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Benchmarking of rail firms has become a matter of substantial interest and many authors have emphasised the importance of transaction costs in regard to assessing the desirability of vertical separation. However, due to data and methodological limitations, previous rail efficiency studies have been unable to explicitly analyse the role that transaction cost measures play in determining the relative efficiency performance of different rail firms or rail systems. This paper incorporates recently-produced measures of transaction costs (Merkert 2008) into a two-stage bootstrapped data envelopment analysis (DEA), applied to a sample of 43 Swedish, German and British train operating firms. In the first stage, the number of transaction staff is included as a separate (physical) input within the DEA. This is followed by a second-step Tobit regression which seeks to evaluate the impact of institutional (vertical separation and type of operation), environmental (competition) and transactional (monetary values of transaction costs) factors on technical efficiency. The results of the analysis show that transactional factors are more important in determining technical efficiency than institutional factors and the opening-up of competition. 
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1. Introduction
A key objective of the recent liberalisation and re-organisation of many European railways has been to make the railways more competitive against other modes of transport. It is believed that competition is vital in order to improve the competitiveness and performance of railways. As discussed in Merkert et al. (2008), the clearest way of providing non-discriminative access to rail infrastructure in Europe is the institutional separation of train operating and rail infrastructure units. Since the separation at this interface has been applied to a different extent in each EU member state, and because each system has also seen very substantial differences regarding the levels of competition among train operating companies in different countries, there is now considerable heterogeneity in terms of institutional arrangements across European rail systems. As a result, performance and efficiency measurement has received considerable attention in the literature.
 However, three key questions remain unresolved. Firstly, whilst Bitzan (2003) and Growitsch and Wetzel (2007) found that costs increased as a result of the separation of train operations from infrastructure (due to loss of economies of scope), Friebel et al. (2008) revealed no significant difference between integrated and separated railways (though slightly in favour of separation), and Asmild et al. (2008) provide evidence that efficiency increases as a result of accounting separation. Secondly, whilst Ivaldi and McCullough (2008) found economies of scope between freight and passenger operations, Cantos (2001) finds diseconomies of scope between those two types of operation (although statistically not very significant). Thirdly, whilst Preston (1996) found economies of scale for European railways and Cowie (2002) revealed unrealised economies of scale for all British train operating companies, the results of Smith and Wheat (2007) show constant returns to scale for the latter. Moreover, most studies have not been able to separate infrastructure and train operation costs, so the question as to whether economies of scale exist for train operations remains unresolved. 
Additionally, and perhaps most importantly, many authors have emphasised the importance of transaction costs in regard to assessing the desirability of vertical separation in railways (e.g. Growitsch and Wetzel 2007). This is in line with Williamson’s framework (1998) which predicts that firms generally choose a governance structure which minimises the sum of production and transaction costs. The previous literature highlights the possibility that vertical separation at the train operation/rail infrastructure interface could increase transaction costs and thus reduce overall efficiency. Thus it is highly desirable to include variables reflecting transaction costs into any efficiency study that is concerned with the relationship between efficiency and vertical separation. However, until recently no data on transaction costs was available, and therefore previous rail efficiency studies have been unable to explicitly analyse the role that transaction cost measures play in determining the relative efficiency performance of different rail firms or rail systems.
This paper incorporates recently-produced measures of transaction costs (Merkert 2008) into a two-stage bootstrapped data envelopment analysis (DEA), applied to a sample of 43 Swedish, German and British train operating firms for the fiscal year of 2006-07. In the first stage, the number of transaction staff is included as a separate (physical) input within the DEA. This is followed by a second-step Tobit regression which seeks to evaluate the impact of institutional (vertical separation and type of operation), environmental (competition) and transactional (monetary values of transaction costs) factors on technical efficiency. The structure of the paper is as follows. Section 2 provides a brief review of the previous literature that has applied data envelopment analysis to railways. Sections 3, 4 and 5 describe the methodology and data. Sections 6 and 7 present and discuss the results of the two stages of the analysis, whilst section 8 offers some conclusions. 
2. Data envelopment analysis: concepts and previous applications to railways
Since European member states have chosen such different models of rail organisation within the given EU framework, it is fruitful to policy makers, regulators and especially to the railway companies themselves to develop transparent comparison methods. In general, one can identify five key benchmarking methods. Oum et al. (1999) points out that the most widely used measure in railways is the partial productivity measure (PPM), where an output indicator of an organisation is viewed in relation to a single input indicator. The second measure is total factor productivity (TFP) index, which considers multiple inputs and outputs together. More sophisticated tools for longitudinal and cross-sectional (or national) efficiency and productivity analysis include data envelopment analysis (DEA) for rather small data sets and two parametric methods, corrected ordinary least squares (COLS) and stochastic frontier analysis (SFA), where a larger sample is available. The PPM method is easy to understand, the results are easy to interpret, and only limited data collection is needed as compared to the other four methods. The main advantage of the other four methods, however, is their ability to process multiple inputs and outputs, whilst producing a single measure of efficiency. Table 1 provides selected examples of previous rail efficiency studies, together with the approaches and data used in each case. 
In terms of methodology table 1 reveals that DEA and SFA have become the most commonly applied methods in rail efficiency analysis in recent years. Since most of the analysed studies focused on different aspects, however, we provide only a brief summary of some of the results. Using DEA, Oum and Yu (1994) found that railway systems which depend highly on public subsidies are significantly less efficient compared to their peers. Other studies which used DEA include Growitsch and Wetzel (2007), who found economies of scope for their data set and Driessen et al. (2006) who revealed that competitive tendering improves productive efficiency (whilst open access lowers it). Most recently, Cantos et al. (2008) used DEA to show that railway systems in Europe which are both vertically and horizontally separated saw improved efficiency over the period of 1985-2004. To date, there is no consensus on which of the two techniques is preferable for applications to railways (Coelli and Perelman 1999). 
The DEA approach (Charnes et al. 1978) has, in contrast to parametric techniques, the advantage of producing technical efficiency scores without requiring assumptions about cost minimisation or profit maximisation, or about the functional form of the production or cost frontier. Moreover, it does not require information on prices for inputs and outputs. Perhaps even more important, DEA allows
 multiple inputs and outputs to be considered simultaneously, which seems to be particularly appropriate for the railways. However, since DEA is deterministic, its key disadvantage is that it does not accommodate noise. 
Table 1. A selection of international efficiency/productivity studies
DEA is a linear programming technique for evaluating the relative performance of individual organisations or decision making units (DMUs) based on observed data. The relative performance of a DMU is defined as the ratio of the weighted sum of its outputs to the weighted sum of its inputs. The weights are not pre-determined, but rather allocated by the model, hence avoiding bias resulting from subjectively assigned weights. Since technical efficiency is achieved by producing at the production frontier, DEA envelopes the observed set of data formed by the inputs and outputs and obtains the efficiency scores by estimating the distance of the observations relative to the envelope surface. Figure 1 shows a simplified example of the process for two inputs and one output for an input oriented DEA. DMU A and D are thereby efficient firms that define the frontier. The technical efficiency of DMU B and C is represented by TEB=0B’/0B and TEC=0C’/0C.
Figure 1. Input oriented DEA example with two input inputs and one output
Although DEA has been applied to the railways in previous studies, table 1 reveals that transaction cost measures have never been explicitly incorporated into these frameworks of efficiency measurement, either as inputs or as environmental factors. Furthermore, a common theme amongst previous studies is that they use secondary data sets published by for example the Union Internationale des Chemins de Fer (UIC) or the World Bank rather then collecting their own data. The approach taken in this paper addresses both of these issues.
3. Incorporating transaction costs into DEA models, methodology and data
Traditionally, high transaction costs have been interpreted as an indication of inefficiency (e.g., Growitsch and Wetzel 2007), but to our knowledge there is no empirical evidence to support that claim, mainly due to data limitations in regard to the level of transaction costs. This paper builds on recently-produced measures of transaction costs (Merkert 2008) which showed that German DB train operators, who are governed by the DB holding company, have substantially lower transaction costs (measured at the firm level
)  than the average level of the other analysed (separated) train operators in three European countries (see Table 5 below). 
Since this paper argues that high transaction costs, rather than being a source of inefficiency, may result in better decisions and higher overall efficiency, it is interesting to incorporate the results from Merkert (2008) into a traditional technical efficiency analysis. Hence, this paper analyses the technical efficiency and economies of scale properties for a sample of 43 Swedish, German and British train operating firms for the fiscal year 2006/07, incorporating data on physical transaction cost indicators of these firms into a bootstrapped data envelopment analysis (DEA) approach (for details on bootstrapping in DEA, see Simar and Wilson 2008 and Thanassoulis et al. 2008). This first stage DEA is followed by a second-step Tobit regression model which seeks to evaluate the impact of institutional (vertical separation and type of operation), environmental (competition) and transactional (monetary values of transaction costs) factors on technical efficiency. According to Fried et al. (2002) failing to take appropriate account of these environmental-type factors could lead to seriously flawed conclusions.
4. Methodology of the first stage DEA analysis
Generally, a DEA production frontier can be operationalised non-parametrically (by using linear programming) either with an input or output orientation, and also under the alternate assumptions of constant returns to scale (CRS) or variable returns to scale (VRS). In regard to the orientation of the distance function Coelli and Perelman (2000) used both techniques to measure the performance of European railways and concluded (in line with most previous studies in the rail sector) that the choice of orientation is not as important for railways as for other industries. 
This paper uses an input oriented function because it assumes that rail firms have higher influence on the inputs (since output volumes are substantially influenced by macro-economic factors and often pre-determined by long term contracts and exogenously controlled public transport service level requirements). In respect of scale economies, by using a CRS model, an efficiency score for firm i in a sample of I firms is estimated through the following optimization (Coelli et al. 2005):
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A key limitation of the CRS model is its assumption that all observed firms operate at the optimal scale (Banker et al. 1984). In the rail sector, imperfect competition, budgetary restrictions as well as regulatory constraints on entries and mergers may often result in firms operating at an inefficient scale. Hence, in this paper, in addition to the CRS efficiency scores (ESCRS), the variable returns to scale efficiency scores (ESVRS) are also estimated. For the evaluation of the latter it is necessary to assume a further convexity constraint (
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), which ensures that inefficient firms are only benchmarked against firms of a similar size. To measure scale efficiency the methodology applied in this paper follows Simar and Wilson (2002); decomposing the efficiency scores into pure technical efficiency and scale efficiency (SE), so that SE= ESCRS / ESVRS. Values of SE=1 indicate scale efficiency and values below 1 inefficiency. To determine the direction of the scale inefficiency the paper follows the example of Helvoigt and Adams (2008) by running an additional round of the DEA models under the assumption of non-increasing returns to scale (NIRS) and comparing the efficiency scores with those estimated for the CRS-based technical efficiency measure. If ESNIRS=ESCRS, and if both are lower than the VRS efficiency measure, then the observed DMU is operating at increasing returns to scale whilst ESVRS=ESNIRS>ESCRS indicate decreasing returns to scale.
To sum up, in the first stage of the analysis this paper aims to answer the following research question: Q1: Does technical efficiency based on transaction and production measures vary between vertically separated train operating firms and those which are operating under a holding company structure? As a secondary, sub-question, is the difference in technical efficiency entirely due to the separation of train operation and rail infrastructure or are there also scale efficiencies?
By excluding infrastructure managers from the analysed sample, this paper ensures that the DEA sample is in terms of production technology as homogenous as possible. Contrary to previous studies, it does not compare rail systems at an aggregated level only or just the incumbents in each market (so one rail firm per country only) but also includes smaller firms and new entrants into the sample. Moreover, when selecting the non-transaction cost related inputs and outputs, the paper follows the example of previous DEA studies (see table 1), since the selection of the variables is arguably the most critical part of developing DEA frameworks (e.g. Driessen et al. 2006). For the purposes of this analysis, seven input and three output variables were subsequently considered in different DEA models. The first input variable (MATERIAL) is the annual amount spent on operation (including depreciation and rolling stock lease costs) but excluding all staff costs. The second input is the staff variable which is, as is standard in other studies, measured as the number of full-time equivalent (FTEs) staff (TOTAL_STAFF). Disaggregating this number, and taking into account that there might be a trade-off between production and transaction staff in the production process, the next two input variables are the number of FTEs for the following staff categories: managerial and administrative staff (MAN_STAFF) and the remaining production staff (P_STAFF_DOWN). The values of those three variables were obtained through a survey and a review of annual accounts, both described in Merkert (2008). In order to consider also staff which are actually involved in transactions at the train operation/infrastructure interface, the analysis includes three further personnel input variables (used separately from the other two), namely transaction dedicated staff at managerial level (ML_STAFF), transaction dedicated staff at non-managerial-level (NL_STAFF) and the remaining production staff (P_STAFF). Those three variables were obtained through a major interview programme described in Merkert et al. (2008b). We follow Cowie and Riddington (1996) by using physical staff numbers instead of staff costs as our input variables. All remaining cost variables in this paper have been converted into PPP Euros as described in Merkert (2008).
To measure the output of the examined train operators the analysis uses train-km. Previous studies have favoured this output variable because of the highly regulated environment in which European railways operate, which limits the operators’ ability to optimize other outputs (e.g. Cowie 2005). Moreover, this paper argues that train-km is the output indicator which is mostly linked with co-ordination (transaction costs) issues (although number of trains operated might be an alternative measure). Since passenger-km is not measured by smaller franchised passenger operators in Germany, and therefore is not available, and because it is methodologically difficult to compare net passenger-km (P-KM) with net tonne-km (TONNE-KM), those two variables are used for a sensitivity analysis of a sub-sample of passenger and respectively freight train operators only. All the values of the output variables were obtained from the survey described in Merkert (2008). Although the main analysis uses train-km as the single output, we also run two further models (for passenger and freight operators separately) which include multiple outputs in terms of transport capacity (train-km) and actually transported output (passenger-km or tonne-km). To take the growing importance of service quality into account, it was also intended to include data on train punctuality. However, due to cross-national inconsistencies and differences in punctuality measurement across different types of operation within the same country, it was not possible to use this variable in the analysis.

Table 2 summarises the DEA model specifications (in terms of inputs and outputs) reported in this paper. The first model (DEA-0) is the simplest model which uses standard variables (in railways labour and capital are usually chosen for the inputs, e.g. Affuso et al. 2002) and hence functions as benchmark for the other DEA models. In contrast to the base model, the two key models DEA-1 and DEA-2 reflect different aspects of transaction costs. Whilst the former uses a “top-down” measure of transaction staff, the latter uses “bottom-up” measures of transaction staff involved at the train operation/infrastructure interface (see Merkert et. al. (2008b) for further details). DEA1-P and DEA1-F function as sensitivity analysis. These models test the results of DEA-1 for passenger and freight operations separately, whilst incorporating a second output variable (passenger-km or tonne-km).
Table 2. Specification of DEA models

Nash and Shires (2000) pointed out that all benchmarking methods embed difficulties with measuring and interpreting data, with the decision of which input and output factors to use, and with isolating the effects of exogenous variables. They concluded that the underlying conditions of the railways and the institutional environment of the railway firms should therefore be analysed before interpreting the results of such methods. 
5. Methodology of the second stage Tobit regressions

This paper follows previous studies (e.g. Oum and Yu 1994 or Cantos et al. 2002, 2008) by applying a two-stage model which regresses the first-stage DEA efficiency scores (dependent variable) against a selection of uncontrollable (independent) variables in the second stage. Hence, it is assumed that a significant part of the estimated inefficiency of the analysed firms is a result of institutional and environmental factors, rather than a product of bad management. This paper uses a Tobit model, which has become the favoured approach as a result of the censored DEA individual efficiency scores (the efficiency scores being bounded at both ends of the 0-1 distribution; see, for example, Jacobs et al. 2006). 
However, this approach has been recently challenged (e.g. in regard to the dependence of the DEA efficiency scores on each other) and found to result in inconsistent and biased parameter estimates unless the DEA efficiency scores are corrected by a bootstrapping procedure. In this paper we applied the bootstrap approach by Simar and Wilson (1998, 2000) and our bias-corrected scores are derived from 2000 bootstrap iterations.
 According to Simar and Wilson (2007) this allows us to estimate a robust regression model in the second stage analysis, in which the following empirical model is used: Efficiency Score is a function of institutional characteristics, environmental characteristics and transactional characteristics. The regression model aims to assess whether institutional characteristics, namely vertical organisation (separated versus holding model) and type of organisation (passenger versus freight) made a difference to the performance of the analysed firms. It also aims to control for an environmental characteristic in regard to the level of competition, namely the Hirschmann-Herfindal-Index (HHI) which reflects the concentration in the analysed passenger and freight markets in the three countries of our sample (in respect of train-km, with HHI=1 representing a monopoly). The data for these three first explanatory variables was obtained from Merkert et al. (2008). Building again on Merkert (2008) and Merkert et al. (2008b) this paper also aims to evaluate the effects of uncontrollable transactional characteristics on technical efficiency by including relative level of transaction costs as control variables in the regression models (apart from DEA-0 where staff is not disaggregated into transaction and other staff). 
The key control variable in respect of transaction costs is transaction costs per train-km.
 The regression of the efficiency scores of model DEA-1, DEA-P and DEA-F (key input = managerial and administrative staff) uses the size of the transaction sector of the firms in relation to the key output (T-down/train-km) as explanatory variable. The regression of the efficiency scores of model DEA-2 (key input = staff dedicated to transactions at operation/infrastructure interface) uses the level of transaction costs at the train operation/ rail infrastructure interface of those firms in relation to the key output (T-up/train-km) .
Based on the authors’ understanding of the rail market constraints it is assumed for this second stage of the analysis that the production process exhibits variable returns to scale (so only the bias corrected (bootstrapped) efficiency scores (ESVRS) are used as the dependent variable), which may be appropriate when it is impossible to assume that all firms in our sample operate at an optimal scale (Banker et al. 1984). In the rail sector, regulatory and budgetary constraints as well as service level requirements may result often in firms operating at an inefficient scale.
To summarise, by controlling for institutional, environmental and transactional factors in the second stage Tobit regression this paper aims, firstly, to test the robustness of the results of the first stage research question (Q1: effects of vertical separation on technical efficiency) and, secondly, to address the following three research questions: Q2: Does the type of train operation have an effect on technical efficiency? Q3: Does the level of competition (environmental factors) have an impact on technical efficiency? Q4: Are operators with high relative transaction costs more technically efficient?
The input and output variables for the first stage DEA analysis as well as the explanatory variables for the second stage regression are descriptively summarised in table 3.
Table 3. Descriptive statistics for first and second stage analysis

6. Results of the first stage DEA analysis
This section first presents and discusses the results of the DEA models (first stage), before turning to the second stage regression results. Table 4 summarises the technical efficiency and economies of scale results coming out of the five DEA models described earlier.
Table 4. DEA results of the first stage
As with the results of Growitsch and Wetzel (2007), in all of the DEA-models, the average bias-corrected technical efficiency scores (ES Corr.) are smaller than the average uncorrected scores (ES). This indicates that a traditional DEA, without the bootstrapping procedure, tends to overestimate technical efficiency for the analysed sample (as expected). We note that the standard deviation of the bias-corrected values is also smaller than that of the uncorrected values. 
Furthermore, the findings show that by decomposing labour into transaction and production staff, the estimated technical efficiency scores improve. In the base model DEA-0, where standard inputs (labour vs. capital) were used, the average bias-corrected technical efficiency scores are 0.423 for VRS and 0.293 for CRS. The average firm could thus save 57.7% respectively 70.7% of its inputs if it were operating on the efficiency frontier. By disaggregating the total staff into managerial/administrative staff and production staff (DEA-1), the efficiency scores increase by more than 10%. 
The efficiency scores increase again when staff is further decomposed into managerial staff and non-managerial staff involved in interactions at the train operation / rail infrastructure interface and the remaining production staff (DEA-2). By definition, adding an extra input (or output) in a DEA model can not result in the reduction of the technical efficiency scores (Coelli et al. 2005). Hence, decomposing one input into several inputs can also not reduce the efficiency scores. However, a comparison of the results of DEA-0, DEA-1 and DEA-2, indicate that the decomposition of staff into transaction and other staff (and further into managerial and non-managerial transaction staff) has a substantial positive impact on average efficiency. This suggests that the firms in the sample combine transaction and production staff in differing ratios, so that some firms are deemed to be closer to the frontier once the overall staff input is decomposed. 
In regard to the two reference models, DEA1-P and DEA1-F, efficiency improves again by running the DEA-1 model for freight and passenger train operators separately and by adding a second output variable (tonne-km respectively p-km) in the model. This can be interpreted as a resulting from the fact that we are getting closer to a like-for-like comparison (comparing passenger operators against other passenger operators, and likewise for freight). Whilst freight operators appear to be most technically efficient based on the VRS scores, passenger operators are most efficient if CRS is assumed. Overall, the results are in line with the results of previous studies that have used bootstrapped DEA scores (e.g. Growitsch and Wetzel 2007 or numerous non-rail specific studies, including von Hirschhausen et al. 2008).
Table 4 further shows that, in regard to scale efficiency (SE), the average ratio of CRS to VRS is always less than 1, which indicates scale inefficiencies. Analysis of the individual results revealed that some particularly small operators are too small and some big operators are too big. For model DEA-1, scale inefficient firms which operate less than 5m train-km have increasing returns to scale (too small), and all scale inefficient firms above 5m train-km are characterised by decreasing returns to scale (too big). In model DEA-2, all operators with a higher output than 8.7m train-km have decreasing returns to scale (too big), though below this level there was only limited evidence of increasing returns to scale. 
In respect of differences across countries, and the effect of institutional vertical separation, table 5 illustrates the technical efficiency scores for the two key models (DEA-1 and DEA-2), disaggregated into four different peer groups. Although DB operators have substantially lower relative transaction costs
 (see the last four columns of table 5), their technical efficiency is generally not much higher than the average efficiency scores of separated German (non-DB) or Swedish operators (which is also true for the base model DEA-0). In addition, in model DEA-1, two of the three analysed DB operators have high scale efficiency scores, whilst the third one is scale inefficient and operating at decreasing returns to scale (too big). In model DEA-2 all of the DB operators are scale inefficient and operating at decreasing returns to scale. British operators have relatively low scores in terms of both technical and scale efficiency.
Table 5. DEA average results per peer group 
7. Results of the second stage Tobit regressions
The preliminary examination of efficiency scores across countries, discussed above, suggests that whether a firm is vertically separated or not may not be the dominant factor determining relative efficiency. We therefore conduct a series of second-stage, TOBIT regressions, to investigate the determinants of technical efficiency (the first stage VRS DEA score (ESVRS) being the dependent variable). The regressions were performed using the statistical tool STATA SE10, and the results are summarised in table 6. The coefficients can be understood as marginal effects on technical efficiency. Multi-collinearity did not appear to be an issue based on the correlation coefficients between the explanatory variables. 

Table 6. Results of the second stage Tobit regression
The regression results suggest that vertical separation marginally reduces technical efficiency (ESVRS), although this result is not statistically significant. Passenger operators were found to have higher technical efficiency, but again this effect is not statistically significant. We also tested the inclusion of a country dummy variable in the model, but the results were similarly insignificant. In regard to environmental factors, market concentration (of train operation) has a significant positive effect on technical efficiency only for freight train operating firms (significant at the 5% level); thus indicating that more competition in the freight market reduces technical efficiency. This finding may be interpreted as follows. Freight train operators usually interact and co-ordinate, in comparison with (franchised) passenger train operators, more often with third parties, including the infrastructure manager. If there are too many operators running trains on a given network, those co-ordination processes become too complex and the results more uncertain. Since the market concentration is lowest in Britain, the technical efficiency scores of British freight train operators are likewise low.
The most significant, and thus most important regression results, are those that relate to transaction costs. In line with the qualitative arguments in the literature, the size of the transaction sector, measured as the cost of staff with transaction occupations per train-km (T-down/train-km), has a negative effect on the average technical efficiency scores (negative effect of 11.3%; P<0.01). The more targeted measure of transaction costs at the train operation/infrastructure interface per train-km (T-up/train-km) has an even stronger negative effect on the average efficiency scores.  This effect can be partially explained by the fact that some very technically efficient operators have almost zero transaction costs per train-km (as a result of very small level of transaction costs and/or high train-km) at the relevant interface. However, even if this effect is excluded, the general very significant finding in both models is that the level of transaction costs per train-km has a significant negative effect on technical efficiency. 
It is worth mentioning two key limitations of this paper. Firstly, one could argue whether the sample is homogeneous enough, as it includes small new entrants as well as huge incumbent network operators. However, compared to previous DEA applications to the railways, this paper excluded infrastructure management from the sample and thus ensured that only firms with similar production technologies were benchmarked against each other. The second limitation is that the paper was working from a limited set of data, since it incorporated a snapshot of one fiscal year only into the analysis, while previous studies have used data for several successive years. Although the results are still significant, it is likely that the analysis could be improved by including longitudinal data series, if such data on transaction costs would become available. Further research is therefore required in that respect.
8. Conclusions

This paper has applied a two-stage bootstrapped DEA approach to evaluate technical efficiency and scale efficiency for 43 British, German and Swedish train operating companies. By incorporating physical transaction cost indicators into such a model for the first time and by regressing the resulting efficiency scores against monetary values of relative transaction costs, we have estimated what we consider to be plausible and statistically significant results. This concluding section summarises the answers to the four key research questions. 

First of all, whether a firm is vertically separated or not does not appear to be a major driver of technical efficiency based on our results (Q1). This is in contrast to what might have been expected given the substantial difference in relative transaction costs between companies in countries (as shown in table 5). This result becomes most apparent by comparing the DB operators (governed by holding company) with the other German train operating firms (separated), with the technical efficiency results of both groups being very similar. Since we have used VRS, we have taken account of possible scale effects. However, based on the SE scores, we find that the German DB operators (in general) operate with decreasing returns to scale, which indicates that they do not benefit (but in fact suffer) from their large scale operations. Preliminary analysis of the first-stage efficiency scores thus suggests that technical efficiency is less affected by vertical separation than by other firm characteristics as well as environmental and transactional factors.
The results of the second stage of the analysis confirm the preliminary analysis. Vertical separation is found not to have any significant effect on technical efficiency (Q1). Likewise the type of operation (Q2) has no statistically significant impact on technical efficiency. Instead, market concentration (less competition) has a significant positive effect on technical efficiency (Q3) for freight operators while being insignificant for passenger train operators. The most interesting results are, however, those in relation to the effects of transaction costs on technical efficiency (Q4). The key finding of the second-stage Tobit regressions is that high transaction costs (per train-km) reduce technical efficiency significantly in both of the key models (DEA-1 and DEA-2). Of course, the impact of high relative transaction costs on technical efficiency is not clear cut a priori. On the one hand, having higher relative transaction costs could be an indicator of an inefficient system, as has been suggested by previous authors (though without hard data to back this up). On the other hand, higher relative transaction costs might improve technical efficiency if better decisions are made as a result, or if higher transaction costs reduce the need for other inputs. However, in this study we find the former, with high relative transaction costs being associated with inefficient operation.

Thus, even if high transaction costs result in better decisions, as with most other types of costs or inputs, if they are high (other things equal including output), they reduce technical efficiency. However, in theory they could have a more positive impact on cost efficiency. 
To conclude, in order to increase the robustness of the novel findings of this paper, longitudinal analysis is needed. Moreover, it appears to be interesting to extend the traditional focus of DEA applications in railways even further by applying a supplementary DEA model that evaluates both technical and allocative efficiency (and thus cost efficiency).
Table 1. A selection of international efficiency/productivity studies

	Study
	Method
	Sample
	Inputs
	Outputs

	Nash and Preston (1994)
	PPM
	14 European railways 1970-1990
	Staff/train-km; market share; Receipts/total cost

	Nash and Shires (2000)
	PPM
	11 European railways 1989-1994
	Train-km/track-km; Train-km/staff; Market share; Traffic units/ train-km; Operating cost/train-km; Receipts/traffic units; Revenue/costs

	Oum and Yu (1994)
	DEA
	19 railways in Europe and Japan
	Staff; Energy consumption; Rolling stock
	Passenger-km; Freight-tonne-km

	Gathon and Pestieau (1995)
	SFA
	19 European railways 1986-1988
	Engines & railcars; Staff, Length of not electrified/electrified lines
	Sum of Passenger-km and Freight-tonne-km

	Coelli and Perelman (1999 & 2000) 
	DEA and COLS 
	17 European railways 1988-1993
	Staff; Rolling stock; Track length
	Passenger-km; Freight-tonne-km

	Cantos and Maudos (2001)
	SFA
	16 European railways 1970-1990
	Operating cost; Labour cost, Energy, Material/external services 
	Passenger-km; Freight-tonne-km

	Cantos et al. (2002)
	DEA
	17 European railways 1970-1995
	Operating cost; Track-km
	Passenger-km; Freight-tonne-km

	Loizides and Tsionas (2004)
	TFP 
	10 European railways 1969-1993
	Staff; Capital cost (interest & depreciation); Energy cost
	Sum of Passenger-km and Freight-tonne-km weighted with revenue share

	Rivera-Trujillo (2004)
	PPM 
	14 railways in Europe and 5 American railways 1977-1999
	(Passenger-km + Freight-tonne-km)/operating staff; Traffic units/operating staff (1980-1999) 

	
	SFA/TFP
	
	Staff; Rolling stock (4 categories)
	Passenger-km; Freight-tonne-km

	Hatano (2005)
	PPM
	15 railways worldwide
	(Passenger-km +Freight-tonne-km)/total route length

	Cowie (2005)
	SFA
	British TOCs 1996-2000
	Staff; Rolling stock; Track length
	Train-km

	Growitsch and  Wetzel (2007)
	DEA
	54 railways in 27 countries 2000-2004
	Staff; Rolling stock; Track-km; Operating expenditure
	Train-km; Passenger-km; Freight-tonne-km

	Driessen et al. (2006)
	DEA
	14 European railways 1990-2001
	Staff; Track length; Rolling stock
	Passenger-km; Freight-tonne-km

	Smith and Wheat (2007)
	SFA
	26 British TOCs 1996-2006 
	Staff & Rolling stock & other op. cost; Wage prices, Rolling stock characteristics; Policy variables 
	Train-km/route-km, Route-km, Vehicle-km/train-km

	Wetzel (2008)
	SFA
	31 European railways 1994-2005
	Staff; Rolling stock; Network length
	Passenger-km; Freight-tonne-km

	Cantos et al. (2008)
	DEA
	16 European rail systems 1985-2004
	Staff; Rolling stock (Passenger vs. freight); Network length
	Passenger-km; Freight-tonne-km


Source: Own analysis.

Table 2. Specification of DEA models

	
	Inputs
	
	Outputs

	
	Standard inputs
	Top-down inputs
	Bottom-up inputs
	
	
	
	

	
	MATERIAL
	TOTAL_
STAFF
	P_STAFF_DOWN
	MAN_
STAFF
	P_STAFF_UP
	ML_
STAFF
	NL_
STAFF
	
	Train-km
	P-km
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	(
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	DEA-2
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	(
	
	

	DEA1-P
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	DEA1-F
	(
	
	(
	(
	
	
	
	
	(
	
	(


Source: Own analysis.

Table 3. Descriptive statistics for first and second stage analysis

	
	N
	Mean
	St.D.
	Min
	Max

	Output
	
	
	
	
	

	TRAIN-KM (m)
	43
	28.31
	66.45
	0.1
	380

	P-KM (m)
	25
	3786.23
	7780.94
	0.3
	32161

	TONNE-KM (m)
	15
	12498.92
	23525.89
	314
	88407

	Input
	
	
	
	
	

	MATERIAL (m PPP Euros)
	43
	359.68
	772.34
	0.02
	3906.25

	TOTAL_STAFF (FTE)
	43
	2394.44
	4622.47
	15.8
	20188

	P_STAFF_DOWN (FTE)
	43
	2188.81
	4381.17
	14.3
	19178.6

	MAN_STAFF (FTE)
	43
	205.64
	284.17
	1.5
	1009.4

	P_STAFF_UP (FTE)
	43
	2356.41
	4576.23
	15.8
	20140.05

	NL_STAFF (FTE)
	43
	27.39
	54.59
	0
	319.2

	ML_STAFF (FTE)
	43
	10.64
	15.31
	0
	77.54

	Second stage explanatory variables
	
	
	
	
	

	HHI
	43
	0.36
	0.23
	0.06
	0.80

	Separated_Op
	43
	0.93
	0.26
	0
	1

	Type_Op
	43
	0.65
	0.48
	0
	1

	T-down/train-km (PPP Euros/train-km)
	43
	0.99
	1.10
	0.12
	5.59

	T-up/train-km (PPP Euros/train-km)
	43
	0.15
	0.14
	0
	0.60

	T-down/opcost (%)
	43
	5.53
	3.84
	1.15
	18.06

	T-up/opcost (%)
	43
	1.01
	1.50
	0
	10.00


Note: 3 German passenger train operators had to be excluded from the DEA1-P sample, because for those it proved to be impossible to collect data on passenger-km. 

Source: Own analysis.

Table 4. DEA results of the first stage

	
	N
	
	ESVRS
	ESVRS Corr.
	
	ESCRS
	ESCRS Corr.
	
	SE

	
	
	
	Mean
	St.D.
	Mean
	St.D.
	
	Mean
	St.D.
	Mean
	St.D.
	
	Mean
	St.D.

	DEA-0
	43
	
	0.545
	0.289
	0.423
	0.201
	
	0.389
	0.278
	0.293
	0.203
	
	0.718
	0.242

	DEA-1
	43
	
	0.606
	0.286
	0.474
	0.205
	
	0.481
	0.302
	0.394
	0.235
	
	0.782
	0.235

	DEA-2
	43
	
	0.656
	0.302
	0.500
	0.210
	
	0.505
	0.303
	0.377
	0.206
	
	0.764
	0.214

	DEA1-P
	25
	
	0.755
	0.240
	0.619
	0.179
	
	0.688
	0.270
	0.560
	0.203
	
	0.902
	0.150

	DEA1-F
	15
	
	0.782
	0.281
	0.620
	0.208
	
	0.541
	0.324
	0.398
	0.226
	
	0.688
	0.268


Source: Own analysis. All DEA estimations are made with FEAR 1.11.

Table 5. DEA average results per peer group 
	
	
	
	DEA-1
	
	DEA-2
	
	T-down/ train-km (PPP Euro)
	T-down /opcost %
	T-up/ 
train-km 
(PPP Euro)
	T-up/
opcost %

	
	N
	
	ESVRS Corr.
	SE
	
	ESVRS Corr.
	SE
	
	
	
	
	

	British operators
	21
	
	0.38
	0.74
	
	0.42
	0.68
	
	1.33
	6.18
	0.22
	1.35

	Swedish operators
	10
	
	0.53
	0.79
	
	0.55
	0.84
	
	0.82
	6.68
	0.09
	0.82

	DB operators
	3
	
	0.57
	0.87
	
	0.64
	0.64
	
	0.30
	1.72
	0.03
	0.20

	Non-DB German op. 
	9
	
	0.60
	0.85
	
	0.59
	0.92
	
	0.63
	3.98
	0.09
	0.70

	All operators mean
	43
	
	0.47
	0.78
	
	0.50
	0.76
	
	0.99
	5.53
	0.15
	1.01


Source: Own analysis.

Table 6. Results of the second stage Tobit regressions
	
	
	DEA-0
	
	DEA-1
	
	DEA-2
	
	DEA1-P
	
	DEA1-F

	Independent variables
	
	Coefficients

	Separated_Op
	
	-0.048
	
	0.029
	
	-0.043
	
	-0.032
	
	-0.066

	Type_Op
	
	0.109
	
	0.021
	
	-0.053
	
	-
	
	-

	HHI
	
	0.326**
	
	0.177
	
	-0.072
	
	0.123
	
	0.952*

	T-down/train-km
	
	-
	
	-0.113***
	
	-
	
	-0.139***
	
	-0.061*

	T-up/train-km
	
	-
	
	-
	
	-1.089***
	
	-
	
	-


Note: * P<0.1; ** P<0.05 and *** P<0.01   Source: Own analysis.

Figure 1. Input oriented DEA example with two input inputs and one output
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� For a review on this literature see for example Oum et al. (1999) or Rivera-Trujillo (2004).


� As does the more recently developed parametric stochastic distance function approach.


� A firm is defined as the smallest entity of a group that produces annual accounts. It should be noted that parent company and external support could potentially offset the relatively lower firm transaction costs; although whether the inclusion of these costs would alter the results is not clear, given the data (see Merkert, 2008). 


� In this paper, all DEA estimations are made with FEAR 1.11 (a package for frontier analysis with R, see Wilson 2006). Whilst FEAR 1.11 is designed to estimate the Shepard (1970) measure of technical efficiency (� EMBED Equation.DSMT4  ���� EMBED Equation.DSMT4  ���1), this paper follows the example of previous studies and measures the corresponding Farrell (1957) values taking the reciprocal (ES= 1 / � EMBED Equation.DSMT4  ���) of the Shephard distance function (see for example Wilson 2008, p. 14).


� Although the two-stage approach is recommended by both Coelli et al. (2005) and Simar and Wilson (2007, 2008) there are also other, even more complex approaches, for example the four-stage model proposed by Yang and Pollitt (2007). To date, there is no consensus on which of the two techniques is preferable but the majority of reviewed applications applied the bootstrapped two-stage approach.


� Because of methodological concerns an initial attempt to also use the share of transaction costs in operating costs as explanatory variable had to be dropped.


� That is, at the firm level (neglecting parent company and external support), as discussed earlier.
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