.003 ≤ W ≤ 0.1. As a result we investigated how sensitive the WBFs

are to the choice of W . We found the results to be highly dependent on the choice of W . We

therefore wanted to allow for uncertainty about W in the BF calculations. We retained the normal

density for the prior for β1 and considered three different parametric families of priors for W that

yield BFs that should be flexible enough to capture expert uncertainty in W . We also considered

an additional prior that may be useful in some scenarios. We wanted priors that led to BFs that

could be easily calculated and this informed our choice of priors. We go on to show that these

priors have desirable properties in the context of fine-mapping and carry out sensitivity analysis to

demonstrate the effect of the prior parameters. We give suggestions for how prior hyperparameters

might be elicited and in the supplementary material we provide R code to calculate the new Bayes

factors.

Novel Bayes factors allowing for uncertainty in W

We have derived 4 forms for priors on W which are given (up to proportionality) in Table 1. Three

of these forms, the power, hybrid and reciprocal priors, use the genotype data through V . The

dependence of the prior for W on V is purely for mathematical convenience to yield tractable

integrals. Therefore, they are not true priors but we show that in practice the values of V likely to

be encountered in large association studies have very little impact on the prior density of W . We

also provide one prior on W , the exponential prior, which does not depend on the genotype data.
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Table 1. Prior densities for W

Name of prior f(W ) ∝ Restrictions on
hyperparameters

Power (V +W )k k < −1
2

Exponential exp (−cW/2) c > 0

Hybrid (V +W )k exp

(
−

d

2(V +W )

)
d > −β̂1, k < −1

Reciprocal
1

(V +W )
exp

(
−
(V +W )

2

)

Proportional density functions for each of the four prior forms (applies for 0 < a ≤ W ≤ b).

Each of the power, exponential and hybrid priors are really families of priors because they

depend on hyperparameters, whereas the reciprocal prior takes a single density. These hyperpa-

rameters are represented by k, c and d, and all priors have a support 0 < a ≤ W ≤ b. We suggest

choosing the values of a, b, c, d and k via expert elicitation. Figure 1 shows the densities of some

possible priors and hence the range of prior beliefs they can accommodate. We derive the approx-

imate BFs relating to these priors in the Appendices. All 4 new BFs can be easily calculated in R

[R Core Team, 2012] (code is provided in the Supplementary Material). It should be noted that

what we term the hydrid prior is identical to a shifted inverse gamma distribution on a restricted

support.

Eliciting hyperparameters of the priors for W

Our new BFs avoid the problem of specifying a fixed value for W , but instead require other

hyperparameter specification for most of the BFs suggested. The hyperparameters would usually be

determined through elicitation based on the distribution function of W . The distribution function

for W when using the PPBF is given by

F (W ) =
(V +W )k+1 − (V + a)k+1

(V + b)k+1 − (V + a)k+1
a ≤ W ≤ b. (4)

So if a single percentile (p1) of the distribution of W is elicited (w1) then we find k by equating

Equation (4) to p1 with W replaced by w1. For the PPBF and the EPBF this can easily be

solved algebraically. The HPBF requires some other numerical search method. The distribution

functions for all 4 priors are given in Table 2. A more reliable strategy is to determine suitable
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Figure 1. Densities of three families of tractable priors and one specific prior for

f(W) (0 < W ≤ 0.1). β1 is log odds ratio with β1 ∼ N(0,W ) and a value of V = 0.003 is used in

all plots.

hyperparameters by optimizing the fit of multiple percentiles elicited from an expert. For example,

if we elicit h percentiles (p1, p2, ..., ph) of W (w1, w2, ..., wh) then we find k̂ such that

k̂ = argmink

h∑

i=1

(
(V + wi)

k+1 − (V + a)k+1

(V + b)k+1 − (V + a)k+1
− pi

)2

. (5)

Rather than directly eliciting W values, it is likely that an expert will find it easier to envisage

particular central probability intervals (PIs) for the ORs. For the ith percentile to be elicited

(pi), let PIu,i represent the upper limit of the zith central PI for the OR. Then wi can be found

using wi = (ln(PIu,i)/Φ
−1(pi))

2, where pi = 1 − (1 − 0.01zi)/2. It is also likely to help if they are

encouraged to choose the particular probability intervals z = (z1, z2, ..., zh) themselves.

To calculate k̂, we also need to specify a, b and V . Suppose the expert provides the minimum

and maximum values of the upper limits of say the 80th percentile (denoted PIu,min and PIu,max)
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Table 2. Prior distribution functions for W

Type of prior F (W ) Limitations

Power
(V +W )k+1 − (V + a)k+1

(V + b)k+1 − (V + a)k+1
k < −1

2 , k 6= −1

ln

(
V +W

V + a

)
/ ln

(
V + b

V + a

)
k = −1

Exponential
exp

(
− cW

2

)
− exp

(
− ca

2

)

exp
(
− cb

2

)
− exp

(
− ca

2

) c > 0

Hybrid
Γ
(
−k − 1, d

2(V+W )

)
− Γ

(
−k − 1, d

2(V+a)

)

Γ
(
−k − 1, d

2(V+b)

)
− Γ

(
−k − 1, d

2(V+a)

) d > −β̂1, k < −1

Reciprocal
ln
(
W+V
a+V

)
+
∑

∞

n=1
(−1)n

nn!

((
W+V

2

)n
−
(
a+V
2

)n)

ln
(

b+V
a+V

)
+
∑

∞

n=1
(−1)n

nn!

((
b+V
2

)n
−
(
a+V
2

)n)

Distribution functions for each of the four prior forms.

that they consider plausible. We can use PIu,min to determine a using a = (ln(PIu,min)/Φ
−1(p))2

where in this case z = 60, p = 0.8 and similarly for b replacing PIu,min with PIu,max . The value of

V will be different for every SNP, so we suggest taking the median of the range of V . The values

of V can be found by fitting univariate logistic regression models to the data where V is the square

of the standard error of the parameter estimate for the SNP. This can be done in many standard

statistical software packages.

The values of the hyperparameters in Figure 1 give a good indication of the space over which

to search. We have written R code to carry out this search over the hyperparameters. The output

includes the minimum sum of squares from Equation (5), so that the form of the prior which

results in the smallest value can be determined. This code is available upon request. There are

other methods available to determine the hyperparameters, for example empirical Bayes methods.

In empirical Bayes the hyperparameters (Λ) are found as the solution to argmaxΛ(p(data|Λ)). In

our case this corresponds to maximising the BF over Λ, which cannot be done analytically.

Testing the properties and efficacy of the new Bayes factors on simulated data

Three of out four forms of Bayes factor use the genotype data to inform the prior through V ,

the asymptotic variance of the estimate of the logOR. V will be different for each SNP since it
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depends on, among other quantities, the minor allele frequency (MAF). We used simulated data

to generate realistic values of V and examined their effect on the prior density of W for values of

V corresponding to SNPs that have a minor allele frequency not less than 0.005, as these are the

SNPs that we might have sufficient power to detect with current sample sizes. These datasets were

simulated using hapgen2 [Spencer et al., 2009] and the European haplotypes of the August 2010

release of the 1000 genomes data with large sample sizes reflecting those now being generated by

disease-specific consortia.

There has been some suggestion that the effect size of causal SNPs may increase with decreasing

MAF [Wang et al., 2005]. We investigate whether the three empirical forms of prior implicitly have

this property. To assess this we examine how E(W ) changes with V , over a support relevant to

studies with sample sizes of 2000 or more. Since SNPs with lower MAFs have larger V [Slager

and Schaid, 2001], an appropriate prior would possess the property that E(W ) is a non-decreasing

function of V . Then as the MAF decreases, V increases and rarer SNPs have a priori larger effects

on average.

We also tested the use of the novels BFs as a method for filtering (narrowing down the set of

candidate causal variables) in a fine-mapping study by carrying out such an analysis on simulated

datasets with known causal SNPs. We give results for scenarios in which the causal SNP has a

MAF of 0.08, for ORs of 1.10, 1.14 and 1.18 and for total sample sizes of 2000, 4000 and 20000

(with an equal number of cases and controls). We simulated 1000 datasets for this scenario, and

illustrate the results using ROC curves. Fawcett [Fawcett, 2006] outlines several ways to determine

ROC curves when they are used to represent a summary of multiple analyses (in this case those

on each of the datasets). Our ROC curves present the true and mean false positive rates over the

multiple analyses, but give no indication as to the variation in false positive rates between datasets.

Fawcett calls the method that we use threshold averaging.

Comparing fine-mapping methods for the CASP8 region using iCOGS data

The Collaborative Oncological Gene-environment Study (COGS) Consortium have recently carried

out a number of studies using a specially developed Illumina array, known as the iCOGS array

[Michailidou et al., 2013]. This was designed to fine-map regions that had been previously iden-

tified by GWAS, by concentrating a large number of SNPs in regions of interest where there is
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already thought to be a causal association with breast, ovarian or prostate cancer. One such region

comprises base positions 201500074 to 202569992 of chromosome two, including the CASP8 gene.

In this region, 585 SNPs were originally genotyped on breast cancer case and control samples from

the Breast Cancer Association Consortium and 501 passed quality control checks. A further 1232

were successfully imputed using Impute2 [Marchini and Howie, 2010], resulting in genotypes for

1733 SNPs in 46,450 cases and 42,600 controls (total sample size: 89,050). We used both the full

data set and a subset of 5238 individuals (2721 cases and 2517 controls) to assess the impact of our

priors on both smaller and larger studies.

Prior to receiving the data, we carried out elicitation with a breast cancer genetics expert who

had previously been involved in studies into the CASP8 region. We then determined the prior

distribution that best matched their beliefs and used it to calculate BFs and carry out filtering on

the genotype data from iCOGS.

Results

The dependence of the prior densities of W upon hyperparameters and the geno-

type data

Figure 1 shows some possible prior densities for W , with V = 0.003 for those densities which

depend on V . We see that most of the priors put the majority of the weight of W close to the

lower limit of its support (in this case close to zero). Other than being independent of the genotype

data, one of the main advantages of the exponential prior over the other forms for f(W ) is its

ability to provide an almost uniform prior distribution for W over the range of values likely to be

considered appropriate. The HPBF allows for more flexibility in the shape of the prior distribution.

In particular it is the only prior that allows more mass at higher values of W than at lower values

of W and the only prior to have a stationary point. Whilst the other priors are monotonically

decreasing with W , the mode of hybrid prior is at W = −(V + d/2k).

To assess the impact of V on our priors in an intermediate sized fine-mapping study we simulated

a dataset of size 20,000 (using exactly the same scenario as for the simulated dataset of 4000) and

determined the distribution of values of V for those SNPs with MAF ≥ 0.005 and then determined

the minimum, median and maximum of these values to be 0.00040, 0.00176 and 0.02211 respectively.
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Figure 2 panels (a), (c) and (e) show the prior densities for W for the power, hybrid and reciprocal

priors for these 3 values of V , using fixed values of the hyperparameters. Whilst there is some

variation in the prior for W as V takes its maximum and minimum values, for most of the SNPs

with MAF ≥ 0.005 the prior will be relatively similar. There is little reason to suspect these

observations won’t generalise to other genomic regions.
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Figure 2. Prior densities of W (plots (a), (c) and (e)) and E(W) as a function of V

(plots (b), (d) and (f)) for empirical forms of the prior (0 < W ≤ 0.1). Prior densities

are given for minimum, median and maximum values of V for SNPs with MAF> 0.005 in a

sample size of 20,000. E(W ) is given over a range of V likely to been seen in sample sizes of 2000

or greater with different values of the hyperparameters, where relevant.

We next consider SNPs with extreme values of V as these may lead to extreme priors and

potentially large BFs. Because V is bounded below by 0, we only need to consider extreme large
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values of V . If the number of cases and controls are equal and denoted by n, Slager and Schaid

[Slager and Schaid, 2001] showed that V ∝ 1/n approximately. Studies with total sample sizes of

2000 will yield most values of V in the region 0.005 ≤ V ≤ 0.2 for SNPs with MAF greater than

0.005. As sample size decreases occasional large values of V may be seen resulting from rare alleles

(with MAFs less than 0.005) having very low counts in the case and/or control groups. These

SNPs will have broad likelihoods and so are unlikely to have have high BFs regardless of the prior.

So although very rare alleles may have priors that are different from most of the SNPs, these rare

SNPs are unlikely to be retained after filtering.

Are these priors consistent with rare alleles having larger effects?

There is some suggestion in the literature that rare SNPs might be expected to have larger effect

sizes [Wang et al., 2005]. We wanted to assess whether this was the case for our suggested priors.

To do this we examined how the expected value of W varied with V . If the hypothesis is true then

rarer alleles should have larger effect sizes, hence larger values of W . Rarer alleles also have larger

values of V . So if our priors possess this property, we should observe that E(W ) increases with V .

For the power, hybrid and reciprocal priors the expected value of W can either be found directly

using integration by parts or by finding E(V +W ) by integration and then using the relationship

E(W ) = E(V + W ) − V . Those expectations that depend on V are plotted in Figure 2 panels

(b), (d) and (f) for values of V likely to occur. E(W ) is independent of V for the Exponential

prior. For the three expectations which depend on V , we were unable to verify algebraically that

dE(W )/dV > 0 ∀ V > 0, b > a > 0 and d, k within the specified limits (where relevant), but

Figure 2 plots E(W ) against V for a range of values of the hyperparameters. Panels (b) and (f)

show this appears to be the case for the power and reciprocal prior. However, we can see from panel

(d) of Figure 2 that E(W ) could decrease with V for the Hybrid prior. Researchers who believe

that rare SNPs will a priori have larger effects should constrain d to be close to zero. Alternatively

a generalization of the Savage-Dickey density ratio [Verdinelli and Wasserman, 1995] could be used

with a prior of the form W k exp (−d/2W ), so removing the dependence on V . The generalization

of the Savage-Dickey density ratio approximates the BF without the need for integration, hence

allowing for a wider range of priors. It bases calculation of the BF on a large number of samples

from the posterior distributions of the model parameters.
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Fine-mapping using BFs on simulated data

We carried out filtering using WBFs and our new BFs on 1000 simulated datasets with a single

causal SNP with a MAF of 0.08. We chose ORs of 1.10, 1.14 and 1.18 and sample sizes of 2000,

4000 and 20000. We also included the results of filtering using p-values from univariate logistic

regression. Table 3 shows the TPRs (×1000) from the simulated data analysis by sample size, OR

and FPR. We have limited the results to FPRs≤ 20% as this more than covers the desired range

of FPRs in any fine-mapping procedure. The support for the new priors is 0.003 ≤ W ≤ 0.1 and

so we let W = 0.003 and W = 0.1 in the WBF in Table 3. In Table 3 we chose hyperparameters

for our new priors that place more of the mass at smaller values of W . The priors for PPBF and

HPBF with the specified hyperparameters have similar shaped densities and so, not surprisingly,

produce broadly similar rankings.

Table 3 shows that using WBF with W = 0.003 yields higher TPRs than using WBF with

W = 0.1 in many of the scenarios considered. This is perhaps not surprising because the log ORs

for the causal SNP used in the simulations are all small (0.095-0.166) and so lower values of W ,

which put more weight at small ORs, are expected to perform better. The exception to this is at the

lowest FPR where W = 0.1 generally yields higher TPRs. It is at the very low (and arguably most

relevant) FPRs that the PPBF and HPBF methods generally outperform all the other methods

considered. If we focus on the smallest FPR considered at each level of sample size and OR, we

see that either the HPBF or the PPBF have the highest TPR of any of the methods considered in

8 out of the 9 scenarios. It is only when the sample size is 20000 and the OR is 1.1 that one of the

other methods (WBF with W = 0.003) is superior at the lowest FPR.

What is somewhat surprising is that even when the sample size is as high as 20000, there are

substantial differences in the performances of the p-value method and the methods using Bayes

factors, For example with a sample size of 20000, an OR of 1.10 and a FPR of 5%, the TPRs for

the p-value and WBF with W = 0.003 are 0.497 and 0.579 respectively. The TPR for the WBF

method is nearly 17% bigger than the TPR for the p-value method. Making the same comparison

when the FPR is 1% the WBF method is over 14% bigger than the TPR for the p-value (0.231

compared to 0.202).
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Table 3. TPRs (×1000) from the simulated data analysis by sample size, OR and FPR

Sample size (SS)
Method SS=2000 SS=4000 SS = 20,000

(Parameter FPR (%) FPR (%) FPR (%)
values) 5% 10% 15% 20% 5% 10% 15% 20% 1% 5% 10% 15%

OR = 1.10

p-value 72 118 163 259 151 249 320 384 202 497 677 786

WBF (W = 0.003) 48 131 216 291 136 285 385 442 231 579 762 836

WBF (W = 0.1) 89 126 166 173 152 221 242 259 173 433 530 582

PPBF (k = −1.5) 88 140 202 245 170 264 318 346 224 524 676 758

HPBF (d = 0.01, 89 140 204 248 170 263 308 334 225 517 655 707
k = −1.1)

OR = 1.14

p-value 146 247 331 395 232 357 457 531 508 831 924 962

WBF (W = 0.003) 106 255 376 457 222 408 528 574 502 850 960 979

WBF (W = 0.1) 159 248 290 307 239 335 373 387 503 789 875 899

PPBF (k = −1.5) 159 272 331 372 257 386 457 486 536 846 926 956

HPBF (d = 0.01, 161 276 332 363 256 387 450 470 539 843 919 943
k = −1.1)

OR = 1.18

p-value 178 286 382 454 323 475 551 619 753 950 984 994

WBF (W = 0.003) 134 302 430 496 290 500 614 663 730 950 989 997

WBF (W = 0.1) 200 298 340 353 328 452 478 495 751 947 980 988

PPBF (k = −1.5) 196 322 397 439 351 496 560 602 767 954 987 994

HPBF (d = 0.01, 207 325 396 434 355 493 551 582 770 955 987 994
k = −1.1)

True positive rates (TPRs) multiplied by a thousand at the most relevant false positive rates

(FPRs) for different filtering methods (PPBF, HPBF, Wakefield Bayes factors and p-values)

applied to 1000 simulated datasets with 2871 SNPs. For PPBF and HPBF the support is

0.003 ≤ W ≤ 0.1. The data were simulated using the LD structure of the CASP8 region for a

scenario with a single causal SNP with a MAF of 0.08 for various sample sizes, odds ratios and

FPRs . Figures in bold are those that exceed the TPR obtained using p-values.

Figure 3 shows several ROC curves derived from filtering with a causal SNP with an OR of

1.14, a MAF of 0.08 and a sample size of 4000. Figure 3(a) shows the whole ROC space whilst

Figure 3(b) shows the ROC curve for false positive rates below 20%. Figure 3 includes the results

of filtering using the WBF approximation with W = 0.003 and W = 0.1 and also the results of

filtering using a power prior and a hybrid prior with support 0.003 ≤ W ≤ 0.1. The two new priors
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Figure 3. ROC curves showing the results of WBF, PPBF, HPBF and p-value

filtering. Figure 3(a) shows the whole ROC space whilst Figure 3(b) shows the ROC curve for

false positive rates below 20%. We use W = 0.003 and W = 0.1 for the WBF analysis. The prior

for the PPBF analysis has k = −5 and puts most of the mass close to W = 0.003. The prior for

the HPBF analysis has d = 1 and k = −1.1 and puts most of the weight close to W = 0.1. All

filtering was carried out on 1000 datasets simulated using the LD structure of the CASP8 region

for a scenario with a single causal SNP that has an OR of 1.14, a MAF of 0.08 and a total sample

size of 4,000.

were chosen so that the power prior put a lot of mass at W = 0.003 and hybrid prior out a lot of

mass around W = 0.1. Consequently using the power prior produces a ROC curve similar to that

using WBFs with W = 0.01 and using the hybrid prior produces a ROC curve similar to WBF with

W = 0.01. There is clearly a lot of variation in the effectiveness of the Wakefield BF filter as W

changes. Putting too much prior weight on large effect sizes clearly leads to poor performance of

the WBF when the actual causal effect size is small. The new BFs can be thought of as a weighted

average of the BFs over the support of W and so don’t suffer to the same degree as using WBF

with a value of W that puts a lot of mass at values of β that have a low likelihood.
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Fine-mapping using BFs on the iCOGS data

Before analysing the iCOGS data [Michailidou et al., 2013], we carried out elicitation with a breast

cancer genetics expert. They believed that there was a causal SNP with a small effect size in the

CASP8 region on chromosome two. We initially asked our expert to give an interval of possible

ORs at a single percentile. They thought that the 80th percentile of the OR was between 1.05

and 1.3, yielding a = 0.003 and b = 0.1. We then asked them to choose three further probability

intervals that they were comfortable thinking in terms of. They provided the 0.95, 0.75 and 0.50

probability intervals giving (z1, z2, z3) = (95, 75, 50). For these probabilities, we asked for their

best estimate of the upper limit of the OR and the expert provided PIu = (1.43, 1.21, 1.14). From

these we get (w1, w2, w3) = (0.0333, 0.0275, 0.0377). The median value of V for the SNPs in the

iCOGS data was 0.00017. We used all these values to carry out a search over −10 ≤ k < −0.5

at intervals of 0.01 for the PPBF. Evaluating Equation (5) for each of these values of k, we found

that for the PPBF, the minimum of the sum of squared differences occurs at k = −1.66. If we use

the same method to find other prior forms which fit the elicited values we get an exponential prior

with c = 145 and a hybrid prior with d = 0.001 and k = −1.69. Of these three priors, the power

prior has the closest fit to the elicited values and is a better fit than the reciprocal prior, so we

used this to calculate the BF for the iCOGS data.

Table 4 contains information about the top 20 ranked SNPs based on the PPBF values calculated

from the full iCOGS data. It should be noted that none of these will necessarily be the causal SNP,

although previous simulations show us that, with such a large sample size, there is a high probability

that the causal SNP will be highly ranked [Spencer et al., 2014]. We observe that 9 of the top

20 ranked SNPs were among the 501 SNPs genotyped (rather than imputed) in the iCOGS data.

Included in the table is the ranking for these SNPs by p-value from univariate logistic regression

and by WBF with the two values of W that are the extremities of the support used for W with the

PPBF. We can see that whilst all these methods rank SNPs similarly, with the same SNPs always

ranked in the top three, the rankings do differ somewhat.

With such a large sample size, the majority of the information comes from the likelihood,

rather than the prior, which is why the rankings using the different methods are so similar when

considering the full iCOGS data. Many association studies will have smaller sample sizes than



18

Table 4. Results of analysis of iCOGS data

Ranking
SNP number OR (95% CI) MAF PPBF p-value WBF with W = PPBF

0.003 0.1

980 b 1.048 (1.027, 1.071) 0.294 1387 1 1 1 1

1027 1.046 (1.024, 1.068) 0.285 664 2 2 2 2

992 b 1.045 (1.022, 1.067) 0.287 334 3 3 3 3

909 1.043 (1.021, 1.065) 0.287 234 9 4 6 4

878 a 1.081 (1.039, 1.125) 0.061 228 12 13 4 5

1272 a 1.075 (1.036, 1.116) 0.071 217 14 11 5 6

950 b 1.043 (1.021, 1.065) 0.286 217 10 5 7 7

838 1.041 (1.020, 1.062) 0.338 213 5 6 10 8

960 b 1.043 (1.021, 1.065) 0.285 213 7 =7 =8 =9

961 b 1.043 (1.021, 1.065) 0.285 213 8 =7 =8 =9

985 b 1.043 (1.021, 1.066) 0.286 206 4 9 11 11

837 1.042 (1.021, 1.064) 0.299 200 6 10 13 12

907 1.042 (1.020, 1.064) 0.287 167 11 12 16 13

896 1.042 (1.020, 1.064) 0.287 166 13 =14 =17 =14

912 1.042 (1.020, 1.064) 0.287 166 15 =14 =17 =14

956 a,b 1.052 (1.025, 1.080) 0.170 159 16 16 15 16

681 a 1.074 (1.035, 1.116) 0.069 149 17 19 14 17

1004 a,b 1.051 (1.024, 1.078) 0.173 124 18 18 20 18

885 1.041 (1.019 1.063) 0.287 119 19 17 23 19

955 a,b 1.050 (1.023, 1.078) 0.173 112 21 21 21 20

a For these SNPs, the major allele is associated with a higher disease risk. b These SNPs were not

genotyped but imputed. Top ranked SNPs in CASP8 region based on power prior Bayes factor

(PPBF) approximation with hyperparameter k = −1.66 and a = 0.003 ≤ W ≤ b = 0.1. Rankings

using p-value and Wakefield Bayes factor (WBF) are also included, as is the logistic regression

estimate and 95% confidence interval (CI) of the odds ratio (OR) for each SNP. The genotype

data for CASP8 region comes from the iCOGS study and has a total sample size of 89,050 and

1733 SNPs.

those used here and in these studies the prior will have more influence on the BFs obtained and so

we would expect much more variation in the ranks across the different BFs. We investigated this

using a stratified random subset of the iCOGS subjects, with 2721 cases and 2517 controls (5238

total). The same analyses were carried out on this subset of the data and the results are given in

Table 5. As expected, the prior has much larger influence in this smaller fine-mapping study. Of

the top 20 SNPs selected by PPBF, only 4 of these are in the top 20 for WBF with W = 0.003
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(where the prior has most mass around small effect sizes). Of the top 20 SNPs selected by WBF

with W = 0.003, 10 SNPs are not in the top 50 for PPBF and 3 are not in the top 75 for PPBF.

There is more agreement between WBF with W = 0.1 and PPBF but WBF still selects 2 SNPs in

its top 20 that are not in the top 20 for PPBF.

Table 5. Results of subset analysis of iCOGS data

Ranking
SNP number OR (95% CI) MAF PPBF p-value WBF with W = PPBF

value 0.003 0.1

822 b 1.514 (1.215, 1.886) 0.037 45.1 1 28 1 1

807 b 1.520 (1.216, 1.900) 0.036 42.2 2 35 2 2

820 b 1.515 (1.213, 1.893) 0.036 40.0 3 37 3 3

824 b 1.514 (1.212, 1.891) 0.036 39.7 4 39 4 4

868 b 1.508 (1.209, 1.881) 0.038 38.5 5 38 5 5

378 b 1.431 (1.174, 1.745) 0.046 33.3 7 16 6 6

858 b 1.495 (1.198, 1.866) 0.036 30.6 6 47 7 7

379 b 1.409 (1.162, 1.709) 0.047 29.2 8 15 8 8

854 1.470 (1.181, 1.829) 0.036 24.0 9 56 9 9

346 1.262 (1.099, 1.449) 0.093 23.7 22 2 27 10

845 b 1.469 (1.180, 1.829) 0.037 23.6 11 57 10 11

879 b 1.480 (1.184, 1.851) 0.037 23.2 10 64 11 12

823 b 1.480 (1.183, 1.851) 0.036 22.9 12 65 12 13

339 b 1.266 (1.099, 1.459) 0.091 21.7 28 3 37 14

705 b 1.439 (1.161, 1.761) 0.043 20.5 15 53 15 15

752 b 1.449 (1.168, 1.798) 0.039 20.2 14 61 14 16

900 b 1.475 (1.177, 1.849) 0.036 19.7 13 89 13 17

698 b 1.454 (1.167, 1.812) 0.036 18.3 16 79 16 18

699 b 1.454 (1.167, 1.812) 0.036 18.3 17 80 17 19

700 b 1.432 (1.159, 1.771) 0.038 18.2 20 63 19 20

Ranks of the top ranked SNPs in CASP8 region based on the power prior Bayes factor (PPBF)

approximation with hyperparameter k = −1.96 and a = 0.003 ≤ W ≤ b = 0.1. Rankings using

p-value and Wakefield Bayes factor (WBF) are also included, as is the logistic regression estimate

and 95% confidence interval (CI) of the odds ratio (OR) for each SNP. Values of the Bayes factors

for the PPBF are also provided. The genotype data for CASP8 region comes from a subset of the

iCOGS study and has a total sample size of 5238 and 1733 SNPs. bThese SNPs were imputed.
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Discussion

Novel Bayes factors and their properties

We have developed several new forms of approximate Bayes factor. These include three parametric

families and one fixed form, each relating to a different prior distribution on W , where we assume

that the prior distribution on the logOR of a SNP is N(0,W ). This allows for the calculation of

BFs where a normal distribution is believed to be an appropriate form for the prior, but where

there is uncertainty in W . Most of the priors we suggest for W put most of the weight of W at

the lower end of the support but the exponential prior allows for an almost uniform prior which is

useful when an expert believes a range of values of W are equally likely a priori. The hybrid prior

can be specified so that the mode is anywhere in the given range. This might be useful when an

expert has a strong prior belief in a particular value of W but wants to allow for some uncertainty

in it.

Three of these prior forms also depend upon the genotype data. The expectation of W appears

universally to be an increasing function of V only for the power and reciprocal priors. This means

that these priors are consistent with the hypothesis that rarer alleles have have larger effects.

Depending on the values of the hyperparameters, E(W ) may be a decreasing function of W when

the hybrid prior is employed. Such a prior would be inappropriate to use if it was believed that

rare causal SNPs do indeed have larger effect sizes. In this case we suggest a Savage-Dickey density

ratio approach [Verdinelli and Wasserman, 1995].

All the novel Bayes factors described here are univariate. The solution we have employed in the

univariate case relies on recognising the Bayes factor integrands as standard probability densities.

We did consider extending these Bayes factors to the multivariate case and while specifying the

prior in the multivariate case is straight forward, the resulting integrals appear to be intractable

and would probably need to be solved analytically so that easily calculated closed form expressions

for the Bayes factors may not be easily available.

Using novel Bayes factors in practice

All novel BF approximations can be calculated inR (we give code in Supplementary Data), although

the EPBF is computationally intensive and cannot produce results for SNPs which have very small
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MLEs of the logOR. The computation for all of the other forms is simple and efficient and we

therefore recommend using the PPBF or HPBF instead of the EPBF where possible. In most cases

hyperparameters can be found which result in power or hybrid priors very similar to the desired

exponential prior. In these situations we recommend that the EPBF only be used if the investigator

does not want to include any information from the data in the prior.

We described how elicitation may be employed with an expert to determine the most appropriate

values for the hyperparameters, although such experts may find this task difficult. The importance

of feedback in the elicitation process is worth emphasizing. Once a distribution for W has been

determined based on the quantiles elicited from the expert, it is important to relay back to them

what this means about other quantiles not elicited to check that these are acceptable. A web-based

tool, MATCH, which may help with this purpose is now available [Morris et al., 2014].

Bayes factor analysis in future genetics

Filtering using BFs has already been used in fine-mapping [Maller et al., 2012] and our more

flexible approach is likely to appeal to investigators who struggle to specify a suitable variance for

a fixed normal prior. The methods we use assume that all SNPs have equal prior odds of being

causal, but BFs can also be used to update the odds and then filtering can be carried out using the

posterior odds of causality. The effectiveness of BF filtering may be further improved by appropriate

incorporation of functional information through SNP-specific prior odds. Such functional data can

be found on the encode database [Encode Project Consortium, 2011], the RegulomeDB database

[Boyle et al., 2012] and the F-SNP database [Lee and Shatkay, 2009]. All functional SNP-level data

sources are currently limited as information is not complete for all the SNPs across the genome.

The FS score found on the F-SNP database has the advantage that it integrates a large amount of

data from multiple publicly available data sources. It formally combines scores from a number of

bioinformatics tools using weighting based on the “reliability” of these tools to give a score between

0 and 1. Bayes factors are likely to become increasingly popular as investigators seek to make use

of the vast prior functional information available. The new BFs presented in this paper allow

researchers more flexibility in the specification of the prior odds ratio, allowing the distribution

used to better match expert prior beliefs.
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