The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of An Online Support Vector Learning Method.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/84343/

Monograph:

Drezet, Pierre.M.L. and Harrison, R.F. (2000) An Online Support Vector Learning Method.
UNSPECIFIED. ACSE Research Report 771 . Department of Automatic Control and
Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

An online support vector learning method
Pierre M. L. Drezet and Robert F. Harrison

. Department of Automatic Control and Systems Engineering
University of Sheffield
Mappin Street, Sheffield, UK, S1 3JD

Research Report: 771

June 21, 2000

Abstract

An online iterative implementation of support vector(SV) learning is pre-
sented. The method converges to the SV solution for batch data and results
in a minimal support vector set. For the online case, convergence to the
SV solution holds for stationary data, and additional automatic methods to
control regularisation are demonstrated. For online applications, methods to
bound the number of support vectors in an optimal manner are described.
Demonstrations of the method for large data set discrimination and the pre-
diction of chaotic dynamic systems and are included.

o e T N

—

g

o i

9715

it

1 Introduction

Support Vector Machines (SVMs) are a group of related methods in a com-
mon frame-work for inductive learning. Classification and regression can be
carried out within this frame-work, based on utilising training vectors to
span the feature space of the approximation function. The description of a
function’s input space as a 'feature space’ comes about because non-linear
mappings of input patterns into a higher dimensional space are used to gen-
eralise the linearity assumptions that form the basis of the support vector
(SV) frame-work.

SV methods use support vectors to build a data-dependent representation
of a vector of weights as for those in single layer feed-forward linear networks.
This representation involves only dot products of training vectors and per-
mits the replacement of these terms by kernel functions, allowing non-linear
functions of input patterns to be represented by higher dimensional linear
functions.

The cost function usually optimised in SV learning includes a regularisa-
tion term in addition to the application dependent training error cost, £(e),
where €; = y; — f(z:).

J(@) = [[8] + Ce(e) (1)

||0]| is the l; norm of the weight vector associated with each input feature.
For classification the error cost is chosen to be insensitive to pattern vectors
that are classified with a comfortable margin, which when combined with
regularisation gives the optimal margin. Labeling target values, y € —1,1
gives an error function.

B} == { y;e; for y;e; > 0 2)

0 otherwise

A similar discontinuous error cost is conventionally used for regression,
this being Vapnik’s e-insensitive error loss.

= { lei] — e for |e;| > € (3)

0 otherwise

where |e| is the /; magnitude of the prediction error.

These discontinuous loss functions require constrained optimisation meth-
ods to be used, resulting in Karush-Khun-Tucker (KKT) conditions in the
optimisation. These conditions provide a means for the dual formulation to
yield a sparse solution. Without such constraint conditions the (often) semi-

definite cost objective leads to a particular solution expanded on all training
vectors.

These types of error loss functions are not, however, optimal for many
types of noise distributions encountered in empirical data, but do have some
robust properties [13, 10]. The KKT conditions result in each training vector
that causes non-zero error functions to be included in the support vector set. |
A draw-back of this criterion is that the support vector set becomes over-
specified, and the temptation for the practitioner is to choose values of C
and e to control the number of support vectors to a manageable size at the
expense of predictive performance. For the case of regression it is normally
desirable to set € to zero so that undue bias in the model is avoided, but this
results in all training vectors becoming support vectors.

Sparsity controlled formulations [3, 5, 4] of the generic SVM objectives
can be used to optimise the number of support vectors that result, but these
are still based on constrained quadratic optimisation of batch training data,
and are not therefore, practical for online applications.

The training method presented here is based on the simple iterative
method of gradient descent - a generalisation of the ADALINE for non-linear
problems. The Kernel-ADALINFE [6] minimimises the continuous cost func-
tion of least squares error loss, computed in a variable space of support vector
multipliers, but simultaneously optimises equation 1 in the larger variable
space of w. This direct algorithm is, however, unsuitable for online purposes
because there is no sparsity in the resulting support vector set, the entire
training set is required by the approximation function. A related method,
the Kernel-ADATRON (8], for classification uses gradient descent with an
additional update rule that constrains variable updates and converges to give
a similar support vector set to the SV method. Again this is not readily suit-
able for on-line applications as it is intended for use with multiple training
data presentations to compact the support vector set. ‘

Our adaptation of gradient descent for online applications uses the prop-
erty of the linear feature space that is induced by the kernel functions, where
a linearly independent support vector set is constructed. Each vector is se-
quentially projected on to the existing set of training vectors and its update
value is apportioned among the existing SV multipliers. The technique for
calculating projections in feature space is that of the set reduction algorithm
[7], where the linearity of the feature space is calculated by exploitation of
the kernel correlation matriz.

Details of the kernel-ADALINE are reviewed in section 2, and the set
reduction algorithm in section 3. Some benchmark examples and adaptive
filtering applications are given in section 7.

2 Kernel-ADALINE

The kernel-ADALINE [6] attempts to solve regression problems in a similar
fashion to the ADALINE, i.e. to find iteratively a linear model with the least
squares error. Simply minimising the training error, where a nonlinear model
is used, leads to over-fitting and hence a regularisation term is recommended
to control complexity in the model. A popular method of regularisation in
iterative linear learning methods is weight decay, which when formulated as
in equation 4 leads to Ridge Regression, [9] where the I, norm of the weight
vector 0 is included as a cost.

tﬁnew — (1 = T?P)'Lﬁold =it ?’]fiei (4)
and e; is the prediction error
€ = Yi— < Wola, T; > ' (5)

For this linear modeling technique the cost function is similar to the SV
cost function, equation 1, where a squared error cost is chosen for £. By
inspection of equation 4 it is noted that the weight vector can be written as
a linear combination of training vectors.

I
= oyT; (6)
i

Generalising the iterative process (4) for nonlinear approximation functions is
possible by substitution of the weight terms with this data-dependent weight
representation, (6), and substituting Mercer kernels [13] to represent the
dot product. The kernel function now represents a dot-product in a Hilbert
space, [1, mapped into by a non-linear operator gﬁ:

{ l o .
Do d(@;) = (1—np) Y asB(z;) + nd(:)e: (7)

a=l =1

which by manipulation leads to 2

o (1 —np)a + ne; (8)

A bias term is not included for simplicity. A constant term can be augmented to 5(:35),
or a separate bias update used where regulansatlon of this variable is not desired.

*This is just one possible formulation if qb(:cz) is not linearly independent for all i,
leading to min. norm solution

This update does not include any direct reference to the nonlinear mapping,
¢, apart from the calculation of the error, e, where a dot product form
suitable for substitution with a kernel function, K, is found,

(@) = <Thoaid(@)), 6(3) > (9)
= Yy < d(F), (&) > (10)
T @ K(Z4,5) (11)

The kernel ADALINE algorithm thus requires a prediction to be made for
each training vector, ; ;, and a simple update of a;. The training data is
then re-presented as many times as necessary for convergence. Efficiency
considerations suggest a cache matrix of kernel function values calculated for
all 1, 7, to avoid repetitive kernel calculations. The resulting approximation
function is thus a linear combination of all training examples in feature space,
and as such, at each iteration, all training points must be known.

3 Set-Reduction

A method to reduce the resulting number of support vectors which has been
applied to SVMs using the conventional dual formulation, and as we have
seen, would be particularly applicable to the kernel ADALINE, is the set-
reduction algorithm [7, 11]. This post-training process attempts to remove
redundancy in the support vector set by looking to the feature space for
linear dependency of support vectors. Direct reference to the feature space,
H is avoided as usual by the application of Mercer kernels. The concept is
as follows using the notation Z = 5(:?:') to represent vectors in feature space,
H, of dimension m.

1. Choose an un-tested support vector Zi.; and attempt to solve the si-
multaneous equation to find multipliers m; for the remaining support
vectors z; ;1 °

miz11 + MaZan + + M_1Zi11 = Ttestl
miziz2 + MaZz2 + ... + M_12il_12 = Tiest2
(12)
EE + + =
.
myzyp + MmaZyp S PR Mmi—1zZi—1p = Tiestp

2. If a solution exists then update each support vector multiplier o; with
mM;Qes Tepeat from 1 and remove the support vector Tyes:.

3The system of equations will not necessarilly be unique for the post processing set
reduction algorithm, however, any particular solution will do.

To implement this concept, the linearity of the dot-product Mercer kernel
substitution allows us to write the following feature space correlation matrix.

= 2 - _
my <Z],§1 > 4+ mp <z > s Moy < 21,201 2 = < 21, Zest >
s — — — e
my < 21,22 > + Ma< 22,22> ... M1 < 23,211 > = < 23, Ztest >
-+ 2 : : =
my < 21,2, > + Ma<22,Z> ... M1 < 21,3 > = < Zp, Zest >
(13)

The multipliers, m;, can be found from this re-formulated linear set of
equations using pivoting techniques. The feature space dimension, m, is often
greater than the number of training vectors, [, and a solution of the systems
12 or 13 may not exist, hence the full set of training vectors must be retained.
In practice however many of the support vectors will be approximately co-
linear and the pivoting process can be assumed to give a satisfactory result
even if a small residual pivot value remains.

4 Online SVM Algorithm

The online algorithm uses the gradient descent update rule to calculate o,
and uses an efficient on-line set reduction algorithm to maintain a compact
set of support vectors of number [. An outline of the algorithm for each new
example vector Zpe, 1s:

1. Calculate multiplier update, aye, using equation 8§,

2. Perform weight decay in all other «;,

3. Augment support vector set with new example vector: x = [X Tpew],
4. Produce kernel correlation matrix K = {K(Z;,Z;) fori,7 = 1,...,(},

5. Try to solve for m in equations 13, where the new vector Z,., is the
test vector Zieq,

6. If no solution, add training vector Z,., to SV set and multiplier ayey
to a , otherwise update all existing o; by adding m;aew.

The steps 4 and 5 involve many repetitive calculations that can be re-
moved from the algorithm. In step 4 the kernel matrix need only be re-
calculated for K (&, Znew), ¢ = 1,...,[, i.e. [kernel function operations per
training vector. Step 5 can be optimised by storing the kernel matrix in
triangular form, such that only the additional row of / matrix elements is

6

eliminated during pivoting. A row manipulation history of pivot values can
be stored in the zero part of the triangular matrix so that the additional
column of kernel functions involving Z,.., is also transformed into the trian-
gular representation. The solution to the problem of calculating m from the
triangular matrix is finally obtained by back substitution. The incremen-
tal triangulation procedure requires the number of pivoting computations
to grow quadratically with the number of support vectors, rather than as a
cubic function. Details of the optimised algorithm are found in the appendix.

For dichotomising, the a update can be simply adjusted by substituting e;
in equation 8 for £(e;) from equation 2. This partially insensitive error update
results in many of the error costs equaling zero, and hence the steps 3 to 6
can be ignored leading to increased computational efficiency. Insensitivity to
training vectors that are classified with a large margin allows convergence to
the SVM classifier cost function where only borderline training vectors are
considered. Near convergence, the training vectors that create a non-zero
update value are the same as those that are included in the support vector
set of conventional SVMs. The support vector set of the online algorithm is
of course different because additional criteria is used to choose which training
vectors each update is shared amongst.

5 Parameter tuning

The parameters of the online method are learning rate, weight decay rate,
and kernel parameter. Methods of controlling the learning rate, 7, can be
borrowed directly from other on-line techniques, but care must be taken that
the the duality of weight decay in @ and w space is maintained. The weight
decay parameter, p, can also be regulated on-line by use of new vectors as
validation data, on the assumption that the training data is not re-presented.
A method to adjust the weight decay parameter relies on measurement of
prediction bias, estimated by the correlation of error and target y;.

Vi = yie (14)

A bound for an unbiased, unregularised, prediction function is ¢ = 0, where
the notation Z represents the mean value. The other extreme for over regu-
larisation, ||w|| — 0 is 3 — y?. From this rationale the level of regularisation
can be controlled to maintain the bias close to zero,

p*(—p——%é (15)
y

subject to 0 < p < 1 to maintain valid ranges of p. y? and 1 are average val-
ues that may be taken over a recent window of time or a more computationally
efficient moving average approximation. The y? term normalises the update
between the extreme condition where |[w|| = 0 and p should be updated by
the maximum increment § to towards zero. This update rule assumes abso-
lute precision is a requirement as a consequence of 1) = 0, and regularisation
will only increase as a result of random perturbation of ¢ < 0. Knowledge of
the amount of noise present in the sample data and the required prediction
precision, often however, allows for increased regularisation to decrease error
variance.

In non-stationary environments, weight decay regularisation has a more
complex role. Weight decay effects the long term memory of the model,
introducing bias toward learning more recent system behaviour. Adaptive
filtering methods often refer to the rate of weight decay as the forgetting
factor. This on-line regularisation has an opposing effect to that in the sense
of batch data where local specialisation is a preferably avoided. batch SV
methods use regularisation specifically to avoid specialisation, but here in
the online case the same type of regularisation has the opposite effect. Local
specialisation is often desirable for non-stationary systems and exaggerated
regularisation may be appealing to enhance the rate of adaptation to real-
time variations.

To generalise the equation 15 for over-regularisation a parameter # can
be introduced,

P<=p—(%—ﬁ)5 (16)
subject to 0 < p < 1, and where 0 < 8 < 1 would be nominal values.

It is convenient to control the dynamic of ¢ and y2 by a moving average
estimate. The time constant of this average and the update gain 8, defines the
dynamic of the regularisation process. Short time constants allow the system
to forget learned behaviour quickly. The applicability of very long time con-
stants is not obvious, because regularisation will only come into effect after
considerable data has been learned and the requirement for regularisation is
lost. The intermediate stage can be considered as requiring regularisation
for the same reasons as for batch data, to minimise the weight norm where
insufficient training data has been presented. The update rule automatically
decreases weight decay at very early stages of training where regularisation
is automatic, assuming values of « are initially zero.

6 Omnline SV set control

Online applications of this method have the drawback that where kernel
functions such as Gaussians are used, the feature space dimension is infinite.
Consequently there is theoretically no bound on the number of support vec-
tors that may be required *, and this may lead to computational problems
of storage even if an artificially low numerical precision, is used to select the
most diverse SVs. The options to limit the size of the SV set are:

1. Stop including new support vectors at some limit, and update existing
parameters, «, by sharing approximately.

2. Where some upper limit is reached, exchange new SVs with ones with
the lowest value of o, (excluding recently introduced SVs).[12]

3. Maintain a record of the smallest angle (or max cosine) each new SV,

Znew, makes in feature space with any other, Z;, i.e. max (“i.z"—“m;?—n)
“new T

When some upper limit is reached, new support vectors are exchanged

for the most dependent existing vector.

Option 1 is unappealing in most online applications because stationarity is
assumed. The second option depends on the usage of the support vector. An
assumption of this method is that the lowest values of «; have least contribu-
tion to the approximation function, which is not always appropriate because
the associated support vector may yield large dot products. The last option,
3, attempts to maintain an SV set that has the most independent spanning
set in feature space. These angles can be calculated using kernel functions
and stored for each support vector. This last option is most appealing from
a theoretical point of view because a near optimal set of support vectors
is maintained. In practice, however, the addition of a usage factor such as
option 2 helps remove support vectors that are independent but ’outlying’
because of input space noise. For options 2 & 3 there is an additional com-
putational burden for exchanging support vectors because of triangulation
during pivoting. As a result the cache matrix must be re-triangulated from
whichever row the support vector was removed from, each time an SV is
exchanged.

This substitution method 2 could also be used to find a near orthogonal
basis in feature space. The procedure would requires the data distribution
to be sufficiently dense in feature space that a near orthogonal set exists
amongst the examples. A full basis for the feature sapce would obviously
require many more training examples then the dimension of feature space.

*Numerical precision and data distribution are factors that determine the number of
support vectos in practice

7 Examples

7.1 Driven pendulum: On-line

The chaotic behaviour of a pendulum being forced by a sufficiently large
torque signal, u, has been simulated to show the improved tracking capabil-
ities of a nonlinear adaptive filter compared to the linear case. The system
to be predicted is given by the differential equation

0 +0.050 + 9.85in® = u (17)

The measured value to be predicted is the angular velocity. Figure 7.1 shows
an interval where the dynamic behaviour changes as the periodic behaviour
changes during full rotations. In comparison to the nonlinear adaptive filter,
a linear adaptive filter is demonstrated on the same data interval. The linear
filter uses an equivalent LMS update rule to the nonlinear filter, but only for
linear terms i.e.

U_jnew = 1?)'0155 + nfe (18)

where e is the prediction error defined as in equation 5. Both filters use
100 time lagged samples with 1 second interval. The learning rate n is the
highest value that maintained stability. The kernel chosen for the online
algorithm is a 3,4 order polynomial (1+ < &,y >)°.

The prediction of the linear filter is seen to take longer to re-converge at
points where dynamic behaviour changes rapidly, even with the maximum
step length update. In comparison, the nonlinear filter adapts rapidly to
the new dynamic properties. This property may be a result of a non-linear
adaptive model converging close to a global non-linear model rather than the
local linear models of LMS, and adaptation to new behaviour resulting from
numerical sensitivity is therefore rapid.

7.2 Large data sets: Off-line

To demonstrate the computational abilities of the online SVM when learning
a large batch of classification data, two examples have been chosen: One
example is a large scale, but easy, synthetic problem and the other is a hard
problem from real world data. The on-line algorithm was implemented in
the C language and compiled with gee [1].

7.2.1 Low dimensional synthetic problem

A two dimensional, two class, and overlapping Gaussian distributed pattern
space consisting of 120,000 samples was generated. The distribution and

10

Driven Pedulum prediction of linear filter
T

T

—— prediction
— measured

'
900

a50

800

750

samples

Driven Pedulum, prediction of Nanlinear filter

prediction
— measured

fiaojan JepnBuy

700

fyoopan sepnbuy

900

850

800

750

700

samples

Figure 1: 10 step ahead prediction of pendulum angular velocity using linear

(top) and nonlinear (bottom) adaptive filter

11

3rd order polynomial decision boundary

-3

-4
b

Figure 2: Synthetic 2-class pattern space. 120,000 training examples (equal
numbers of each class).

resulting decision boundary of the online SVM is shown in figure 2.

The on-line algorithm tool completed in less than 30 seconds on a SUN
micro-computers 160MHz Sparc Ultra-1 and required less than 10 Kbytes
of RAM. The resulting decision boundary overlaps the theoretical optimal
boundary shown in figure 2 This problem, though simple, would require a
quadratic programming problem of 120,000 variables when solved by conven-
tional SVM formulations. The kernel used was 3¢ order polynomial of the
form, (1+ < z,y >)?, and so for the two dimensional problem the feature
space dimension was limited to 10, hence only 10 support vectors are re-
quired. This small number of SVs is responsible for the small computational
requirements of the algorithm.

7.2.2 High dimensional real problem

Optical character recognition benchmark data from the MNIST database has
been chosen for a large scale, large dimensional problem [2]. The data set
consists of 60,000 images of the numbers 0,...,9 in 28 by 28 pixel format.
The images in the database are already centered and normalised and are used
directly as the pattern space of the classifier. In this report we consider only
the binary classification problem of 1 character from the remaining 9 digits,

12

SVs | Computation time | Overall(%) | Sensitivity(%) | Specificity (%)
139 40 mins. 97.8 82.8 91.2

Table 1: Results for MNIST Optical hand written character recognition data
set

namely the number 5. The emphasis of this preliminary benchmark test is on
the computational effort rather than the exact final test set performance. The
number of support vectors was restricted to 1024, and a 3¢ order polynomial
kernel was used which gives a feature space dimension of 1.8 x 10°. Memory
requirements were 16MBytes (8 byte floating point format) on the above
machine.

The resulting predictive error for the test set is comparable with other
results [2]. The computation time can be seen to be sensitive to the number
of support vectors allowed. This data set will be fully explored with a multi-
class online algorithm in forthcoming work.

8 Conclusions

The online SV method is a simple self organising adaptive nonlinear filter. It
has many of the advantages of linear adaptive filters such as convexity and
stability, and also properties of highly nonlinear processes such as self organ-
isation and optimisation of nonlinear functions. The adaptive system is also
capable of batch training, providing conventional SV results, but often result-
ing in a sparser SV set. The algorithm is simply adapted for dichotomising
functions and results in increased learning efficiency over the regression al-
gorithm. The iterative nature of the learning procedure is similar to many
other neural network approaches where useful techniques such as early stop-
ping using validation data can be applied.

The online algorithm used for batch data learning is highly efficient in
problems where the number of SVs is much smaller than the number of
training examples because of the large decrease in the number of optimisation
variables. The computation time is quadraticaly sensitive to the absolute
number of support vectors, but the smaller memory requirements (compared
to other SVM and kernel ADALINE, ADATRON) make the online method
highly competitive in terms of computational effort.

13

A Detailed optimised online algorithm

The algorithm for each new example vector

L

S

|51 S ~N

10

o ek

13.
14.
15.
16.

I7
18

19.
20.
2L

22,

if |z| = 0 ignore and go to next
. Calculate error: e = f(z) —y
. Calculate update: u = ne

. Augment H with K(z;, &)

. LOOP (7) through all but the last row of H

END LOOP
. END LOOP (new column of H

. LOOP (7) through all but the last row of H

Find pivot: p=Hy ;/H;;

END LOOP

. END LOOP (H is now re-triangulated)

. IF last row of triangulated matrix=0 (new vector is dependent)

LOOP (i) from beginning of row j to j'* column of H

Update new element of column 7, H;; = H;; — H;; H;_;,

is fixed)

Do weight decay: SV(j7)= (1 —np)SV(j)
LOOP (k) from j;h to end of 7" column of H

Triangulate vectors: Hy; ;= Hy 1.5 — pH; 1.

Store pivot value H;;_; = p.

LOOP (7) through triangular matrix

LOOP (j) from last row of triangulated matrix to i** row
Subtract knowns from last colum:n H;_;; = H;_;;—m;H,_;;_;
END LOOP

14

23. Calculate adjustment: m; = Hy_;;/H;_;,;

24. Update multipliers: oy—; = oq—; + msu
25. END LOOP (new update has been shared out)

26. Remove example vector from support vector set.
27. ELSE
28. Leave new support vector and augment & with w.

29. END IF (new support vector added)

B [2 weight norm and the prediction bias

For a fractional decrease in ||w||3 using weight decay in an iterative update
rule @ < (1 — p)w, the approximation function f(#) =< @, > is reduced
in magnitude, as a result of dot product linearity.

References

[1] http://www.gnu.org/software/software.html.
[2] http://www.kernel-machines.org/.

[3] P. Drezet and R. F. Harrison. Directly optimised support vector ma-
chines for classification and regression. Research Report 716, University
of Sheffield, Dpt. Automatic Control & Systems Engineering, 1998.

[4] P. Drezet and R. F. Harrison. An efficient formulation of sparsity control

support vector machines. In Proceedings, 7th European Symposium of
Artificial Neural Networks, pages 207-212. Elsevier, April 1999.

[5] P. Drezet and R. F. Harrison. Sparsity controlled support vector ma-
chines. Pattern Recognition, In Press.

[6] T-T. FrieB and R.F. Harrison. The kernel adaline: A new algorithm
for non-linear signal processing and regression. Research Report 731,

University of Sheflield, Dpt. Automatic Control & Systems Engineering,
1998.

15

[7]

8]

[12]

13]

T-T. FrieB and R.F. Harrison. Linear programming support vector ma-
chines for pattern classification and regression estimation; and the sr
algorithm: Improving speed and tightness of VC bounds in SV algo-

rithms. Research Report 706, University of Sheffield, Dpt. Automatic

Control & Systems Engineering, 1998.

T-T. FrieB and R.F. Harrison. Support vector neural networks. Research
Report 725, University of Sheffield, Dpt. Automatic Control & Systems
Engineering, 1998.

A. E. Hoerl and R. W. Kennard. Ridge regression: biased estimation
for nonorthogonal problems. Technometrics, 12:55-67, 1970.

P. Huber. Robust estimation of location parameter. Annals of Mathe-
matical Statistics, 1(20), 1964.

B. Scholkopf, S. Mika, C.J.C. Burges, P. Knirsch, K.-R. Miiller,
G. Ratsch, and A. Smola. Input space vs. feature space in kernel-
based methods. [EELE Transactions on Neural Networks, 10(5):1000-
1017, 1999.

J. A. K. Suykens, L. Lukas, and J. Vandewalle. Sparse least squares sup-
port vector machine classifiers. In ESANN’2000 European Symposium
on Artificial Neural Networks, pages 37-42, 2000.

V. N. Vapnik. The nature of statistical learning theory. Springer-Verlag
New York, 1995.

16

