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Abstract

This note proposes a method of syrithesis of the optimal control for an infinite time
optimal control problem. The control is synthesised from a viscosity solution to the
associated Bellman equation. This solution is in turn constructed geometrically from
a Lagrangian manifold. This note sets out the argument behind the proposed
synthesis in detail and identifies the gaps and conjectures in it.
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Consider the following optimal control problem

V() = u(_)EiLréf(DmJ Aw % (r(t)Tq(z(t)):c(t) +u(t)Tr(z(t))ut)) dt (1)

subject to
i=f@)+o(e, 2(0)=¢ Jma()=0

where z € R™, u € R™ and f, g, g and r are analytic functions of the appropri-
ate dimensions. We assume there is an equilibrium at the origin, i.e. f(0) = 0.
We also assume that g(z) is positive definite for ¢ # 0 and 7(z) is positive
definite for all .

If we assume that the linearisation of (1) at the equilibrium is stabilizable
and detectable, then the equilibrium is hyperbolic (Lemma 3 of [4]) . Thus
there exists a stable Lagrangian manifold M for the Hamiltonian dynamics
corresponding to (1). Assume Hypotheses 1 of [8] hold true and define

V(z) = inf{S(z,y) : y such that (z,y) € M} (2)

where S(z,y) is the smooth function defined globally on M and satistying ds =
—ydz on M. The global existence of S follows from Hypotheses 1 of [8]. Assume
dimM < 2 and that Hypotheses 2 of [8] hold true. Then (by Propesition 3 or
Theorem 4 of [8]) V is Lipschitz over €2, where Q is the open region of state
space covered by M as defined in Hypotheses 1(6) of [8]. Then by Theorem 3
of [3], V(z) is a viscosity solution to the stationary Hamilton-Jacobi-Bellman
equation+

Hia, —Z—Z) = max {—%g(f(:c} + g(z)u) — %ITQ(.T?)HS - -;-uTr(x)u} =0. (3)

In the following note, we investigate the conditions under which V is the
value function for the optimal control problem (1). We also investigate how
the optimal control can be synthesized from the viscosity solution constructed
on M. In the last section of 9] there is a discussion of how to synthesize the




optimal control from viscosity solutions to He, control problems. The proof that
the ‘obvious’ control does in fact achieve the infimum of the cost function over
all valid controls uses the supersolution property. Due to the generality of the
problem the discussion in [9] has to revert to assuming classical supersolutions
of the upper Isaacs equation. We indicate in the following how, in the case of
infinite time optimal control where the Hamiltonian is convex, the specifics of
the construction of the viscosity solution given by (2) allow a proof that the
‘obvious’ control achieves the infimum when the value function is a viscosity
solution rather than a classical solution.
The value function is defined as

t
" 1
V(z) = inf sup / 5 (a7gz +ulru) dt )
u t 0

where the inf is over all controls u(t) such that the solution z(t) to & = f +
gu,z(0) = z € Q stays in  for all ¢ and tends to the origin as ¢ — oo. By
considering the linearisation of (1) at the origin, it can be seen that 5(0,0) =0
and so V(0) = 0. We first show that V(z) < V(z) for all 2 € Q.

To see this, note that V is a subsolution of (3), i.e. for all p € DtV

1
max {—p(f + gu) — 53T ~ %u'ru} <0

So for any valid control u(t) (i.e. such that the solution to & = f + gu(t),
z(0) = z € 2 satisfies z(t) € N for all ¢ and satisfies z(t) — 0 as t — 00 ),

1 1
—p(f + gu) — 24T — Fur <0

Then by Theorem 1.14 of [2],

=V(z(t)) + V(z) £ / ;15 (zgz + uru) dt

&

where z(t) is the solution to & = f + gu(t), (0) = . Now z(t) — 0 as t — o0.
So, using the fact that V(0) =0,

i
Viz) < sup] : (zqx 4 uru) dt.
t Jo 2
Since this holds for all valid controls u(t), we have that
tq i
V(z) < infsup] 5 (zqz +uru) dt = V(x).
u t 0

To show the other inequality we need to make two assumptions.

Hypotheses 1 Suppose that V(z) > 0 for allz € Q, = # 0. I haven'’t investi-
gated in any detail the consequences of this failing to be true - at first sight they
would appear to be similar to those discussed in the same situation for Lo gain
calculations after Theorem 4 of [3].




The second assumption involves the synthesis of the optimal control, i.e.
the function @(¢) which achieves the infimum in (4). We first of all state this
synthesis as a conjecture. In what follows we give the outline of the argument
in support of this conjecture and, hopefully, identify all the remaining holes in
the argument.

Conjecture 1 We conjecture that the optimal control can be obtained as the
following feedback for all z € £,

a(z) =r"(z)g" (z)d ()

where (z,7) is the point on M at which S(z,y) achieves its minimum value over
all y such that (z,y) € M. Note that it follows from Hypotheses 1(5) of [8] that
the infimum is achieved in the construction (2) for V - see section 2.1.2 of [3].
Note also that the definition of a feedback control i on Q) (see e.g. the discussion
after Theorem 4.2 of [5]) requires for all z € Q the ezistence of a solution &(t)
to the differential equation = = f + gi(z), z(0) = z € Q such that Z(t) stays
inside ) for all t and satisfies the terminal conditions - which in this case are
2(t) — 0 as t — oo0. The next hypothesis addresses this issue. The argument
which follows will show that such a solution exists for all initial conditions
lying, not inside , but inside the largest level set of V contained within (1.

Hypotheses 2 Suppose that for all z € Q and for all y such that (z,y) € M
the following tnequality holds true

(v~ 9)7o(@)r @) @)y ~ 9) + 377 ()T ()9 + 557 a(z)e > 0

where (z,9) is the point on M at which S(z,y) achieves its minimum value
over all y such that (z,y) € M. I have some evidence to indicate that this
hypothesis might be true for a sufficiently interesting number of cases. Firstly,
it clearly holds when M is single sheeted over state space - i.e. in the classical
case. Secondly, in the paper [7], a similar inequality was computed along optimal
control trajectories for a simulated inverted pendulum and was found to hold.
However, this was a numerical simulation in which the inequality was evaluated
at a sample of points which were estimated to lie on the stable manifold M. An
analytic ezpression for M was not available. It would be interesting to test this
inequality on an ezample where M can be identified analytically - for instance
Ezample 4.1.1 of [3].

Given these two assumptions we now outline the argument to show that
V(z) > V(z) and that the feedback defined by (5) is the optimal control. As
promised in the conjecture above, we start by showing that the feedback control
(5) gives an asymptotically stable solution which stays inside the largest level
set of V contained within Q.

Let p € D™V, the subdifferential of V, and consider the following expression

pf +pgr g7 . (6)

By Proposition 3 or Theorem 4 of [8], V is Lipschitz. It follows from [6] that,
D~V C 8V, the generalised gradient of V. Then, it is shown in the proof of




Theorem 3 of [3] that for a Lipschitz V' defined by (2), 8V C co{-y : (z,3) € M}
where co denotes the convex hull. Since the expression (6) is convex in p,

pf+pgr~lgTi < max {-yf—ygr—¢"§}

yi(z,y)EM
i.e.
-1.T~ = —1 T~ -
—pf — pgr 2  min + ygr . 7
pf —pgr—'9" i {yf+ygr—g" 7} (7)

Now, by Hypothesis 1(2) of [8], H(z,y) = 0 for all (z,y) € M. In this case,

1 1
H(I:T”) = méﬂi {yf+ygu+ E:L‘q:c — §uru}

Il

yf+ éygr”gTy - %ﬂrqz
= 0O

Then from (7),

1 1

e -1,Ts ~ : e = W -1, Ts , +
pf—pgr—g 4§ 2 y:(ffﬁffw{ V9T g Y TygrT g y+2:cq;t}
=  win_ d—ily—ifer Yty —§)+ =7
yi(z,v)EM 2 2

> 0

L1
T gr=1gTy5 + §ITQI}

by Hypothesis 2. Now let #(¢) denote the solution to z = f + gr~1g7 ¢, z(0) =
z € Q. Then by Theorem I1.14 of [2],

~V(&(t)) +V(z) >0

ie. V is strictly decreasing along trajectories of &£ = f + gr~'g¥§ which
start in Q. Since, by Hypothesis 1, V(z) > 0 for all z # 0 in §, it follows
that & = r~1g7§ gives an asymptotically stable feedback control within the
largest sublevel set of V' contained within €. In other words, denote the set
{zeR*:V(z) <c} by V., and let ¢* = sup{c>0:V, C§}. By consider-
ing the linearisation of (1) at the origin, it can be seen that ¢* > (0. Then
@ = r~1gT gives an asymptotically stable feedback control for all initial points
z = z(0) lying within the set V. C Q1.

Finally we outline the steps required to show that V(z) > V(z) and that
@ =r~1gT§ achieves the infimum in (4). To start with, let zg € Q and consider
the point (zg,%g) € M at which S(zg,y) achieves its minimum over all y such
that (zo.y) € M. Recall from above that we are assuming dimM < 2. If
dimM = 1 then by Proposition 3 of 8], the projection 7 from M onto state
space is non-singular at (zg, o). If dimM = 2 then by Theorems 4 and 5 of (8],
7 is either non-singular at (zg, %g) or (o, Jo) is a singular point of type Aj - see
Section 4 of [8] for a discussion of the classification of singularities of projections
of low dimensional Lagrangian manifolds onto state space.

If 7 is non-singular at (zg,Jo) then the vector of state variables zy forms a
canonical coordinate chart for M in a neighbourhood of (zg,%0) - i.e. if dimM =
1 then =z is the coordinate on M and if dimM = 2 then (zo, , zo,) are the coordi-
nates on M. Then there exists a smooth generating function G(z) for M defined



in a ball Bs(zo) such that the set W = {(z,7) : = € Bs(z0),§ = 8G(z)/0z} de-
fines a neighbourhood of (z,o) on M. Furthermore, in W, S(z,§) = G(z).
Now suppose that by taking W small enough, we can assume that each (z.9) &
W is the point at which S(z,y) achieves its minimum over all y such that
(z,y) € M. Then, using the fact that S is defined on M as the solution to
dS = —ydz, we get that for z € Bs(zo),

t

V(z) = S(z,9) = G(x) = —.[U jdz + V(zo)

where the integral is taken along any trajectory in Bs(zq) connecting zg and
¢ = z(t) and where (z(t),§(z(t))) € W is the corresponding trajectory on M.

Suppose, on the other hand, that no matter how small we take W, it is not
true that each (z,§) € W is the point at which S(z, y) achieves its minimum over
all y such that (z,y) € M. Then (zo,%o) is a point at which the minimising
y jumps from one branch of M to another. So there exists a set of points
(zo,53) € M, i € I which all project onto zo and at each of which S achieves
its minimum value over zo. Again, it is shown in the proof of Theorem 4 of [8]
that 7 must be non-singular at each of these points. Then, as above, for each
(zo, §5) we have a neighbourhood Bg:(zo) in state space, a neighbourhood wt
on the corresponding branch of M and an associated generating function G for
that branch of M.

GAP IN THE ARGUMENT (1): we assume that an appropriate an-
alytical argument can be constructed to show the existence of a ball Bs (zo) C
B;:(zo) for all i such that for any z € Bs(zo), we can chose the appropriate
branch of M on which

t

V(z) = §(z,§") = G¥(x) = —/U §idz + V (zo)

holds true where again the integral is taken along any trajectory in Bs(za)
connecting zo and z = z(t) and where (x(t), §*(z(t))) € W* is the corresponding
trajectory of minimising points for S on M.

Lastly, if (zg, §ig) is a singular point of type Az, then by the proof of Theorem
4 of [8], for some § > 0 the minimising point for S over all z € Bs(zp) lies on
the same branch of M as (zo,o). Note, the singularity in M at (z0,%0) is
tuck. So, given two points z; and zz in Bs(zo)\{zo}, it is possible that each
of the corresponding minimising points for S can lie on the same branch of M
as (zg, 7o), while they lie on different branches with respect to one another.
Also, by inspection of the canonical generating function for the branch of M
corresponding to a singularity of type As, we see that V' is Lipschitz in Bs(zo)-

GAP IN THE ARGUMENT (2): we assume that an appropriate ana-
lytical argument can be constructed to show that, for any = € Bs(zo),

Viz) = S(:r,zf) =Gi(z) = —/0 §tdz + V(zo)

holds true where again the integral is taken along any trajectory in Bs(zp)
connecting zo and z = z(t) and where (z(t),7*(z(t))) € W* is the correspond-
ing trajectory of minimising points for S on M. As mentioned above, given
that (zo,90) is 2 type As singularity, then a minimising point for S over = €

on




Bjs(xp)\{zo} can jump from one branch of M to another. So, as with the pre-
vious case, the argument involves piecing together trajectories of minimising
points for S on different branches of M. However, here things are simpler be-
cause we know from the particular form of the generating function for an As
singularity that there that are only two branches to consider.

So, in all three cases we get the same local relationship for V(z Now, apply
this relationship along the particular trajectory which solves £ = f + gr“l g 7,
z(0) = zo. Take ¢ small enough to ensure that z(t) € Bs(zo). Then, using the
fact that

1
H(z,y) =yf + yg?" gy —5eqe =0
for all (z,y) € M, we get that
Vz(t)) = / gzdt + V (zo)
= -/ f+dgr—tg y) dt + V (zp)
= / zg:,: + ggr~ gT@') dt + V(zo)
= —f 5 (zgz + Grd) dt + V(zq)
0
GAP IN THE ARGUMENT (3): we know from above that the solution
to © = f+ gt for all initial conitions z(0) = zg € V.- C Q stays in V- and tends
to 0 as t — co. We assume that an analytical argument can be constructed to

prove that, along the solution z(t) to £ = f + g4, z(0) = zo, the above local
neighbourhood expressions for V (z(t)) can be pieced together to give

—V(:n(t))JrV(zg):/D %(mqa:—kﬂrﬂ) dt

for all £ > 0. Then, since z(t) — 0 as t — oo, it follows that

t
V(zo) = sup] . (zqz + 4ri) dt.
t Jo 2

Hence, for all z € V.- C §,
- tq
V(z) = V(z) = inf sup ] ! (age +uru)dt
u t 0

and the infimum is achieved by the feedback control 4(z) = r~1(z)g” (z)d,
where (z,9) is the point on M at which S(z,y) achieves its minimum value over
all y such that (z,y) € M.

In other words, on the subset V-of Q, 4 = r—1gT{ is the optimal feedback
control for the problem defined in (1) - subject to Hypotheses 1 and 2 being
satisfied and the above three gaps in the argument being successfully filled. This
is the conjecture put forward in this note.
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