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ABSTRACT: This paper deals with the modelling and control of aggregated
production-inventory systems as described by differential equations. Hitherto,
research in this area has been characterised by the approximation of production
delays by first order lags, rather than more realistic pure delays. We demonstrate the
substantial qualitative differences between these two approaches and thus generate
the motivation for the rest of the paper, which tackles pure delay systems. The
application of some relatively new design methodologies for delay systems yields four
design choices, which are tested for their performance over a range of criteria
including stability robustness. This investigation is then extended to the model of a
supply chain comprising many such production-inventory systems. The mechanism by
\;vhz'ch disturbances can be transmitted along the supply chain causing disruption and
incurring costs to other supply chain echelons is elucidated. An heuristic feedback
policy designed to adaptively tune the individual system designs in response to such

disturbances is presented.
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1. Introduction

This paper deals with the modelling and control of aggregated production-inventory
systems as described by differential equations. Hitherto, research in this area has been
characterised by the approximation of production delays by first order lags, rather
than more realistic pure delays. By example, (see section 2) we demonstrate the
substantial qualitative differences between these two approaches and thus generate the
motivation for the rest of the paper. The novelty of our approach derives from the
treatment of pure delays which produce much more accurate models of production- o
inventory systems. The application of some relatively new design methodologies for
delay systems yields four design choices, which are tested for their performance over
a range of criteria (section 3). The inclusion of pure time delays enables the
investigation of their influence on system stability. This is an important question since
logistical disturbances to such systems are usually manifested in increased delays
somewhere along the production process which may have unforeseen ramifications
for the dynamics of the entire supply chain. So in section 4 this investigation is

extended to the model of a supply chain comprising many such production-inventory

systems. The mechanism by which disturbances can be transmitted along the supply

chain causing disruption and incurring costs to other supply chain echelons is
elucidated. Understanding the pathology of such phenomena enables the development
of policies for their elimination or mitigation. Indeed, in the last section an heuristic
feedback policy designed to adaptively tune the individual system designs in response

to such disturbances is presented.

2. Modelling Production-Inventory Systems
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For fifty years [Simon, 1952] control theorists have been attempting to apply their
discipline to the modelling and control of production-inventory systems. Yet the
widespread adoption in industry of production control techniques developed in the
field of Operational Research [Naddor 1966, Elsayed & Boucher, 1985] has
subordinated these efforts. Consequently, tools from control theory have, more
recently, been confined to simulation and the development of generic strategic
recommendations [Wikner et al. 1991, Towill, 1991], rather than as a practical aid to
decision making. In this section we briefly review the relevant literature and highlight
the common deficiency of these methods, the substitution of exponential smoothing
delay approximations for pure delays. This, we claim, constitutes the most significant
obstacle to their greater acceptance and serves as a motivation for the development of
the rest of the paper

Control-theoretic methods in this area fall into two qualitatively quite distinct
categories. These are cost based and non-cost based approaches. The former use
optimal control to trade off the costs of holding inventory against production costs
[Bensoussan and Proth 1982, Lieber 1973]. By their very nature they are a planning
tool and so require a demand forecast to generate a production plan. In contrast, the
methods considered in this paper are designed to react in real time to varying
demands. They attempt to arrive at production strategies which reject ephemeral
demand variations whilst satisfying substantive demand patterns through policies
which avoid both volatile production rates and prolonged excessive inventory safety
stock depletion. Typically, by tuning parameters in a simple state feedback
representation of the system, its transient behaviour in response to a likely demand
variation is shaped to partially satisfy these conflicting requirements. These methods

possess the advantage over those using optimal control that they require no detailed
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knowledge of the (often complicated) production and inventory holding cost

structures. Further, knowledge of the particular demand patterns involved can be used

to fine tune the specific system design. For instance, if it is known that demand

fluctuations in a certain frequency range tend to occur regularly, then the design can

focus on shaping the frequency response of the system over that range.

Every differential equation model of a production-inventory system must be

constructed around the fundamental inventory balance equations: :

di :

L pr)-a0) d

where i(t) is the inventory level, p‘(t) is the production completion rate and d (t) is

the demand, rate all at time 7. Using simple Laplace transform feedback techniques to
derive rational controllers, Simon [1952] designed systems that aimed to keep the
inventory near a desired level whilst minimising production fluctuations. This early
paper highlighted a fact which persists in influencing research in this area today,
namely that pure delays are hard to deal with within a differential equation
framework. In common with many other authors, to circumvent the analytical
intractability caused by pure delays, he approximated them by distributed lags (also e
called exponential smoothing), i.e. another first order differential linear differential
equation yielding an exponential solution. This approach was justified by regarding
the Laplace domain lag approximation as the transform of a probability density
function which expressed the probability that the lag in producing any particular item
would be a particular value. However, Figure 1 shows how first order exponential
lags exhibit qualitatively very different behaviour to pure time delays in response to

likely demands placed upon the production facility. These demands are given by the




function p,(t), standing for demanded production. In the Laplace domain the

equations governing the processes are

Pr(s)_ 1 PC(S)_ ~Ts
Pi(s) 1475’ P) C &

representing a first order lag with parameter 7 and the equivalent pure time delay,

respectively  (Laplace  transforms  being denoted by  upper case

letters).
Graph A Graph B
1 1 c
Rates pd o (pure dflﬂ)’) Rates P (pure delay)
units/week units/week
o ] 4 6 0 2 i 3 ]

Time, weeks Time, weeks

Fig. 1. Pure and exponentially smoothed delays.
Graphs A and B show the responses to a transient unit step and to a sinusoidal-type

blip, respectively. Notice, in particular, the differing attenuating effect of the
exponential smoothing process on pc(t)(smoothed) in response to the qualitatively
different signals. It is possible to vary the parameter T to achieve different responses:

Increasing T smooths out p°(¢) at the expense of more attenuation, whilst decreasing

T results in responses which look more like p* (r) This means that first order lags
can approximate very small delays with only slight attenuation, however the more
accurate representation of pure delays of small magnitude can be dealt with using

classical design techniques [Marshall, 1979]. Marshall quantifies what a significantly



‘large’ pure delay is, beyond which these methods become insufficient. If the design

bandwidth is @, then T will be ‘large’ if wT is of the order % . So, even if T is

small, a large design bandwidth precludes the use of classical techniques. Moreover,

for all the controllers used in this paper, on systems which were chosen for their
plausibility, oT > % (see section 3).

Some authors have used higher order distributed lags to approximate pure delays

[MacDonald, 1978]. These increase the dimension of the system, inhibiting analytical

progress, and merely lead to sums of terms similar to that in p“(t)(smoothed) above,

increasing the resemblance to p“ (z) only marginally.

Despite these drawbacks, the recondite nature of delay differential equations has
discouraged their application to this area and instead many authors have modelled
production-inventory systems using distributed delays. Forrester [1961] developed
detailed nonlinear models of multi-echelon production-inventory systems. The
complexity of these models precluded detailed analysis and instead they were used
simply for simulation purposes. Unfortunately any system design then amounted to a
process of trial and error and so the utility of such models was restricted to the
qualitative investigation of ‘what if’ scenarios. Their complexity also discouraged
attempts at their rigorous validation. By performing an elementary sensitivity analysis
on his model, Forrester would have discovered a high degree of parameter sensitivity
in the exponential delays. In today's parlance, this lack of robustness was exacerbated
by the repeated coupling of similar submodels. Forrester was duly criticised for the
lack of theoretical underpinning in these models (Ansoff and Slevin 1968) and later
for similar work modelling world populations (Forrester 1973). Given the limited

analytical utility of such models and their resulting classification as simulation




models, the many sophisticated discrete event simulation packages available today

may provide a more accurate simulation capability.

Acknowledging these issues, Towill [1982] simplified Forrester’s models (in this
paper, in single-echelon form) to an extent at which they were amenable to analytic
study. He then used classical control techniques to tune the parameters in the feedback
(of the inventory level) and feedforward (of the demand rate) loops. His work shows
qualitatively how the various design objectives can be traded off against one another.
However, the use of distributed lags must still compromise the fidelity of the model
and consequently our faith in the design rules. Also, no analysis linking the system’s
stability to the production time constant is presented, an important omission since
logistical disturbances tend to increase the production delays, possibly leading to
instability. So the design should be robust for a range of delays about the nominal
value. In [Porter and Taylor, 1972] the authors use similar feedback techniques to
achieve a desirable transient response of the system. In [Bradshaw and Porter, 1975]
this work is extended to allow for the stimulation of sales by advertising.

Pure time delay systems frustrate significant analytical progress because, in the
Laplace domain, the most commonly chosen design arena for engineers, they yield
transcendental characteristic equations with (in general) infinitely many roots. As for
linear systems, the behaviour of the system is determined by these roots [Bellman and
Cooke, 1963], but, since there are infinitely many of them, the usual design
methodology of shifting them to more desirable locations is nontrivial. To the
authors’ knowledge, the only paper to deal with pure delay production-inventory
system is [Mak et al., 1976]. In this paper the feedback parameter values which yield
stable systems are calculated given fixed pure delays. This process is repeated for

different delay values to give a qualitative picture of the overall stability




characteristics of the system. It is shown that as the delay increases the range of

feedback parameters resulting in a stable system is reduced. However, explicit delay-
dependent stability regions are not calculated and no design methodology for
determining the feedback parameters is given. As an aside, we are puzzled at the
inclusion of an exponential smoothing term as well as a pure time delay in their

model.

3. The design of Production-Inventory systems with pure delays

Design Objectives

According to Towill [1982], the two main design objectives for production-inventory
systems are good inventory recovery from deterministic demand changes and good
rejection of random demand disturbances. Deterministic demand patterns are those
whose magnitude and sustained nature make it most profitable to satisfy by changing
the production rate and (possibly) depleting safety stocks, but avoiding the risk of
stockouts. In contrast, random demand disturbances are those which are considered
either too small or too ephemeral to warrant a costly radical change in production and
therefore should be met by safety stock depletion and possible transient toleration of
stockouts. The particular cost structure of the system determines where the boundary
between such demand patterns lies. Further, this boundary may change over time,
depending on the capacity utilisation of the production process. For example, for
some production processes it is very expensive to change the production rate
substantially due to increased setup times, machine calibration changes, etc. For these
systems, small and irregular fluctuations in demand should mainly be satisfied by a
buffer stock, whose cost of maintenance should be reconciled against the exorbitant

cost of significant production variations. However, more fundamental demand
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variations, over longer periods cannot be satisfied by safety stock depletion alone and
so the production rate must change in order to avoid prolonged periods of stockouts.
A conflict between the two objectives of following deterministic demands and
ejecting random demand disturbances arises since improving the recovery rate of the
system to dterministic demands invariably makes the system more responsive to all
demand variations. However, by using the fact that random demand disturbances tend
to be of a higher frequency than determj_nistiC demands, we can shape the frequency
response of the system to attenuate high frequency signals and follow low frequency
signals.

We will add the further design objective: To ensure the system is stable for a range of
time delays about the nominal value. This is important since logistical disturbances to
the system (e.g. late deliveries, quality problems, machine breakdowns, absent
workers) can be manifested in increased production times. Elementary systems theory
tells us that long delays can lead to instability, which translates into erratic production
rates, an expensive logistical phenomenon. Further, this instability can be
communicated along the supply chain, resulting in the well-known bullwhip effect.
Also known as the demand amplification effect, this is the tendency of demand
variations to be amplified as they are passed down the supply chain [Houlihan 1987,
Burbidge 1984]. Working with this wider supply chain perspective promotes the
objective of robust design methodologies that ensure stability for a range of delays.
We shall examine the supply chain ramifications of production-inventory system
design in more detail in section four.

Figure 2 shows the structure of our production-inventory system. The infinite
dimensional nature of delay systems implies that classical transfer function (and thus

block diagram) representations of these systems are inherently ambiguous [Fliess and




Mounier, 1998]. So we simply regard figure 2 as a description of the information

flows in the system.

di y=al P
d Ve
T » Controller .| Production delay

ap h

v

b

Feedback loop

Figure 2. Production-Inventory control system

Once again, i(z) is the inventory level, p° (z) is the production completion rate, p ()
is the demanded production rate (i.e. the scheduled production rate) and d (r) is the

demand rate, all at time #. The parameter h is the length of the fixed pure time delay
comprising the time taken to process the order, take delivery of raw materials (if

necessary) and manufacture the product. We assume that over the useful time horizon
of the model the demand varies about a constant level d . With the system in
equilibrium d(t)= p“(t)= p”(t)=d . Hence we can take this constant value off each

of the listed rate quantities to simplify the equations of the system. These are
di c c d
— =P 0)=d). pt)=pC-1) 3)

We aim to keep the inventory level close to a desired value (the safety stock level)
which, without loss of generality, we can take to be zero. Hence i(t) really denotes
the inventory level discrepancy (from zero). This approach treats stockouts exactly the
same as inventory depletion. The most simple form of controller (as in [Towill,
1982]) monitors the inventory discrepancy and schedules future production to be

proportional to it. Hence

10




p(t)=0i(t), <0 (4)

We shall also examine the performance of the feedback rule
d . di
p*()=ail)+B—. B<0 )

which, through the inclusion of the derivative term, can compensate changes in the

inventory level earlier and also increase the ability to smooth the demands placed
; - : L L di
upon the production facility. In classical engineering terms, if 5 is the state of the
t

system, then (5) constitutes proportional plus integral control action, a favoured

design choice [Gorecki et al., 1989]. Putting (3), (4) and (5) together yields

di ;

E—w(r—h)—d(r) (6)
di . 3 ﬁ N

E;_ca(t h)+ﬁdr( h)-d(t) (7

for the closed loop equations of the two systems. Many authors include either a
demand feedforward loop [Towill, 1982] or an extra feedback term comprising the
integral of the inventory discrepancy [Porter and Taylor, 1972; Bradshaw and Porter,
1975]. Both these loops have the effect of eliminating the inventory steady state error

when d(r)—>d #0, as 1 — . Our approach presupposes the constancy of an

average demand rate (taken to be zero, without loss of generality) over a planning
horizon which will depend on the demand characteristics, obviating the need for these
extra loops. We have restricted our remit to the design of systems that react in a
desired manner to perturbations in demand about an average steady state level. There
are sound reasons for treating these issues separately from the steady state system
design. The latter favours high volumes for which the unit cost of production is
paramount and flexibility is subordinated, the former comes into play during periods

of turmoil in the supply chain: promotional periods, periods during which there are

11




logistical disturbances to the system. Thus these designs favour responsiveness and

swift recovery. The timescales to be considered in the design of the steady state
system (e.g. those determined by the product lifecycle or seasonal variations) are
much longer than those in the transient system design (e.g. those determined by
promotions, machine breakdowns, heatwaves etc). Fundamental changes to the steady
state system-like long term changes in the average demand rate-also have cost
implications best analysed by the structural tools of Operational Research [Naddor,
1966] rather than the tactical decision making tools presented here. For instance, an
increase in this rate should prompt a re-evaluation of the safety stock level, thus
affecting the whole cost structure of the system. Furthermore, the periodic review of
demand characteristics, demanded by our approach, with the intention of fine tuning

the choice of o and 8, should lead to better performance.

Design Methodology

Many linear finite-dimensional system design methodologies consist of adjusting the
feedback parameters so that the roots of the characteristic equation have minimum
real parts. This leads to very responsive systems with quickly decaying transients, but,
if used without care, can also result in responses which are too volatile. The extension
of these techniques to time delay systems must proceed with circumspection since
there are infinitely many characteristic roots to consider. Stabilising some of them
might increase the complex parts of others, leading to more oscillation. We shall use a
generalisation of the aperiodic stability criterion as presented in the book [Gorecki et
al., 1989]. As applied to finite-dimensional systems, the regulator is chosen so that
there exists a real characteristic root of maximal attainable multiplicity. Unlike the
case of finite-dimensional systems, this does not deliver guaranteed non-oscillatory

transients. However, we can expect that, for small delays, the transient components

12
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corresponding to complex characteristic roots will decay much quicker than those
corresponding to the real characteristic root. In any case, for all the design procedures
presented here we shall check the resulting stability margins of the closed loop system
and qualitatively investigate the response of the system to some typical demands.

By taking the Laplace transform of (6) and rearranging, we obtain the characteristic
equation for the transfer function of P %):
gls)=0e™ s @®)

If g(s) has a root, r, of multiplicity &, then g ( ) 0, j=0...k-1, g ( ) 0.
Repeatedly differentiating (8), we get

g(r)=—hoe™ -1, g(r)=h’ce™ )
We see that g # g, hence the maximal order of the characteristic root is two. Now,

setting g = ¢ =0, and solving, we have

10)

We shall call this design 1. For the case when f3 #0 the extra degree of freedom in

the design generates a third order root from the simultaneous equations

g(r)=(a+pBs™ -s=
g(r)=(B—ch—Prsle™ -1=0 (11)
g(r)=(-2Bn+an* + Brsk™ =0

yielding,

= —4e™
h h

, B=—€ (12)

These parameters constitute design 2. Notice that the smoothing parameter f is

independent of the system delay. This is not surprising since it acts on the derivative

rather than the absolute value of the inventory level. We shall examine the

13



performance of these parameter values once we have presented the third and fourth

designs.

Production-inventory system design in the frequency domain is particularly attractive
because the knowledge and experience of the production manger can be utilised to
focus attention on specific bands in the frequency range. For instance, looking at past
data might highlight recurrent demand oscillations at certain frequencies. The
frequency response of the system can then be shaped in the vicinity of these
frequencies to be flat so that these demands are reproduced accurately. In contrast,
ephemeral disturbances in demand can be rejected by attenuating the high frequency
range of the response. Unfortunately, the transcendental nature of the characteristic
equation makes the simultaneous achievement of both of these objectives
problematic. One method [Marsik, 1958; Gérecki et al., 1989] attempts to make the
low-frequency part of the attenuation diagram flat and relies on the existing high
frequency attenuation of most controllers to suppress spurious disturbances. We

accomplish this by choosing the regulator settings so that

d“ | .
3 G(jo)._, =0, k=1,...,1 (13)

where G is the transfer function of £ % and [ is chosen as large as possible. Put

y(w)= ]G( jcu}2 = L(w)/M (w), where L and M real symmetric functions. Since all
odd derivatives of (@) are zero, we can take [ to be even. Then
LO)M ) (0)= M ()L (0), k=1,...,1/2 (14)

The number of adjustable parameters determines [/2 . For the system (6)

(04
6ljw)=—m——,
(o)= 0 (15)

M(0)=a’ +0* + 20wsinwh, Lw)=a’

14




and

M ®(0)= 2+ 4ahcoswh—20h" sinwh| =0 (16)
giving
-1
a=— 17
> (17)

Similarly, for (7), we have

M)=a®+ (I +B? }uz + 2awsin wh - 2w’ cos wh,

18
Lw)=a+p’w’ v

Hence (14) yields

M(0)=L(0)=c?
M®0)=2+2B*+4ah-4p =0, [P(0)=28" (19)
M®¥(0)=24pn* —8ah® =0, L*(0)=0

Solve to give

a8 0

These last two designs will be referred to as designs 3 and 4, respectively, in the order
in which we derived them.

Stability

In the appendik we derive the stability regions for a cascaded production-inventory
system. So as not to repeat ourselves, we quote here the results from that section for
single echelon systems. A technical definition of asymptotic stability can be found in
[Bellman and Cooke, 1963] but the reader may simply make do with the idea that
stability is the property which brings the system back into equilibrium after a
perturbation in demand. Conversely, the production rate of an unstable system will

grow indefinitely with increasing time. Assuming @ <0 and B <0, the systems (6)

and (7) are asymptotically stable if

15
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0<h<=Z, 0<h<—ﬁ—cos_lﬁand 1B <1 1)
o

2¢

respectively. Figure 3 shows the nature of this stability region.

/—\
| e |

ﬁ

Maximum stable h 34

- 08 08 0.4 02 0

B

Figure 3. Stability regions for a production-inventory system

The curved lines plot the maximum value of & for the system (7) to be stable whilst
the straight lines (independent of the value of B) do so for (6). The lower curves are
for ¢ =—1 and the higher curves for @ =-0.5. We can see that for all but the
smallest values of f3, the system (7) is more robust than (6) since it remains stable for
a bigger range of delay. However, decreasing & cuts this advantage until it’s almost
negligible. This diagram shows that attempting to stabilise the system by decreasing
« impairs its robustness and, paradoxically, can lead to instability. As we have said,
this phenomenon is not reproduced by models which use exponential smoothing to
mimic delays.

We now calculate the specific h — stability margins (V) for the for designs derived in
the last section. We define this to be the maximum delay for which the system is
stable, and express it as a multiple of the nominal delay value, k. Substituting the

relevant values for o and f (where appropriate) into (21) yields

Design % B h — stability margin, V

16




1 az—e'%,ﬁzo 4.27h
2 - —43“%, B =—e 3.12h
3 a:—%h,ﬁzo 3.14h
4 az—%h,ﬁ:—% 2.35h

Table 1. System designs and stability margins

System Performance

In this section we evaluate the performance of the four controllers in response to
likely demands placed upon them. Engineers typically achieve this by applying a unit
impulse or step function to the system [Ogata, 1990]. However, unit impulses are not
encountered in real life and so should be avoided. Further, since we have assumed that
the average demand rate over a significant length of time is zero, it would be better to
use a transient step rather than a pure step in demand as a typical input to the system.
Sinusoidal-type demands and transient step demands are, we believe, much more
prevalent in real situations. Our aim is to evaluate the particular balance for each
design between noise rejection, fast inventory depletion recovery and avoidance of
oscillatory or volatile production patterns.

Figure 4 shows the behaviour of the systems with h =4 days in response to a transient
step in demand. To save space, we have presented rates and levels on the same graph
with different scales for each. It is important to remember that these graphs represent
fluctuations about an average level which, for simplicity, we have taken to be zero.
The upper left graph is labelled, with the others following the same pattern. Figure 5
shows the behaviour of the four systems with £ =3 days in response to a noise-
corrupted step in demand. The sinusoidal noise element in the demand pattern in

figure 5 was included to facilitate the investigation of the demand noise suppression

17




of each design. For this reason the simulations where continued after the step recovery

period to demonstrate the steady state production rates in response to persistent
perturbations. The substantive component of the demand signal was chosen to be a
transient step, so as to highlight the differences with the sinusoidal demand. The noise
is modelled by a high frequency sine wave, the amplitude of which was chosen to be a
significant 20% of the substantive step change. Its frequency was chosen to mimic
daily fluctuations in orders about the step change. A higher frequency choice would
be unrealistic since, for most manufacturers, changes in demand during one day are
not monitored, but, rather, aggregated into an order at one point during that day.
However, for some applications, higher frequency noise signals might be worth
examining. For example, supermarkets monitor demand throughout the day and, for

some products, may even formulate ordering policies based on this real time data.

Design 1 Design 2

Rates P (r) Rates

Inventory

level

units
_ADD.

6 & 10 15 2 2 3 % @ & 1w 1 @ H W B/
time / days time / days

Inventory
level
units

6 5 10 15 A 2 3 3% 6 5 10 1 2 2% =
time / days tme / days

Figure 4. Response of system to sinusoidal-type demand, h =4 .
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week

Inventory
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30
time / days

Desien 2
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1004
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¥

4
\

0 10 20 30
time / days

Figure 5. Response of systems to noise-corrupted transient step in demand, & =3 .

The qualitative results of these experiments are presented in table 2, where we have
ranked the performance of each design for each characteristic (best at the top, worst at

the bottom).

Robust Smooth Production Inventory Recovery Noise
Stability §=3 Jim A h=3 By ol Rejection
1 1 1 4 4 1
3 3 3 3 2 3
2 2 2 2 3 2
4 4 4 1 1 4

Table 2. Table showing performance of various control designs.
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All of the designs considered yield trajectories which exhibit little or no low

frequency (production) oscillation once the initial perturbation is corrected. For this
reason we have omitted a column for this characteristic. In general terms, we see that
there is an obvious trade off between smooth production and swift inventory recovery.
For h=4 and h =3 we see that design 1 has the smoothest response and inevitably
the slowest inventory recovery rate. Design 4, in contrast, produces the most
responsive production pattern which closely matches the demand pattern (after the
given delay). This is achieved at the expense of a very slight overshoot in the
inventory correction and the transmission of the demand discontinuity to the
production pattern. Designs 2 and 3 exhibit very similar behaviour, being a
compromise of the two extremes of design 1 and 4. The knowledge and expertise of
the production manager should be heeded when choosing a design. As expected, the
most responsive system (design 4) suppressed the high frequency demand signal the
least but, even for this design, the amplitude of the steady state production rate
oscillation is substantially less than that of the demand signal and so some attenuation
is achieved. For the other designs most of these fluctuations are absorbed by
inventory, rather than production changes (a lesser evil). There is also a direct
correlation between stability robustness and noise rejection at the given frequency of
noise. It is important to note that, again these results only tell us about the behaviour
of the system in response to noise at that given frequency. In practice, the system
design might need tuning to meet the demands of a specific collection of typical
demands. In any case, the designs we have presented may serve as a starting point for

this fine tuning by varying « and . Decreasing ¢ improves the responsiveness of
the system but may lead to oscillation and instability. Decreasing f smooths the

system response, increasing the inventory depletion correction time and damping

20
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oscillation. However, too small a value of 8 can lead to oscillation and instability

(see (21)). The stability properties of each design should always be checked.

4. The Dynamics of Supply Chains

Production-inventory systems rarely exist in isolation, rather, they connect together in
series and parallel to form an, often complex, supply chain. Practitioners in this field
have known for some time that the design of production-inventory systems in
isolation, without reference to the rest of the supply chain can lead to poor
performance in the overall supply chain. One of the best known manifestations of this
poor performance is the demand amplification effect [Towill 1992, Houlihan 1987,
Burbidge 1984], the tendency of demand fluctuations to be amplified as they are
communicated down the supply chain. Using cascaded series of the familiar
‘exponential smoothing’ models (see section 2), a series of papers has investigated
this phenomenon [Wikner et al. 1991, Towill, 1991, Towill, 1992, Berry et al. 1995,
Towill and Del Vecchio, 1994]. In general terms, they conclude that demand
amplification can be suppressed by shortening lead times, an intuitively reasonable
conclusion despite the criticisms of exponential smoothing made in section 2 which
can also be levelled at these models. In this section we construct a supply chain by
cascading the systems designed in section 3, and show that the robustness of any
particular echelon can affect the performance of the rest of the chain. We then
demonstrate how logistical disturbances can cause demand amplification and then
present a heuristic feedback methodology to counter these effects.

Consider the generalisation of figure 2 to the N —echelon model shown in figure 6.
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Figure 6. N —echelon supply chain.

The production delays are assumed to be integer multiples of some small number /.
This representation facilitates considerably the calculation of the stability properties
of the system (see appendix) which, we consider, would be intractable given the
definition of arbitrary delays. In fact, for real systems, there will invariably exist a
minimum time period (e.g. 1 day or %2 day) of which all other delays are an integer

multiple. The system equations are
di , di
?1 =0 (I - nlh)+ B, ?;(t - nlh)_ d(r)

di, diy (\_ | di
~d—l-v-Oaz( )”*‘ﬁz;(r zh) {all()+ﬁ1 ()}

(22)

di,
dt

=0, (t - )"rﬁN (t_”,vk) { NELNI()+ﬁN1

2 ()

So the demands placed upon the ith echelon are taken to be proportional to the
demanded production rate of the (i—1)stechelon (P%), as in all the simulation
models quoted above. For @ <0,~1< <0, this system is stable for O0<h<h’,

where

~.[1= B*
h* =minV, =m_in—ﬁ'
i ] na

[

cos™ B, (23)

22



So, used as a simple simulation model of a supply chain (with & and B chosen to

approximate the real decision rules of production managers), these results show

explicitly the mechanism by which increasing the system delays (n;) can lead to

instability, even in the absence of any logistical disturbances. This occurs if , for any

—.1- B2
i, —ﬁ‘cos‘1 B, <h. In fact, we show later that merely as
n.o.

~ 41— B2
—[).'cos‘1 B — h from above, damaging oscillatory production rates ensue.
nQ,

Consider a supply chain comprising production-inventory systems designed using the
(possibly different) approaches presented in section three. In the absence of logistical
disturbances (23) tells us that such chains are inherently stable since the individual
h — stability margins of figure 4 still apply to the individual systems. The calculation

of these quantities proceeds as follows

1 2
o =Xy K 24)
nh O,

where the constants K,,K’depend on the individual designs in figure 4 and the

formula (23). Hence, from (24),

V, =h—L (25)

i K[
. K?
and the system is stable because each design ensures that %1 >>1. However,

suppose logistical disturbances (e.g. machine breakdowns, absent workers) increase

the delay in the ith echelon. Then there would be two different values of n, in (24),

fizjign and namuai

n [, and so

- ;

K? n-desxgn

— i i

‘/i - h 1 actual
K. n

1 1

(26)
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actual 2
So if, for a period of time, % /de“gn EK/ , then demand amplification will
n. K,

occur. In fact, we have observed that damaging periods of oscillatory production

occur merely if

2__design
njacrual =3 Ki nil
K.

i

(27)

from above. The following 4-echelon example illustrates this phenomenon.

Example

Consider a 4-echelon supply chain comprising production units with the time delays,
from top to bottom, 1.5 days, 2 days, 3 days, 5 days. Echelon 1 might be considered to
be the retailer and so then its ‘production delay’ of 1.5 days would be dominated by
the lead time from ordering finished goods to their delivery by echelon 2. Echelon 2
might be a packer/filler, echelon 3 the manufacturer and echelon 4 a raw material
supplier. A real supply chain would probably have more raw material suppliers,
forming a supply network. Our example follows one path in such a network but can
casily be extended to other possible paths. Assume the production managers in each
facility have chosen one of our 4 system designs, based on their own perceived
requirements. These are (again from top to bottom) designs 1, 4, 3 and 2. Raw
material suppliers tend to aim for high throughput utilising near full capacity with few
changes in the production rate which might increase downtimes. Yet they typically
also aim to hold a large stocks of the finished product, which may become obsolete.
So we suppose echelon 4 has chosen design 2, which compromises on its ability to
smooth production changes and recover swiftly from inventory discrepancies (see
table 2). Echelon 1, a retailer, may possess a greater capacity to hold stocks either on
the shelves or in regional depots depending on the product. Since its ‘production

process’ is merely ordering goods, possibly incurring a fixed cost each time it does so,
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it may wish to smooth ordering rates and so opt for design 1. In contrast, we might

suppose that the packer/filler is keen to be responsive to changes in demand passed
down from the retailer (perhaps a supermarket) but simultaneously reluctant to hold
expensive amounts of the finished product. So we suppose echelon 2 has chosen
design 4, which is most responsive to demand changes and incurs the least inventory

depletion. Figure 7 shows the response of the supply chain to a sinusoidal type blip in

demand.
Echelon 1 Echelon 2
Rates Rates
units/ units/
week week
Inventory 01 Inventory
level le\jcl
- -160 Iy units
-320
a 5§ 10 15 20 2 30 3% i 5 10 15 220 25 3 35
time / d time / days
Echelon 3 Lo Echelon 4 ¥
80
d <
Rates Rates P3 Py
units/ units/
week week 04
Inueotsey Inventory
leel level L
units ants
-480

time / days

Figure 9. The response of a supply chain to a change in demand

Notice how the cumulative effect of the time delays has stretched the timescale of a
transient demand lasting 12 days into a transient production phase lasting almost 30
days in echelon 4. Also, the cumulative smoothing effect of all the designs has
amplified the maximum inventory depletion from 360 units in echelon 1 to 550 units

in echelon 4, possibly resulting in stockouts, depending on the latter’s safety stock
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level. Hence policies which are desirable for some supply chain members can have an
undesirable impact upon echelons lower down the supply chain.

We now examine the effect of a logistical disturbance in one of the echelons, causing
its time delay to increase. The left hand column of figure 8 shows what happens
when, given the same demand signal as in figure 7, after 9 days, the time delay in
echelon 2 increases to 3.75 days for a further period of 10 days. Since echelon 1 is
unaffected by this disturbance, we omit its dynamics. In reality such a logistical
disturbance might cause an increase in the time delays of all the higher echelons,
since they are supplied by the echelon with the problem. However, in the absence of
knowledge of the composition of the time delays for a particular example (e.g. the
supply leadtime component in echelon 1’s time delay), it is impossible to forecast the
magnitude of such increases. Hence we just look at the case when supply to higher
levels is unaffected. The same approach can be adopted for the more complicated case
given some real data. The point of this example is merely to show the damaging
oscillatory effect of logistical disturbances on even a well designed supply chain and
how feedback can be used to mitigate such phenomena.

In figure 8 one can see how the disturbance causes a jump discontinuity in the
production rate at day 9 (point a), and a further after the extended delay after 12.75
days (point b). Similar discontinuities occur when the delay returns to its original
value (points ¢ and d). In lower echelons the action of the respective designs gradually
smooths these discontinuities out. However, comparing with the undisturbed case in
figure 7, the dynamics now exhibit some oscillation in every echelon, causing

expensive variations
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Fig. 10. Response of supply chain to logistical disturbance with and without delay

in production rates over time. Also, the maximum inventory discrepancy in echelons 3
and 4 has increased from —480 to —540 units and —520 to —540 units, respectively,

possibly causing stockouts. Furthermore, each echelon now experiences a substantial
inventory ‘overshoot’, periods during which the inventory level exceeds its target.

These periods can be very problematic and expensive if enough storage capacity

cannot be found and must be rented. It is important to note that the results displayed
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above are for well designed systems using rational controller rather than potentially

irrational production managers. In the absence of such controllers, the production
manager would make decisions which might, quite possibly, lead to much worse
oscillations [Sterman, 1989]. Technically, the system is not unstable, rather it is
approaching instability. This can be seen by substituting the design rule parameters
for echelon 2 (design 4), shown in figure 4, into (24). We have, using (23),

h =0.25 days, 2" =15,n%*" =8 K, =-0.75,K; =-1.766

Instability arises if

! Proog
ng 2 nfen N2/, =18.8 (28)
2
The actual value of n{™“ =15 causes oscillatory behaviour due to its proximity to the

boundary value calculated in (28). Equation (28) suggests a method for counteracting
the undesirable effects of such logistical disturbances through the use of an adaptive

controller that monitors the production delay and feeds back this information to adjust
the control parameters. The idea is simply to keep the ratio n™* /n®®" as close as

possible to 1 thus maintaining the particular stability margin shown in table 1. The
right hand column of figure 8 shows the results of such a policy, where the design
delay exactly matches the actual delay. It should be noted that in reality, at the start of

a period of disturbance, the actual delay may not be known and so must be estimated,

actual

so a gradual increase in n, might be more realistic. However, changing the

parameters of the controller itself can cause discontinuities in the production rate. So,
for small disturbances, we recommend relying on any inherent robustness in the
original control design rather than its continual tweaking. What ‘small’ is might only

be appreciated by the production manager after using this controller for some time. In
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any case, simulation of the effect of adjusting the parameters can be carried out before
any adjustment is made.

Figure 8 shows that the feedback eliminates oscillation in all echelons and, in effect,
limits the ill effects of the disturbance to echelon 2, whence it originated. The
maximum inventory depletion is brought back to the undisturbed level in echelon 4
and, in echelon 2, actually reduced to slightly below this level. The price for this
sustained performance is met entirely by echelon 2 through higher maximum
inventory depletion. But, even in this echelon, much of the erratic nature of

production is suppressed and its peak rate is reduced.

5. Conclusions

In this paper we have shown that the approximation of pure production delays by
exponential smoothing leads to qualitatively quite different dynamics in a production-
inventory system. This may be acceptable when modelling generic supply chain
dynamics, but cannot be overlooked when deriving controllers for such systems. By
using some straightforward extensions of linear finite-dimensional techniques, we
derived four production-inventory system controllers. We then evaluated their
performance and, in particular, the balance of the trade-off between smooth
production rates, swift inventory depletion recovery and good noise rejection. The
robustness properties of these designs were then found using some results on delay-
dependent stability conditions.

The second part of the paper examined the dynamics resulting from cascading these
production-inventory systems into supply chains. The effect of logistical disturbances

that increase the production delay in one echelon was then simulated throughout the
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whole chain. It was found that, as instability is approached, costly oscillatory

dynamics can occur and, simultaneously, expensive stock depletion is experienced. A
heuristic method based on disturbance monitoring and feedback was shown to
eliminate such behaviour. Further work is planned on the incorporation of forecasting
engines into such systems.
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APPENDIX

Derivation of delay-dependent stability criteria for N-echelon supply chain

Following the work and notation of Chiasson [1988], we examine the unforced
system:

N-1

ia. d—ix(r~nh)=0 (1)

a” -
Fx(f)+ 24 24 %

The stability properties of such a system forced by an external function are

determined by the roots of the characteristic equation of (1) [Bellman & Cooke,
1963], which, putting d = e™"  we define as

a(s,d)=s" +a,_ (@)}"™" +-+a,(d),
where the a,(d),i=0...N -1, are polynomials. For fixed &, (1) is asymptotically
stable if a(s,d)# Ofor Re(s)=0,4>0. Now, define

d(s,d)=d"a(-s,1/d), m=deg,{a(s,d)}
Then,

Definition 1: h”, the stability range for k.

32




Let {(s,.d,)i=1 ...k} be the common zeros of {a(s,a),@(s,d)}, for which

Re(sr.)z 0,s, 20 and |d,.‘ =1,d#1. For each pair (sf.,d‘. ), et
h, = n]jnh>0{he Rld, =e™ } Define #* = min{h, }> 0.
Theorem 1 [Chiasson, 1988]:

als,e™)#0 Re(s)20 0O<h<h’ 2)

iff a(s.1)#=0 Re(s)>0. 3)
Further, there exists an s* = j" for which
a(s* e )= 0

thus A" is the largest value for which (2) holds.
Neutral  systems  have  characteristic =~ polynomials of the  form
als,d)=ay(d)s" +a,_ (d)s"" +++a,(d), and are said to be asymptotically stable
if 3y >0 with a(s,e“" );t 0, Re(s)> —y. The reason for this stability margin
[Bellman & Cooke, 1963] is that there may exist some unstable solutions of neutral
systems for which a(s,e'”’)# ORe(s)>0. So Theorem 1 must augmented by the
assumption that a, (d)#0 |d| i 8
We now apply this result to the neutral system (i.e. the case where 8, # 0) described

by (22). The easier case of 8, =0 requires a straightforward application of Theorem
1 and should be obvious in the light of the following. The N-echelon supply chain

gives

a(s d)= {(Oc1 + Bs)d™ —s}{az + B,s)d™ — } ...... {(CCN + Bys)d™ —s}

s d)={(al ﬁls +d S}{az -—ﬁzs)-i-d"-s ...... {(aN ——ﬁNs)+d””s} @
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Now a, (d)= (ﬁld”‘ —1)...([3Nd”” —1), which has roots d, =%/1/B,,i=1...N . Hence
the special assumption for neutral systems translates into | ﬁl.| <l,i=1...N. Now
check (3):

a(s.1)=for + (B, ~1)s}.. ey + (B, ~1)s}
which has roots s, = ¢, /(1-B,),i =1...N . Hence, since ¢, <0, to satisfy (3), we
need f, <1, arequirement already fulfilled.

The common zeros of (1) and (2) for ld! =1 are

a.d" a,
§;=———, §; = —, i=1...N
1-B.d" B, -d"
respectively. Making them simultaneous gives
1 n; -n;
B, :E(d ‘+d )

Putting d = ¢’* gives 0, = % cos™ (B, ). Making the solutions for d equal gives

Now, following Theorem 1,

h" = min, I]’linh>0{hE R|d, ze_hsj}

L 0, 1
= min, mmbolhe R|efe‘ =exF{+ Jhﬁiz]}
l_ﬁi

= min, min,_, {h e R[9, =Fh %ﬁ}

Now, since we are looking for the minimum value of &, we use the principle value of

0, . Hence:




