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Abstract

This paper presents new results that use step response data to produce sufficient
conditions to guarantee the stability of the closed loop system in Generalised
Predictive Control (GPC). The analysis produces easily checked conditions that
provide considerable insight into the effect of parameters such as prediction horizons
and control weightings on stability characteristics.
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Abstract

This paper presents new results that use step response data to produce sufficient conditions
to guarantee the stability of the closed loop system in Generalized Predictive Control
(GPC). The analysis produces easily checked conditions that provide considerable insight
into the effect of parameters such as prediction horizons and control weightings on stability

characteristics.




1.0 Introduction

Stability is not only important in the design of dynamic systems. but also in the design of
all control systems. Although most people have an intuitive feeling as to what stability
means, the concept is very subtle and rigorous definitions are necessary. In this paper, the
stability of Generalized Predictive Control (GPC) is considered by obtaining the sufficient

conditions for the roots of the closed-loop characteristic equation to lie inside the unit

circle.

In spite of the fact that extensive research has been conducted into the GPC technique,
there is no clear theory to guarantee the closed loop stability in terms of GPC tuning
parameters. Since the first appearance of the GPC algorithm in 1987 few researchers have
tackled this problem. The first trial was made by Clarke et al (1987), where the stability
problem was approximated, under certain conditions, to the state space LQ controller.
Later, using results in state space theory of Kwon and Pearson (1975), some stability
results were presented (Clarke and Scattolini 1991 and Mosca and Zhang 1992). However,
the most significant contribution can be ascribed to De Nicolao and Scattolini (1994), who
introduced a clear representation for the closed loop system in terms of the impulse
response coefficients. Later, Yoon (1994) used this representation and introduced some
results under certain conditions for the stability of GPC. On the other hand, Zhang (1998)
used the same principle with a different approach and referred to it: as an explicit closed

loop description.

Despite the above, the stability issue and the mystery behind the GPC and how it works
still need further research and analysis. This paper will deal with the GPC stability issue
and try to introduce new results and explain in more detail many relative aspects which
have been avoided by most researchers. Moreover, the results will reveal some facts which

have been left without clear explanation.

2.0 Modelling of the system
The GPC approach is applicable to both single-input/single-output (SISO) and multi;
input/multi-output (MIMO) systems. In general, non-linear models can frequently be

linearised around a particular operating point and described by

A(z7)y() = Bz Hu-1)+C(z™) @) (1)




where v(r) is the output. «(r) is the control sequence, (() is the zero mean white noise. A,

B and C are polynomials in the backward shift operator (;™).

Az =1+aq:z " +a, 27 +ta, 2
B(z")=by +b,z7 +b, 2 4t by 27"

C(z) =14z e,z Hemeees Tl

This model 1s known as a CARMA (Controlled Auto-Regressive and Moving-Average)
model. In industrial applications where the disturbances are non-stationary, an integral
action is more appropriate (Clarke et al, 1987). This will lead to automatic steady state

reference setpoint tracking despite the presence of unmodelled disturbances

[0}
"

Az )y()=B(z u(t-1)+C(z" (2

where A is the differencing operator 1—z™'. This model is known as CARIMA model
(Controlled Auto-Regressive Integrated Moving-Average). For simplicity the C
polynomial is chosen to be 1 or C7'is truncated and absorbed into the A and B

polynomials.

3.0 The optimal prediction
The main idea of GPC is to find a control sequence to minimise the multistage cost

function of the form:

N, N,
J(N,,N,,N,)= 5{25(1)[5’0‘* J1t)=w+ )’ +ZMJ)[AH(I+ j‘l)]z} (3)

j=N, =

where y(t + _}11) is the j-step ahead prediction of the systemon data up to time #, w(t + j)is

the future reference trajectory, E{.} denotes the expectation operator and has been used to
indicate that the control values chosen are calculated conditioned upon the data available
up to and including time ¢ and presuming the stochastic disturbance model. N, N, and N,
are the minimum costing horizon, maximum costing horizon and control horizon;

d(j)andA(j)are weighting function to penalise the emor and the control sequence

respectively.




To minimise the above function the future values of the output v(¢ + j) should be obtained

by performing long division of 1 by AA(z™). In fact, for long control horizon, an
alternative method such as the recursion of the following Diophantine equation can be

used:

1=E,;(z)AG )+ Fi(z™) 4)

where A(z™') = A(z™")A . For a unique solution the degree of the polynomials E; and F;

should be equal to j—1 and n, respectively. From Equation (4), it is clear by dividing 1 by
A(z™"), the polynomial E; is the quotient and the remainder is the factorisation of z /' F T
By multiplying each side in Equation (4) by AE " (zHz’, it is easy to see that the
prediction output could be writteﬁ as (see: Clarke, 1987)
Fe+j|D=F,(z)y®)+G,(z™)Au(t+ j-1) (5)

where G’j(z'l) = EJ,A(Z_I)B({1 ).

For simplicity, N, =LN,=N,=N, 6(j)=1 and A(j)=A. From Equation (5), the
optimal output predictions could be stated as:
(1 +1t) = G,Au(t) + F, (1)

(t+2t) = G, Au(t +1)+ F, (1)

(6)
(t+ NJt)=GyAu(t + N -1)+ F,, ¥(1)
which can be written as:
y=Gu+F(z 7V )yt)+ Gz )Aut-1) o
y=Gu+f
where f is the free response and Gu is the forced response where
y=Be+1n $e+21n - 5¢+N[0f ®

uz[Au(t) Au(t+1) --- Au(t+N—1)]T
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Now the cost function in Equation (3) can be written as:

J=Gu+f-w)"(Gu+f-w)+Au'u )
where
w=[wie+l) wit+2) - wie+N)J (10)

To minimise the J, assuming that there are no constraints in the future so:

u=~G'G+A)'GTf-w) (11)

The first element, Au(z), of the matrix u, will be applied to the system and will be repeated

at every sampling period. In non-adaptive design with a time invariant model, this leads to
a time invariant controller. In general, to reduce the computation needed, it is assumed that
the control signals will be constant after the control horizon. Many algorithms have been
presented to minimise the computation effort by using the Neural networks (Quero et al
1990) and the reaction curve for process modelling (Camacho et al 1995). The stability

results of the above control law are summarised in the following sections.

4.0 Stability with finite maximum prediction horizon
The first theorem presents a description of the closed loop system in terms of the step
response coefficients, which will be the key element in this paper. However, the main

objective of the theorem is to study a popular case in GPC where the control horizon ( N u}

is set to one. Under this condition, the control law will be unique and can be evaluated with

no matrix inversion.




First, it should be mentioned that the step response is one of the simplest mechanisms

which can be used to predict the output of a process. In this paper this mechanism will be

used intensively through the following results. The predicted output is related to the input

by the equation

je+k|n=Y g Aut+k-j)

i=l

(12)

where g, are the sampled output values for the step input and A is the differencing

operator (A =1 z_l) with z ™! the backward shift operator.

Theorem 1

Assume that the open loop system is stable and N, =1, N, =1, N, =N and A(i)=A.

Assume also that the step response coefficients {g;}i-; 2, satisfy

IA

N
D=8y 5~ S Bl zgi(giﬂ —~g 24
=1

and that they satisfy the inequality

N N
Y gi+24>Y gi(g.—g)

i=1 =1

Then the closed loop system is stable.
Proof

By using Equations (11) and (12), the control law can be written as
N
2 8. (f+D)—w(t+1)
Au(t) = - = 3
X&' +A)
i=l

but from the above

N

Y e (fe+i))=g flt+D)+g,f(t+2)+g, f(+N)

i=l

=2, Y gAu(t+1-i)+g, Y g Aut+2-i)+-g, Y g.Au(t+N —i)

i=2 i=3 i=N+l

(13)

(14)

(15)

(16)




From the control law it is clear that

¥

Y g0 +i)
S = . (17)
Qe+ +g e+, Y g +gy gt
= =2 i=3

i=N+l1

For simplicity, let the reference be constant over the prediction horizon N i.e.
o(t+1)=w(t+2)=--w(+ N)=w. By substituting Equation (17) into the system model

¥y =39 ) (18)
)

this leads to

N
BY g.w
() = = = f=i — ‘ — _ (19)
AA{(E gi+A)+g Y gz" +3223g,-z2“+---g,, Zg,.z”"}
i=1 i=2 i= i=N+1

where the characteristic polynomial can be written in the following form

N oo . oo ',-'. oo _r_
=AA{(Eg;+&)+nggiz“'+g:Eg,-Z‘ +ogy 2gz" }
i=1 i=3

i=2

H
i=N+1
H X 2 =1, -2
~ =M A+ (8182 8285 Bn 8 )T +(8183 + 8284t B &uan )T o
i=1
H
A

N N N
= (E1 g +A) +(§‘Tg,-(g,-+1 sl i /1]2." +38(82 —8i)7 0
i= i= i=1

(20)
From Rouche’s theorem (Spiegel, 1964), as A is stable, for all roots to lie in the unit circle
it is sufficient that

N
D8l +A
i=1

>

N
Zgi(gﬂl_gg)_l‘l' s awin
i=1

N
2&(8&2 < Be)
=

(21)

By assumption (Equation (13)), all elements are positive and hence the inequality holds if

N
Yegltil>
i=1

N
ggi(gm—gi)_l‘ (22) v

or




N N
Yei+24>) g.(s.-8) (23)
i=] =1

which completes the proof. 7

Remark: From Equation (23) it can be seen that A is a very influential parameter in the
system stability, where increasing A by a reasonable amount to satisfy the conditions
stated above (Equations (13) and (23)) can lead to the stability of the closed loop system.
Moreover, this theorem is essential in giving an interpretation for the effect of A on the
system performance/robustness. From Equation (15), it is clear that the gain of the control
law increases as A decreases, which in turn improves the performance and diminishes the
robustness. However, it is still worth mentioning that, from Equation (13), the maximum

value of A which can be used in the theorem is bounded by

N

N
)"mxzzgi(gi+l—gj)< BokBin~ 81)
i=1

i=1
8. (Bwsy =8¢ (24)
<g.(g. — @)

It is clear that increasing the maximum prediction horizon can allow larger values of A4 to
be used with guaranteed stability. However, the effect of an infinite maximum prediction

horizon will be investigated in more detail, in the following section.

5.0 Stability with infinite maximum prediction horizon

It is clear that the previous results were looking at a special case where the maximum
prediction horizon is finite. It is worth mentioning that since the use of an infinite costing
horizon has been advocated in the context of GPC leading to GPC™ (Clarke et al 1987,
Bitmead et al 1990 and Scokaert 1994); it has been criticized because it was not considered
as a practical optimization problem. A few years later, Scokaert (1997) used the technique
in the state-space controller (Muske and Rawlings (1993a, b)) as a practical
implementation of GPC™. The first attempt to prove the stability under this condition was
introduced by Clarke et al 1987 in which the state space GPC was approximated to stat§'
space LQ controller. Later, Scokaert et al (1994) introduced different approach by invoking
the monotonicity of the receding horizon cost function, with respect to time. It is obvious

that both analyses did not describe the representation of the closed loop system. Thus, in




this section the effects of setting the prediction horizon to infinity will be considered and

new stability result will be presented using the same approach which is used above.

Theorem 2

Assume the open loop system is stable and N, =1, N, =1, N, =N and A(i))=A . Assume

also that the open-loop system’s step response coefficients satisfy

N
0<8 <8 <8 < <8, 8(8.-g)>4 (25)

i=1

and that 2 g.(g.—g;) converges. Then the closed loop system is stable for all

i=l

sufficiently large values of N.

Proof

As in Theorem 1, for all roots to lie inside the unit circle it is sufficient that

N
ngi-}t

=l

> + P (26)

Zg.-(gm ~ & )—4
=1

N
ng(gH?. _gi+1)
i=l

By the above assumption (Equation 25), all elements are positive and hence the inequality

holds if

Y gl+A|> Eg,-(gm-&)—l‘ (27)
i=1 i=l

or

N N

Y gl+24>) g.(8.-8) (28)

i=1 i=1

The left-hand-side is unbounded as N — e while the right-hand-side is finite by
assumption. The inequality is achieved foe all large enough values of N . This completes
the proof of the result. O

Remark: Theorem 2 has a substantial contribution to the case where N — <o, due to tht::

explicit representation of the closed loop system in terms of the step response coefficients.:

S AT ST S SR O

L S RO

e e

s
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From the above. Theorems 1 and 2 have given sufficient conditions for the stability when
the minimum of the prediction horizon is finite. In the following section a new case will be
addressed, in which the minimum of the prediction horizon has large values.

6.0 Large values of minimum and maximum prediction horizon

In this section the idea of designing a controller with a very large minimum prediction
horizon will be considered. This case was first presented by Yoon et al (1995); however, it
cannot be considered as a precise result due to the approximations which were used in
developing the proof. On the other hand, it did not present the effect of selecting A greater
than zero. Thus. the next theorem will shed some light on the effect of setting the minimum

prediction horizon to a relatively large value.

Theorem 3

Suppose that the open-loop system is stable, N, > N,, N, =1, A>0 and that N, — N is
kept constant. Suppose also that the step response coefficients have the property that

0% gy =S gy S 58, (29)

Then the closed loop system is stable for all large enough valued of N, .

Proof

The control law can be represented as:

N>

Y g (f+i)—wt+1i))

_ =N
Au(t) = 7 (30)

N
where M, = ) g7 +4 (31)

=N,

Equation (30) can be written in the following form

1 1§
AM(l‘)+—ﬂz—{gxlf(t+N])+gN]Hf(HNl +1)+---gN1f(I+N3)]=E2g:—w
1 1 i=N,

oo

I - =i c +1-i
A“(I){l'f"Mr_[gNl EgiZN‘ + 8w ngZNl : T 8w, 2
z )

i=N+1 i=N;+2 i=N>+

Ny—i 1 =
g 2"} =—> g
1

1 i=N,

(32)
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Substituting Equation (32) into Equation (18) leads to the following characteristic

polynomial

H 1 @& IR 2 -
—=1+|(— E A 1 —1i2 +—E A G Bi)Z™ + 33
r {(Ml I=ng¢g 1) :' M, I_:ng.(g. o B (23)

Similar to the above theorems, for stability, it is sufficient that

1 & 1 G
1>(_—— iSi+ =l ot f—= i( i+2 — &ivl /T 34
M”;ggl) M”;ggz 8uxi) (34)
Ny
| M 28’i8i+1
but — = 8,81 =5 ——<1 (35)
1 i=N, Zgr?. +1
i=N,
for N, large and N, — N, constant.
From the assumption g,,, > g, , accordingly, Equation (34) reduces to
1 & 1 &
1>1-(— Lo +— ] 8 36
G g;lg.gm) = ;“g.(gg 3G (36)
This is true if
1 & 1 g
0> ~(== % 8,8)+ == 2,8,(8. = 81u) 37
o igmg,g,l) i ;Mg f B (37)
or
N, N,
nggi >228;’g;+1 , (38)

i=N, =N,

which is true for large N, and N, — N, constant. Therefore the system is stable and this

completes the proof. 0

Remark: The above theorem provides new useful information on the stability of the
closed loop system in the presence of the previous conditions. The advantage of this

theorem is that it has shown that selecting A >0, for large values of N,, still leads to
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F

stable closed loop system. On the other hand, it differs from the one developed by Yoon et
al (1995) in which the control strategy of a stable open loop system was considered to tend

towards a mean-level law. To reach this conclusion, Yoon et al (1995) ignored the

coefficients of the higher order of the shift operator (z™') (see: Equation 33), they

N

considered the differences between g,,,,, and g ,,, in the summation 2 £ 8uea = Big )
i=N;

goes to zero, when N, — oo, which means ignoring any residual errors could appear.

Therefore to avoid this approximation and to prove the closed loop stability, in Theorem 3,

Rouche’s theorem has been used.

In general, Theorems 1, 2 and 3 support the idea of setting the control horizon N, to one

when controlling a stable system and they suggest the possibility of saving computation

time and achieving acceptable performance.

7.0 The effect of prediction horizons on the closed loop poles’ location

Apart from the study presented by Lim et al (1998), the authors have not seen anywhefe in
the literature an attempt to create a link between the GPC parameters and the pole locations
of the closed-loop system. The proposed solution (Lim et al 1998) used the same approach
as the one that was developed by Hang et al (1991) for minimum variance controller,
which involved the use of bilinear transformation to restricts the closed loop poles to a
certain area. However, the effect of the minimum/maximum prediction horizons (N; and
N3) on the pole location has not been investigated yet in the literature. The next theorem
provides a very interesting result about the location of the closed loop poles, using new

approach, which in turn will give an indication about the system performance.

Theorem 4
Suppose that the open loop system is stable, A =0 and that the closed loop polynomial is

written as (see: Theorem 1)

H NZ . NI NZ
— =) 8+ D8 (8 =8+ Y 8 (8rr — gi)T (39)
A gy, =N, i=N,

or as
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E=a+ Y ae, | (40)

where

Na N,
Qg = zg; and a; = zgi(gr+j ~&ija)
i=N,

i=N,

Suppose that the open-loop system’s step response has the monotonic property i.e.
a.f

0<g, <g,., <--<g._ and that there exists a number r such that (=) < r<1 forall j.

%

Regarding N, as a variable and assuming that N, is also varied so that N, — N, remains
constant, then for all €€ (r, 1) there exists k™ 2k such that any N, >k and A=0
results in closed loop stability and all poles of the closed loop system lie inside a circle
l<e.
Proof

aj+

N. N,
Let a‘):zgf, ajzzgi(gi+j—gf+_f—1)' As a, >0, aj>0 and ( 1)<r, then a

=Ny i=N, a;

sufficient condition for no zeros in |z] > £, 18 that

a,>Y a;e”’ (41)
Jj=1
which holds if
= ) a.
a, >a12r’_]8_" as a; = . )---(a—z)a1 42)
j=l i q
ie a, >€" alr =£7 (43)
1-L
E

From the assumption r <& <1 and the above equation can be written in terms of step

response coefficients as

N, N
(E_r)zg,'z >28,-(8,-+;_g,-) (44) v

i=N, i=N, 5
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which is true if g_<eo, N, — N, =constant and very large (N, — o). Thus the closed

loop system is stable and there are no zeros lying inside the circle |:| 2 €, which completes

the proof. == il

Remark: From Theorem 4, it can be deduced that in the presence of the above conditions,
the use of large values of N and N> will move the closed poles to lie inside a circle with
radius £ (less than one) which indicates faster response. The radius of this circle depends
on the values of Ny and N, which means for € close to r, it is clear that N, could be
large. However, for the poles to lie inside a bigger circle with radius € (closer to one)
which means slower response, smaller values of N, can be used to validate Equation (44).
This suggests that increasing N; and N, moves the poles to lie inside a smaller circle closer

to r and vice versa.

8.0 Stability with control horizon greater than or equal to one (N, >1)
The reader’s attention is now brought to a common case in GPC, where the control horizon

is chosen to have values greater than (N, >1). Although the increase in the value of N,
increases the amount of computation required, it is still preferable in most applications, as
it provides better performance with high optimality to the GPC (see: Chapter 5). The
following theorems present new sufficient conditions for stability with a special case of

N, 21. Although the stability of this case has been tackled before (Clark et al 1987,

Clarke and Mohtadi 1989, Kwon and Byun 1989), none of them have dealt with the
problem through an explicit representation of the closed loop system. The stability was
proved by observing that the predictive scheme in question tends to the steady-state LQ
controller for which there is a stability guarantee or by using the monotonicity of the
optimal cost function such as (Rawlings et al 1993 and Yoon et al 1995). It should be
mentioned that the main difficulty of finding a clear expression for the closed loop system

is the presence of the square matrix (N, x N, ) inversion. Thus, the following theorem will

try to approach this problem through certain conditions.

Theorem 5

If Ny=1, (N,-N,+)=N,=N and A=0, then the closed loop is stable and the

control strategy tends to a deadbeat law.
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Proof
As the weighting function A is selected to be equal to zero, the GPC control law can be
written in the following form:

u=—(G'G)" G (¢ -w) (45)
g by

P

As G is a square matrix then for all G:
P=(G"'G)'G"
1 Ty-1 T -1 (46)
=G (G )G =G

where the matrix G is a square matrix consists of the plant’s step responses ( g, ) and it has

the following form

g 0 0 0
& & 0 0

Env Ena T 81 yww

Thus, the control law can be given in the following form

gl Au@) =—g" " (f(t +1) - w(r +1)) @7

Let the reference trajectory be constant over the prediction horizon, Equation (47) can be
written as

g, Au(t) = ..,2 gAu(t+1-i)+w (48)
which can be written

Ly D S (49)

»
g+ gz
=2

Recalling the system transfer function

_ B

50
A(z_l)u(r) (50)

(1)




Consequently, substituting Equation (49) into (50) leads to the
system

Bw

y(t) = —
AA(& +2g1ZH)

From the above, the characteristic polynomial can be written as

i A{gl + igfzrf} =Afg, + g2z + gy}

i=2

o = W <

=g +(g.—8 )" +(gs— 8. )7

If the step response can be written as

yit) = i g Au(t—1)
i=1

16

following closed loop

(1)

(52)

(33)

Thus the relation between the step responses and plant transfer function can be written as

Bz g 5 4
Ag_l; =82 l+(g2_g1)z -+(33"32)Z o

H g -
'Z':g] +(33_31)Z 1'*'(8'3 _gz)z T

By comparing Equations (54) and (55), it can be found that
H(zz" _B(z™)
Az™") AT

Therefore it is clear that

Bz =B

By recalling the closed loop transfer function Equation (51),

B
y(t) = - o(r)
AA(gl +Z&-ZHJ

(54)

But, from Equation (52), the closed loop characteristic polynomial can be written as

(35)

(56)

(57)

(58)




and substituting from Equation (57)
. ,
y=-00 (59)

It is clear that the closed loop poles have moved to the origin and results in a stable dead

beat control which completes the proof. 0

Remark: The above theorem is believed to be of interest for GPC. It can be seen that in
the presence of the above conditions, the control law results in a (stable) deadbeat control.
Moreover, it provides a unique approach, which can guarantee the stability of an unstable
open loop system which was discussed before by Yoon et al (1995) using the result of
Rawlings et al (1993). The key element of those proofs was the observation of the
monotonically decreasing optimal cost function. Neither of them sustained their proofs

with a closed loop representation.

Note: Due to the zero-pole cancellation it should be mentioned that in real design a
mismatch could occur which in turn will not result in a deadbeat closed loop controller.
That is why new conditions which can guarantee stability, in this and similar circumstances

should be considered.

Theorem 6
Assume that the open loop system is stable and has step response coefficients satisfying a

convexity condition of the form

g > (g, -8)>(g;—8:)>0 (60)

Thenif N, =1, N, =(N,-N,+)=N and A =0 the closed loop system is stable.
Proof
Following the proof of Theorem 5, from Equation (55), the characteristic polynomial can

be written as:

H ) ]
—A-=g1+(g2-gl)z‘+(83—gz)22--- 61)

Thus, from the sufficient condition in Zhang et al (1998) (see the Appendix), the closed

loop system will be stable if:
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g >(g,-2)>(g:—-g,)>0 (62)

2

Which completes the proof.

Remark: It is important to note that many systems such as the gas turbines (Gomma,
1999) have a convex step response. Accordingly, the significant of the above theorems
(Theorems 5 and 6) that they have a great importance in GPC stability as they show new

sufficient condition where the system can be stable when (N, -N, +1)=N, =N >1.In

addition, they are applicable to many engines such as gas turbines (Gomma 1999) and
many other systems. Furthermore, it should be noticed that when the above theorems are

applied to systems with time delay (d ), the minimum prediction horizon (N,) can be

selected such as N, =d +1.

9.0 Illustrative examples
The previous sections have provided a range of stability tests for GPC. This section

considers the application of the ideas to some simple illustrative examples.
Note: in each figure of this section, the dotted line and solid lines are the set point and

output, respectively.

Example 1

Consider the following second order system which can be written as

B(z") 00132z +0.0115z7

A(z™") 1-1.6457z7 +0.6703z7 e
The open loop poles and zeros are located as following:

Open loop zeros Open loop poles

z=-0.8333 p, =0.7405, p, =0.9052 and

the step response coefficients can be written as

g =0.0132, g, =0.0463, g, =0.921,---g_ =1

¥
It should noted that in the above the step response coefficients achieve the conditions

which have been stated in Theorem 1. The values (1, 8, 1) are chosen for the horizons
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(N,,N,,N,) and the simulation results are shown in Figures 1 (a and b) for two different

values of the weighting function A=0and A=0.8.

Figure 1 (a) indi_cates that decreasing A i.e. decreasing the weighting on the control signal
leads to better performance (attributed to the increase of the control gain). Also, as hinted
in Theorem 6.1, using control horizon equal to unity with systems with monotonically
increasing step response, yields closed loop stability. Similarly, Figure 1 (b) shows, as
mentioned in Theorem 1, that the increase of the weighing function A by a reasonable

amount (see: Equation 6.21) is still maintains system stability.

Example 2

In this case the main objective is to show the effect of choosing large values of maximum
prediction (Theorem 2) on the system stability. The process under control is a continuous
process sampled with a time constant of approximately 1.7 secs and a sampling time of 0.1
sec giving the transfer function

B(z™") _ 0.0125z" +0.01047
A(z™) 1-1.5483z7 +0.5712z7°

(64)

The open loop poles and zeros are located as following;:
Open loop zeros Open loop poles

z=-0.832 p; =0.6065, p, =0.9418

and the step response coefficients can be written as

g, =0.0125, g, =0.0423, g, =0.0812,---g_, =1

This data satisfies the conditions of the theorem. In order to examine the effect of large

maximum prediction horizon, the values (1,70,1) are chosen for the horizons
(N,,N,,N,). Figures 2 (a and b) show the simulation values of A =0 and A= 2. It is

clear that both controllers are able to stabilise the system, with very similar responses. This

happens because the increase of A has a very minor effect on the system performance

when large values of N, are used.

Example 3
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Consider the full gas turbine model with inner loop controller P=0.3 (Gomma 1999) which

can be written in the following form

B(z™") _(0.1488-0.09971z" —0.019527)z""
A(z")  1-0.6583z" —0.2977z" - 0.0268z" (65)

where the open loop poles and zeros are located as following

Open loop zeros Open loop poles

z, =0.8281,z, =—0.1582 P, =—0.1645+ j0.0103, p, = 0.9874

and the step response coefficients can be written as

g, =0.1488, g, =0.1471, g, =0.1708,---g_ =1.7311

From the above, it is clear that the open loop system is minimum phase stable system. Let
N,-N,+1=N, =N, then, by assigning the following values (0, 6) to the parameters
(A,N), Theorem (5) indicates that this will result in closed loop stability. Furthermore, the
closed loop poles should move to the location of the open loop numerator, which is found

“to be as:

Closed loop poles

p(‘] :0

Figure 3 shows the step response for the closed loop system. As expected from Theorem

(5), the system behaves as dead beat control with a sampling time 7, =0.1sec.

10.0 Conclusion

In this paper various stability results for GPC algorithms are proved using step response
data and analyses of the closed loop characteristic polynomial. In contrast to most existing
theorems, which relied on state space representation or the monotonicity decrease of the
receding cost function, this paper introduced new theorems using an explicit representation
for the closed loop system. These results cover many sufficient conditions for stability
which can be considered as design guidelines for plants with monotonic or convex step
IeSponses.
The analyses are based on representing the closed loop system in terms of the step

response coefficients. In addition a combination between this technique and the Lemma
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developed by Zhang (1998), led to a very interesting theorem which has shown a condition
where the GPC can lead to dead-beat control law which can stabilize unstable systems.
Furthermore, the effect of prediction horizons in pole location has been studied for the first
time. Moreover, some examples have been given to support the above results. At the end, it
should be mentioned that the complexity of developing a general stability theorem for GPC
algorithm could be attributed to the complexity of the square inversion matrix which

involves all system’s parameters in a nonlinear way.

Appendix:
The following condition was based on Jury’s table, which was presented in a form to be
similar to the Routh-Hurwitz table for the stability in the left half of the s-plane (see: Jury

1964). It can be proven for the following polynomial

F(z)y=1+fiz7' + 27+ f, 2" (6.61)
that if
1>, = fise=f >0 (6.62)

then f(z™') has no zeros when |21, i.e. f(z™) is stable. Later, Zhang and Xi (1998)

have shown that by using Hurwitz’s Theorem in complex analysis, given

Liz")=1+Lz +L,z7 + (6.63)
if
1L s L w0 (6.64)

then L(z™") will never equal to zero when |Z‘ >1,i.e. L(z™") is stable. It is clear that more

stability results can be obtained by the using the above conditions.

These conditions are given in the following theorems.
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Figure 2: Stabilisation effects of tuning parameters (a) (N1, N2, Ny, A)=(1,70,1, 0);
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Figure 3: Step response of full free turbine model




