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Abstract 
Many large scale real world transport applications have choice sets that are so large as to make 
model estimation and application computationally impractical. The ability to estimate models on 
subsets of the alternatives is thus of great appeal, and correction approaches have existed since the 
late 1970s for the simple Multinomial Logit model. However, many of these models in practice rely 
on Nested Logit specifications, for example in the context of the joint choice of mode and 
destination. Recent work by Guevara and Ben-Akiva has put forward solutions for such GEV 
structures, but they remain difficult to apply in practice. This paper puts forward a simplification of 
their method for use in computationally efficient implementations of Nested Logit. We illustrate the 
good performance of this approach using simulated data and we also provide additional insights into 
sampling error with different sampling strategies for Multinomial Logit. 
 
Keywords: nested logit; sampling of alternatives; GEV; destination choice 
 
Word count: 6,827 words and 3 tables = 7,577 words 
 
1. Introduction 
 
In various empirical applications it is necessary to estimate choice models with substantial numbers 
of alternatives. In mode and destination choice models, for example, individuals face a wide range 
of spatially distributed destinations and a set of possible modes. Since the calculation of choice 
probabilities requires consideration of all the alternatives in the choice set, tens of thousands or 
more, such models can impose heavy demands on computer resources, particularly run time, but 
also potentially storage requirement. This problem increases substantially when making use of more 
extensive systems of models, as in activity-based modelling (see e.g. Bradley et al., [1]). An option 
to reduce these computational demands is to use sampling to restrict the number of alternatives 
actually used in estimation.  
 
McFadden [2] set out the Positive Conditioning (PC) property under which consistent estimates of a 
Multinomial Logit (MNL) can be obtained using sampling of alternatives. Estimation under 
sampling with PC sampling procedures requires maximisation of a modified likelihood function 
with an added correction term in the utility function. Much more recently, Guevara and Ben-Akiva 
[3], hereafter abbreviated to GBA, extend the work of McFadden [2] to the GEV framework, so that 
consistent estimates can be obtained for two-level nested logit models, either tree-nested or cross-
nested. Since the denominator of the logit formula and the additional GEV term introduced by 
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Guevara and Ben-Akiva in these nested logit models both contain a logsum calculated over a set of 
alternatives, sampling needs to be done at two points in the GEV framework. It is important to note 
that the sampling procedure need not be the same at the two points. In this paper, we further explore 
the research programme started by GBA for GEV models, in particular looking at making the work 
practical for large scale modelling.  
 
Sampling of alternatives inevitably leads to increased error in parameter estimation. Nerella and 
Bhat [4] give an indication of the magnitude of the error, both for MNL and for more complicated 
models, such as mixed logit. For MNL, they give some guidelines on minimum sample size to 
achieve stability, but that is with a simple sampling strategy in simulated data and so not likely to be 
transferable to real data and more efficient sampling procedures. In particular, the efficiency of 
sampling can vary substantially between contexts and sampling procedures. Sampling alternatives 
in MNL or GEV inevitably causes noise, but we would not be able to state in advance what that 
noise would be in a specific situation. GBA can only recommend empirical testing to derive 
appropriate sampling levels. 
 
In this paper, we extend the current state of knowledge on the impact of alternative PC sampling 
procedures and the resulting sampling error in MNL and GEV models. We particularly focus on 
mode and destination choice models. Typically, in these types of models individuals are faced with 
various modes and destination choices of which the choice probability is heavily affected by the 
travel accessibility from a specific origin. We investigate the way in which different distributions of 
choice probability over the alternatives, as would occur with variations in mode choice and trip 
length for different travel purposes, affects the effectiveness of different PC sampling schemes and 
estimation procedures. Like Nerella and Bhat [4] we use simulated data, but with a clear focus on 
applicability. Hence, the aim is to provide more transferable results on the arising sampling error. 
 
Our focus differs from GBA, who apply their framework in a residential location choice model. The 
properties of mode and destination choice models are different from residential choices, because the 
choice probability is much more strongly linked to the travel accessibility from a specific origin. A 
clear aim of the paper is therefore to test the impact of alternative PC sampling in such a setting on 
the resulting sampling error in the GBA framework. In short, using simulated data we evaluate the 
efficiency and effectiveness of the Guevara-Ben-Akiva approach by exploring various PC sampling 
schemes in an attempt to minimise the estimation error for a given computational burden.  
 
A further contribution of this paper is to simplify the approach of Guevara and Ben-Akiva to make 
it practical for large-scale modelling using existing efficient software. The simplification is 
achieved by reparameterising the nested logit model. Tests of the approach are made indicating the 
efficiency of the approach and how the errors vary as a function of model parameters and the level 
of sampling adopted. 
 
In the following section of the paper, we discuss sampling strategies and how these may be 
expected to affect both the computation time and the accuracy of the modelling. This topic does not 
seem to have been discussed at any length in the literature and, as an initial contribution, we give 
some results on sampling procedures and then on sampling error in MNL, which in turn give 
indications for methods and errors in more complex models. The following section looks at the 
issues of sampling in GEV models, drawing on the work of Guevara and Ben-Akiva but taking a 
more practical and simpler approach intended for large-scale applications. Section 4 presents the 
results of tests based on simulated mode and destination choice models. The final section presents 
conclusions and recommendations for applications and future research. 
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2. Sampling strategies and error in MNL 
 
McFadden [2] set out the PC property under which consistent estimates of a MNL can be obtained 
with alternative sampling. Specifically, he showed that asymptotically consistent estimates of model 
parameters can be obtained if we maximise a modified log likelihood function, with a contribution 
for each observed choice of 
 

ܮ  ൌ log ୣ୶୮ሺ௏೎ା୪୭୥ గሺ஽ȁ௖ሻ ሻσ ୣ୶୮൫௏ೕା୪୭୥ గሺ஽ȁ௝ሻ ൯ೕאವ       (1) 

 
where ௝ܸ is the systematic part of utility for alternative ݆; 
 ܿ is the chosen alternative; ܦ is the sampled set of alternatives, which is a subset of the set of all available alternatives ܥ; and 
 .if ݆ is the chosen alternative ,ܦ ȁ݆ሻ is the probability of samplingܦሺߨ 
 
The PC property, i.e. positive conditioning, is the condition that ߨሺܦȁ݆ሻ ൐ Ͳ ׊ ݆ א  which is ,ܦ
clearly necessary to evaluate (1). Note that it is also essential that the chosen alternative ܿ is 
included in ܦ. For estimation purposes, (1) implies working as if ܦ was the complete choice set, not ܥ. 
 
Clearly, if ߨሺܦȁ݆ሻ is the same for all ݆ א  then it will cancel out in (1). The system then conforms ,ܦ
with the Uniform Conditioning (UC) property also defined in McFadden [2]. The simplicity of UC 
is attractive, but in many practical cases some alternatives are much more important than others, in 
the sense of being much more likely to be chosen, so that the general PC approach with unequal ߨ 
values is more efficient. In particular, in modelling destination choice it is clear that nearer 
alternatives are each much more likely to be chosen than distant alternatives and common sense 
suggests they are therefore more relevant for modelling. Some intuition on how ‘important’ 
alternatives should be identified is given in Section 2.2. 
 
An important point in practice is that McFadden’s PC theorem requires the assumption that the true 
choice model is MNL. In practice, this will often not be the case and the consequence is then that 
estimation using the amended likelihood function may not give consistent estimates of the 
parameters that would be obtained when using the full model. However, in this case, neither the 
base MNL nor the sampled version is estimated correctly or gives a true representation of 
behaviour. The theorem also requires that each choice observation be treated as independent, an 
assumption we shall maintain in this paper, though in some important practical cases the 
assumption may not be appropriate. The assumption will usually be valid if each observed choice is 
made by a separate individual as is the case in most revealed preference studies and thus large scale 
models by extension. 
 
2.1 Practical strategies for PC sampling 
 
A practical approach for PC is to use independent sampling, where each unchosen alternative ݆ is 
included in the sample with probability ݍ௝, making a separate draw for each alternative. Another 
approach is to sample a fixed number of times from ܥ, with replacement, giving each alternative a 
probability ݍ௝ of being sampled at each draw, then deleting the duplicate sampled alternatives. In 
each case these strategies yield 
 

ȁ݆ሻܦሺߨ  ൌ ଵ௤ೕ  ሻ        (2)ܦሺܭ
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with ܭሺܦሻ independent of ݆ (Ben-Akiva and Lerman [5], equations 9.22 and 9.23). Examining the 
log likelihood (1), we see that ܭሺܦሻ cancels out and we are left with 
 

ܮ  ൌ log ൬ ୣ୶୮ሺ௏೎ି୪୭୥ ௤೎ ሻσ ୣ୶୮൫௏ೕି୪୭୥ ௤ೕ ൯ೕאವ ൰ ൌ ௖ܸெ െ log σ exp ௝ܸெ௝א஽   (3) 

 
where ௝ܸெ ൌ ௝ܸ െ log  .݆ ௝ is an amended utility function for alternativeݍ
 
With independent sampling the expected set size is σ ஼א௝௝ݍ  but there is quite likely to be some 
variation around this number. When sampling with replacement the probabilities ݍ௝ must sum to 1, 
of course, but the advantage claimed in Ben-Akiva and Lerman for this method is that the size of 
the set ܦ varies less than with independent sampling. However, the expected set size is more 
complicated to determine. In each case we can adjust the sampling rate to obtain a suitable balance 
between sampling error and computational cost. 
 
Another sampling strategy, stratified sampling, involves division of the choice set into a number of 
strata and sampling a fixed number of alternatives in each stratum. For efficiency, the relative 
frequencies of selection would relate approximately to the choice probabilities. Ben-Akiva and 
Lerman show how to calculate the values of ߨሺܦȁ݆ሻ when the sample rate is constant in each 
stratum and indicate that the main advantage of this approach is that fixed set sizes are obtained for ܦ. However, a fixed set size does not necessarily give an important advantage in practical 
estimation, particularly when the number of alternatives sampled from each stratum provides an 
inadequate representation of the underlying choice probabilities. 
 
Some aspects of the sampling issues can be tested quite readily by simulation, as we will now 
illustrate in the context of destination choice among zones in a hypothetical study area. These 
simulations are based on 10,000 draws of sets of destinations from a total set of 100. For person n 
out of N (with N=5,000), the travel time by car to destination j (j=1,…,100) is assumed to be given 
by: 
 
௡ǡ௝ܿݐݐ  ൌ  ௡ǡ௝ǡଵͳͲඥ݆        (4)ݑ

 
The term ݑ௡ǡ௝ǡଵ is a random component that serves to add variance across individuals in the travel 
times to given destinations, where ݑ௡ǡ௝ǡଵ is uniformly distributed across individuals and destinations 
between 0.8 and 1.2. The square root also ensures that there are more opportunities (destinations) at 
increasing distance. 
 
Each destination is attributed a utility function of  
 
 ௡ܸǡ௝ ൌ ௧௧௖ߚ Ǥ ௡ǡ௝ܿݐݐ ൅ Ǥߛ ௝ୀଵߜ ൅ Ǥߟ  ௝ୀ଺ଶǥ଺଺     (5)ߜ
 
where ߜ௝ୀଵ indicates a trip to zone 1, perhaps the origin zone of the trip; ߜ௝ୀ଺ଶǥ଺଺ indicates a trip to the ‘central area’ formed of zones 62 to 66; 
௧௧௖ߚ  ǡ  .are the assumed parameters of the model ߟ and ߛ
 
In these models we set ߛ ൌ ͳ and ߟ ൌ ͳ and ߚ௧௧௖ is set to scale the impact of distance. The 
advantage of different approaches may vary with the size of the study area relative to mean trip 
lengths and this is represented in the simulations by varying ߚ௧௧௖: a larger negative value implies 
shorter trip lengths or, equivalently, a larger study area relative to a given trip length. Two sets of 



5 
 

samples were drawn, each with varying values of ߚ௧௧௖, with five different values, going from -0.03 
to -0.11 in steps of 0.02. Independent sampling is undertaken with ݍ௝ ൌ ݂Ǥ exp ௝ܸ σ exp ௞ܸΤ  and ݂ is 
set to achieve a roughly uniform sample size. In the first set of 10,000 samples for each ߚ௧௧௖, we 
aimed for a sample of approximately 1 in 6 destinations, while the second aimed for approximately 
1 in 12. Replacement sampling is undertaken ܬሚ times, with ݍ௝ ൌ exp ௝ܸ σ exp ௞ܸΤ  and ܬሚ set to 
achieve a roughly uniform sample size, again using two samples, one at around 1 in 6 and one at 
around 1 in 12 destinations. Sampling without replacement was done with 16 or 8 samples each 
time, with ݍ௝ ൌ exp ௝ܸ σ exp ௞ܸΤ  and the denominator reduced at each step to account for the 
sampling at the previous step. We excluded stratified sampling from this analysis after initial results 
confirmed that it consistently led to the poorest performance overall. The appropriate sampling rate 
for a particular study will depend on the computational cost and the estimation accuracy required.  
 
The results from this simulation process are summarised in Error! Reference source not found.. 
We also show the coverage of expected choices, which is the expected cumulative choice 
probability covered by the sampled alternatives. Finally, to avoid dependence on the precise sample 
sizes, measures of ‘effort’ and ‘variation’ were devised as follows: 
ݐݎ݋݂݂ܧ   ൌ ாሺ௙௥௔௖௧௜௢௡ ௢௙ ௔௟௧௘௥௡௔௧௜௩௘௦ ௦௔௠௣௟௘ௗሻாሺ௖௨௠௨௟௔௧௜௩௘ ௖௛௢௜௖௘ ௣௥௢௕௔௕௜௟௜௧௬ ௢௙ ௦௔௠௣௟௘ௗ ௔௟௧௘௥௡௔௧௜௩௘௦ሻ (6) 

݊݋݅ݐܽ݅ݎܸܽ ൌ  ௌ௧Ǥௗ௘௩Ǥ  ௢௙ ௡௨௠௕௘௥ ௢௙ ௔௟௧௘௥௡௔௧௜௩௘௦ ௦௔௠௣௟௘ௗாሺ௡௨௠௕௘௥ ௢௙ ௔௟௧௘௥௡௔௧௜௩௘௦ ௦௔௠௣௟௘ௗሻ    (7) 

 
The effort relates to the relative computation effort required for each of these protocols, calculated 
as the ratio of the expected percentage of alternatives sampled over the expected cumulative choice 
probability (i.e. the coverage of expected choices) covered by the sampled alternatives. The 
variation is simply the coefficient of variation of the sampled set size in the runs, for those strategies 
where the sample size varies across respondents. 
 
[Table 1 about here] 
 
As can be seen in Error! Reference source not found., with the approximate 1/6 sampling rate, 
the coverage of expected choices runs from about 30% with a value of –0.03 for ߚ௧௧௖ to about 90% 
with a value of             -0.11 for ߚ௧௧௖.  Clearly, it is not possible for the analyst to control the model 
parameters, which are a function of behaviour and the study area, but it is possible to control the 
sampling rate. To see the effect of changing this rate, we can note that when aiming for a sampling 
rate of about 1/12, the coverage of expected choices runs from about 20% to 80% as ߚ௧௧௖ varies.  
 
Looking at the measures of effort and variation, we can see that for the former, the differences 
between the sampling approaches are very small and all the procedures become more efficient as ߚ௧௧௖ becomes more strongly negative, and the initial small advantage of independent sampling 
essentially disappears. In the 1/12 runs, with replacement and without replacement sampling give 
indistinguishable results in terms of effort. For the same value of ߚ௧௧௖, the relative effort is 
substantially less in the 1/12 runs across all values of ߚ௧௧௖; that is, more than half of the coverage is 
achieved when we sample half as many alternatives with these protocols. 
 
Turning to the coefficient of variation of the sampled set size for those strategies where the sample 
size varies (i.e. independent and replacement sampling), we can see that while, for small values of ߚ௧௧௖, replacement sampling gives less variation than independent sampling, as expected, the 
difference decreases substantially as the parameter increases and for the largest value in the 1/6 
runs, independent sampling gives a less variable set size, contrary to the expectation of Ben-Akiva 
and Lerman [5]. Contrary to what we saw for effort, the relative variation in set size is nearly 



6 
 

doubled for both independent and with-replacement sampling in the 1/12 runs, while the advantage 
in this respect of with-replacement sampling is retained for the full range of ߚ௧௧௖ values tested. 
 
These tests show that there is little to choose in efficiency between the three main sampling 
strategies that might be considered. The impact of varying set sizes is not very important in 
practice, while the simplicity of calculation for independent sampling is very helpful in the 
calculations we need to make in the remainder of the paper; these involve more issues than just the 
correction ߨሺܦȁ݆ሻ. For this reason we use independent sampling in the rest of the paper. 
 
2.2 Sampling error in PC sampling 
 
The work of GBA, discussed in more detail in the following section, indicates that the ‘sandwich’ 
matrix can be used to obtain the error in the parameter estimates for a GEV model when the 
alternatives are sampled. It does not seem to have been noted previously in the literature that this 
result can be applied to MNL. This finding is important and implies that sandwich error estimators 
should be used in all cases when alternatives are sampled. However, the sandwich matrix includes 
both the error induced by sampling alternatives and the ‘ordinary’ error that would be present if the 
full sample of alternatives were used. To determine how sampling error varies with the size of the 
sample of alternatives, and therefore what a suitable sample size might be in any given context, 
requires more specific analysis. 
 
A simple approach to assessing sampling error is to calculate the coverage or the fraction of 
expected choices that are captured by ܦ: 
 

 ஽ܲ ൌ σ expቀܸ݆ቁ݆ܦאσ expቀܸ݆ቁ݆ܥא         (8) 

 
This approach is taken by Miller et al. [6] in the context of sampling alternatives for application. It 
is intuitively clear that as the fraction increases then the approximation will generally improve. But 
this is a rough measure of sampling error.  
 
The standard MNL gives the log probability of the observed choice ܿ for a single individual by 
 

ܮ  ൌ log ௖݌ ൌ ௖ܸ െ log σ exp൫ ௝ܸ൯௝א஼      (9) 
 
The objective of sampling alternatives is to save time by not evaluating the logsum, the last term in 
(9), in full. That is, writing exp൫ ௝ܸ൯ ൌ ܹ ௝ for economy of notation, we want to estimateݓ ൌσ ஼א௝௝ݓ  by ෩ܹ ൌ σ ௪ೕ௤ೕ௝א஽ , where ܦ is the set of ݆ that have been sampled from C and ݍ௝ is the 

expansion factor for each ݆. That is, we approximate 
 

ܮ  ؆ ௖ܸ െ log ෩ܹ ൌ ௖ܸ െ log σ ୣ୶୮൫௏ೕ൯௤ೕ௝א஽     (10) 

 
If we apply independent sampling, so that ݍ௝ is simply the sampling probability for ݆, the variance 
of ෩ܹ  over different samples is given by 
 

 var൫ ෩ܹ ൯ ൌ σ ൬௪ೕ௤ೕ ൰ଶ ஼א௝௝ݍ ൫ͳ െ ௝൯ݍ ൌ σ ௝ଶݓ ൬ ଵ௤ೕ െ ͳ൰௝א஼   (11) 
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The variance can obviously be reduced by increasing ݍ௝ and clearly becomes zero when ݍ௝ ൌ ͳ for 
all ݆. However, the calculation cost is proportional to the number of alternatives sampled and the 
expectation of this number is given by σ ஼א௝௝ݍ . Holding this expected calculation cost fixed, it is 
quite easy to see that the variance (11) is minimised when ݍ௝ ൌ ݇Ǥ  ௝ for a constant ݇ (see alsoݓ
Hammersley and Handscomb [7]). This result gives a strong indication that the intuitive attribution 
of sampling probability as approximately proportional to ‘importance’, measured by exp൫ ௝ܸ൯ ൌ  ,௝ݓ
i.e. roughly proportional to choice probability, is a reasonable way to minimise error. Of course, we 
cannot calculate the true exp ௝ܸ in advance of estimating the model, so importance sampling has to 
be performed with an approximate proxy used for ݓ௝. This will usually be done using information 
from previous studies and therefore does not introduce endogeneity with the estimates to be made 
on the basis of the sample drawn. 
 
The calculations above apply for independent sampling. For replacement sampling we might expect 
that an equation like (11) could be developed, though it would not necessarily be so simple. For 
other sampling protocols the formulae are likely to be even more complicated. This is the chief 
reason we have adopted independent sampling for the current paper, although we showed above 
that it was also likely to be a good approach on criteria of efficiency. 
 
The error in the likelihood-contribution calculation (9), to which ෩ܹ  contributes the sampling error, 
can be estimated as  
 

 varሺܮሻ ؆ ቀ డ௅డௐ෩ ቁଶ
var൫ ෩ܹ ൯ ൌ varሺௐ෩ ሻௐ෩ మ ؆ varሺௐ෩ ሻௐమ     (12) 

 
The final approximation follows because ෩ܹ  is an estimate of ܹ and, using (11) to obtain var൫ ෩ܹ ൯, 
we are then able to make a calculation of the expected error variance (12) in terms of quantities that 
are known before any sampling is done. 
 
Thus, for MNL, the error in the log likelihood is equal to the square of the coefficient of variation of ෩ܹ , which in turn is a function of simple statistics of the set ܦ. It may be noted that the calculations 
needed to derive the expected value of varሺܮሻ, i.e. (11) and (12), can be made in advance, so that a 
sample size can be set a priori to obtain an appropriate balance between likelihood error and sample 
effort. 
 
In order to check that (11) and (12) give a good expectation of the likelihood variation to be found 
in practice with models estimated on samples, the relevant statistics were derived for a series of 
simulation runs. These runs used the same independent sampling approach described in the previous 
section, with approximate 1/12 samples and with the same settings in terms of five different values 
for ߚ௧௧௖ and corresponding values for f to ensure the 1/12 rate. The results are shown in Error! 
Reference source not found., where, alongside (11) and (12), we also include the crude measure 
from (8). 
 
The first measure shows that the coverage given by the sampling increases substantially as distance 
becomes more important, i.e. with increases in ߚ௧௧௖. That is, importance sampling is more effective 
when there is a strong impact of distance in determining choice. The second measure shows that, in 
parallel, the variation in the estimated logsum ෩ܹ  reduces substantially. Finally, the calculation 
results for the third measure show that likelihood variation with sampling of alternatives reduces 
dramatically as the distance effect grows. Clearly, if these measures connect to errors in parameter 
estimates then sampling can be reduced more when the distance effect is greater.  
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While these measures are indicative, further work is also needed to determine how the error in 
likelihood calculation (12) carries through to error in parameter estimation. It seems likely that there 
would be a proportionality relationship. Meanwhile we can use the approximate error indicators ஽ܲ 
and varሺܮሻ, the latter calculated using (11) and (12), to obtain some insight into error. 
 
3. Sampling in GEV models 
 
In this section we move from the basic MNL model to the GEV framework, where we start with a 
brief overview of the literature of sampling in a GEV framework, go on to summarise the parts of 
the GBA work most relevant for our study and close by outlining the developments we propose. 
 
3.1 Previous research  
 
It is important to distinguish between sampling of alternatives, which is the focus of the current 
work, and sampling of observations, an important issue but one which is not directly related to the 
sampling of alternatives. The distinction is not always made clear in literature reviews. For 
example, Koppelman and Garrow [8] do not discuss sampling alternatives at all. Another paper that 
is mentioned in literature reviews is Mabit and Fosgerau [9], but again this does not mention the 
sampling of alternatives.  
 
Bierlaire et al. [10]) is also aimed chiefly at the issue of sampling observations. However, “for the 
sake of completeness”, they give some attention to sampling alternatives, deriving results that 
foreshadow somewhat the work of GBA. However, the latter work is more complete and more 
directly focussed on our topic of interest. Frejinger et al. [11] do not deal with models beyond MNL 
except through the ‘path size’ correction and the PC correction is therefore sufficient for their work. 
Similarly, Train [12] does not go beyond the results given in McFadden [2].  
 
Lee and Waddell [13] claim to provide the first consistent estimator for tree-nested logit with 
sampling of alternatives. The formula (their equation 5) is simple, the logsum used in the higher 
(unsampled) level is 
 

 ௠ܸ ൌ ቀଵఓቁ log ቀσ ቀଵோቁ expሺߤ ௜ܸሻ௜א௠ ቁ     (13) 

 
where ܴ is the sampling rate “which only applies to the sampled non-chosen alternatives”, so they 
apply a rate of 1 to the chosen alternative. The estimate of the logsum is therefore a function of the 
chosen alternative. When ߤ ൌ ͳ, i.e. the model is MNL, (13) is different from McFadden’s PC, so 
that it appears that the Lee and Waddell procedure is incorrect and, indeed, simple simulations can 
serve to confirm that a bias is introduced. 
 
Our investigation takes the work of GBA as a starting point. Their work is more complete than e.g. 
Bierlaire et al. [10] and directly focussed on our topic of interest. 
 
3.2 Guevara and Ben-Akiva work 
 
GBA give the theorem that consistent estimation of a GEV model (McFadden [2] introduces the 
GEV family) based on a sample of alternatives ܦ can be achieved by a correction of the logit utility 
function 
 
 ௜ܸכ ൌ ௜ܸ ൅ log ሻכܦ௜ሺܩ ൅ log  ȁ݅ሻ     (14)ܦሺߨ
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where ߨሺܦȁ݅ሻ is the probability of selecting the reduced choice set ܦ, given that ݅ is the chosen 
alternative; we note that this is reassuringly the standard McFadden PC correction; 

 here ;ܩ ௜ is the derivative with respect to its ݅th argument of the GEV generating functionܩ 
we note that it is calculated over a restricted choice set כܦ. This set has to be chosen to give 
an unbiased estimate of the true ܩ௜ calculated over ܥ and exactly how this is to be done is 
discussed further below. 

 
The theorem also gives the error in the parameter estimates as asymptotically normal, with 
covariance equal to the well-known ‘sandwich’ matrix (cf. Huber [14]), subject to technical 
conditions. 
 
In an MNL model, ܩ௜ ൌ ͳ for all the alternatives, so that this term disappears from the function and 
we return to the standard McFadden MNL PC formulation. However, in more general GEV, such as 
nested logit, this term does not disappear. Ben-Akiva and Lerman [5] show that (14) can be used 
(without sampling, i.e. without the ߨ term) to represent any GEV model, so that the GBA theorem 
using (14) represents an intuitive extension of both McFadden sampling and the Ben-Akiva/Lerman 
finding. 
 
For two-level tree-nested logit (i.e. excluding the possibility of cross-nesting), GBA obtain the 
formula: 
 

 log ௜ܩ ൌ ൬ ሺ݅ሻ݉ߤߤ െ ͳ൰ ሺ݉ሺ݅ሻሻ݉ݑݏ݃݋݈ ൅ log ߤ ൅ ቀ݉ߤሺ݅ሻ െ ͳቁ ௜ܸ  (15) 

 
where ߤ௠ሺ௜ሻ is the nesting coefficient for the nest ݉ሺ݅ሻ that contains alternative ݅. 
 
In this formula, the logsum has to be approximated, in addition to the standard logsum in the choice 
probability, as otherwise we need to make calculations for all the alternatives, defeating the 
objective of saving calculation time. The estimator GBA propose for the logsum for nest ݉ is given 
by: 
 

ሺ݉ሻ݉ݑݏ݃݋݈  ൎ log σ ௡෤ೕாሺ௝ሻ௝א஽כሺ௠ሻ exp൫ߤ௠ ௝ܸ൯    (16) 
 
where כܦሺ݉ሻ is the set of sampled alternatives within nest ݉; 
 ௝݊  is the number of times alternative ݆ is actually sampled and 
 .ሺ݆ሻ is the expectation of this numberܧ 
 
It is shown by GBA that the term ෤݊௝ ሺ݆ሻΤܧ  is exactly the expansion factor required to obtain an 
unbiased estimate of the logsum. It is important to note that the sampling procedure used to obtain כܦ to estimate the logsum need not be the same as the procedure used to sample the set ܦ. A key 
consideration is that the set ܦ must contain the chosen alternative, so that the probability that it is 
selected depends on the choice probabilities and hence on the parameters of the model. GBA 
discuss two alternative procedures and show them to work well on simulated data. 
 

1. The same sampling can be used, i.e. כܦ ൌ  on the chosen alternative, the expansion factors depend on the model parameters and the ܦ but in this case, because of the dependence of ,ܦ
model must be estimated iteratively or by approximate methods.  

2. Using separate sampling procedures, such that the sampling for כܦ for the logsum 
approximation does not depend on the chosen alternative, does not require iterative 
estimation or further approximations. 
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Clearly, procedure 2 without iteration is more convenient in practice. Further, it also appears that in 
existing software, procedure 2 is easier to implement. Finally, GBA give no guarantee that the 
iterative process 1 converges, although no problems are reported from their tests. Procedure 2 is 
therefore to be recommended, provided the analyst has sufficient access to the data to make the 
required manipulations. 
 
3.3 Implementation in practice 
 
For practical work, equations (15) and (16), as presented by GBA, are inconvenient and not 
immediately suited to implementation in practical software suitable for large-scale modelling. 
However, by making some simple changes we can make that implementation, as we now show. 
 
If we apply independent sampling for כܦ, ෤݊௝ ൌ ͳ for ݆ א ሺ݆ሻܧ ሺ݉ሻ andכܦ ൌ  ௝, so that (16) can beݍ
written as: 
 

ሺ݉ሻ݉ݑݏ݃݋݈  ൎ log σ exp൫ߤ௠ ௝ܸ െ log ሺ௠ሻכ஽א௝൯௝ݍ    (17) 
 
The GBA equations (15), (16) and (17) are written for a tree logit specification as used in e.g. Ben-
Akiva & Lerman [5], which divide utilities in the nest-specific choice probabilities by the structural 
parameter. This is the specification also sometimes referred to as RU2 – see Hensher et al. [15]. For 
practical implementation it is easier to use the version which lacks this normalisation, referred to as 
RU1 by Hensher et al., [15] and as implemented in ALOGIT, where consistency with utility 
maximisation is ensured through an equality constraint between structural parameters on a given 
level. We have: 
 
௠ߤ  ൌ ͳǡ for all ݉ and, to simplify further,    ߤ ൌ ߶ ൅ ͳ  (18) 
 
which gives the much simpler equation, replacing (15): 
 
 log ௜ܩ ൌ ߶Ǥ ሺ݉ሻ݉ݑݏ݃݋݈ ൅ logሺ߶ ൅ ͳሻ    (19) 
 
Moreover, the term logሺ߶ ൅ ͳሻ is constant across the alternatives and can therefore be omitted from 
the practical calculations. Thus, if we are using independent or with-replacement sampling for ܦ, 
and using the brief notation ௝ܸெ ൌ ௝ܸ െ log  ௝ is a constant in theݍ ௝ introduced in (3), noting thatݍ
estimation process, we can implement (14) as  
 

 ௜ܸכ ൌ ௜ܸெ ൅ ߶Ǥ log σ exp ௝ܸெ௝א஽כሺ௠ሺ௜ሻሻ      (20) 
 
This is the form we use in our practical tests. Note that െͳ ൏ ߶ ൑ Ͳ to be consistent with the usual 
constraints on structural parameters in nested logit. A simple approach, which we have used, is to 
use ܦ ൌ כܦ ׫ ሼܿሽ, i.e. creating ܦ by adding the chosen alternative if it is not already selected by the 
sampling procedure for כܦ. 
 
As mentioned above, the constraint that ߤ௠ is constant across the nests ݉ is necessary to apply this 
specification consistently with Random Utility theory without introducing multiple levels of 
nesting. In mode-destination choice modelling this constraint would usually be applied. 
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4. Empirical tests 
 
This section presents the results of an empirical analysis on simulated data aimed at providing 
empirical support to the discussions in Section 3. We also include runs using MNL models, where, 
in contrast with Section 2, we now look at bias in estimates while the focus before was on sampling 
error. This practical testing is aimed at modelling mode-destination choice, a context that involves 
different considerations from those studied by GBA, who looked at residential location choice. 
Indeed, destination choice is much more strongly dependent on separation that residential choice, so 
that the PC approach is more important.   
 
4.1 Set up for practical testing  
 
The practical tests reported here relate to modelling the choice of mode and destination, an 
important practical issue arising in travel demand forecasting studies. A simple approach to 
sampling alternatives in these studies is to make a sample of destinations, including in the sampled 
choice set all of the modes that are relevant for the sampled destinations. 
 
An interesting feature of the GBA result is that, if sampling is such that no logsums require 
approximation, then no correction is required. For example, if we have a mode-destination choice 
model with destinations ‘above’ modes (i.e. the destination utility contains a logsum over modes) 
and we sample destinations but not modes, then there is no approximation of logsums. That is, in 
 is always the complete set of alternatives (modes) in each nest corresponding to a כܦ ,(20)
destination that is sampled. But if modes are ‘above’ destinations (the mode utility includes a 
logsum over destinations) then a sampling correction is required. A practical investigation of mode 
and destination choice should investigate both these possibilities. The testing in this paper, 
however, investigates only the case of modes above destinations, where correction is required. 
 
For the implementation of (20), two approaches can be considered. 

1. The logsum term log൫σ exp൫ ௝ܸ െ log ሺ௠ሻכ஽א௝൯௝ݍ ൯ can be pre-calculated using preliminary 
estimates of the model parameters inside ܸ. These logsums can then be used in a simple 
MNL model to obtain an estimate of ߶ and new estimates of the parameters inside ܸ, which 
then permit an updated calculation of the logsums. This begins an iterative procedure which, 
perhaps with luck, will converge.  

2. A notional tree structure can be set up, with each of the alternatives in כܦ appearing in a nest 
feeding into each of the alternatives in ܦ. This formulation is of course more complicated 
than approach 1, but does not require iteration and does not require an appeal to luck to 
converge.  

 
In the practical tests we focus on the second approach. 
 
The setup for our empirical tests reuses the sampling basic ideas from Section 2.1 with 100 
destinations. We now however add a second mode, public transport, with: 
 

ܲݐݐ  ௡ܶǡ௝ ൌ ସଷ  ௡ǡ௝ǡଶͳͲඥ݆       (21)ݑ

 
The term ݑ௡ǡ௝ǡଶ is again a random component that serves to add variance across individuals in the 
travel times to given destinations, where ݑ௡ǡ௝ǡଶ is uniformly distributed across individuals and 

destinations between 0.8 and 1.8, creating more variance than for car travel; the additional 
ସଷ 

multiplier gives slower speeds for public transport than car. The utility function for public transport 
follows the same approach as for car, with: 
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 ௡ܸǡ௝ ൌ ௧௧௉்ߚ Ǥ ܲݐݐ ௡ܶǡ௝ ൅ Ǥߛ ௝ୀଵߜ ൅ Ǥߟ  ௝ୀ଺ଶǥ଺଺,     (22)ߜ
 
with no mode specific constants. In our simulation work, we choose values of f to ensure sampling 
rates of roughly 1/12, reusing the same five ‘true’ values for ߚ௧௧௖ (-0.03; -0.05; -0.07; -0.09 

and -0.11) and f (8; 9; 10; 12; 15) as in Section 2.1, with ߚ௧௧௉் ൌ ଻ଷ  ௧௧௖ to lead to a much higherߚ

travel time sensitivity on public transport. We use independent sampling in our empirical work, 
with ten sets of choices simulated for each sample and ten different samples of destinations drawn, 
for each set of true parameter values. This thus leads to a total of 500 samples from which models 
are estimated.  
 
4.2 Estimation results 
 
Three different versions of the 500 samples were generated for empirical testing. In the first set, we 
made use of a MNL model in simulation but focussed on destination choice only, under the 
assumption that car is chosen. The full choice set thus includes 100 alternatives, where we use the 
parameter values given in Section 4.1 in simulating the data. The second set of 500 samples were 
generated once again using a MNL model where we now however looked jointly at mode and 
destination choice thus using 200 alternatives in the full choice set. Finally, we also simulated 
choices for a Nested Logit model, using the coefficient and F values from Section 4.1 and with 
nesting by mode, with a true value of 0.5 for the structural parameter, giving a true value of -0.5 for ߶ in (20), and true values of 1 for Ȗ and Ș. The estimation results are summarised in Error! 
Reference source not found.. In presenting the results, we average first across the ten sets of 
choices in each sample, and then give the means and standard deviations of the relevant measures 
across the ten samples of alternatives. In this way we focus on the variation over alternative 
sampling, which is the aim of the paper, and attempt to reduce the impacts of simulating the data 
and choices. 

The presentation of results focusses on measures of bias, with the actual estimates not reported here 
(being directly related to the reported bias). We first note very high stability across the ten samples 
of alternatives within each set of simulations, with coefficients of variation for all estimates and t-
ratios never going above 0.07 in absolute values. This is a strong indication of the stability of the 
results across samples meaning that the sole interest now is in the reliability of the resulting 
estimates.  
 
The mean percentage bias in absolute value across all models and all settings is a mere 1.6%, with 
the highest bias being 8% (Ș in setting 4 for the mode destination MNL). This includes the 
estimation of ʔ in the Nested Logit model, suggesting that the proposed approach in (20) could be 
an attractive solution for large scale Nested Logit applications. In addition, we compared the bias in 
each model to the standard errors for the associated parameter, and the table reports the mean values 
in these t-ratios across samples, as well as the variation. There are only two cases with moderate 
levels of significance for the bias, both in the Nested Logit runs using the lowest values for the time 
coefficients, with an average t-ratio of -1.99 for the bias in ȕttPT  and an average t-ratio of -1.84 for 
the bias in ĳ. The actual associated levels of bias remain very small, at 5.5% and 6.1%, respectively. 
 
In principle, we would hope to be able to relate the variation in the coefficient estimates across the 
alternative-sampling runs to the analytic measures of error derived in Section 2.2, which are 
repeated in Error! Reference source not found.. However, the variation in the parameters, even at 
this relatively low level of sampling, is so small that such a connection is not possible.  
 
[Table 3 about here] 
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The simulation runs were made (in part) on an industry-standard laptop computer. On this machine, 
the estimations (to convergence) averaged 1.3 seconds for the MNL destination choice model, 2.4 
seconds for the MNL mode-destination choice model and 39.4 seconds for the nested model in the 
ALOGIT software. While the extension of the model with the notional nest in (20) to accommodate 
the logsum estimation increases the run time substantially, it remains entirely practical. 
 
Our results are not directly comparable to those of the two-level nested logit model presented by 
GBA. Apart from applying a different model specification and normalization, they explore the bias 
associated with i) alternative methods for sampling of alternatives, at ii) alternative sampling rates. 
Our analysis has explored the resampling approach, identified by GBA as being the most well-
behaved method, at a fixed sampling rate over a range of varying parameter values. Like GBA, our 
t-ratios for the bias are sufficiently low to assume that our proposed RU1 modification of the GBA 
approach can offers substantial computational benefits for practitioners of large scale nested choice 
models.   
5.  Conclusions 
 
This paper has addressed the issue of sampling alternatives for practical work in large-scale models, 
with particular reference to the mode-destination choice models used in transport planning. The 
early work of McFadden [2], applicable only to MNL, remained the only approach for 30 years. 
Even for McFadden’s approach, little was known about the error introduced by sampling and the 
best approach to minimise that error. 
 
The paper investigates the potential sampling approaches and their efficiency, concluding that 
independent and with replacement sampling offer efficiency and simple correction procedures. 
Without-replacement sampling is a little less efficient and more complex to correct, while stratified 
sampling is not efficient.  
 
In practical work, we start from the theorem of GBA that has recently taken sampling of 
alternatives forward significantly by allowing consistent estimation for GEV models that go beyond 
MNL. However, their formulae are not suitable for practical work and we present simplified 
formulae for tree-nested logit models. 
 
In practical testing we present simulation results from MNL models of destination and mode-
destination choice, showing that the variation of parameter estimates is small and bias is nearly 
absent. Similarly, we apply the simplified GBA formulae to estimate tree-nested models, again 
showing that bias is absent and variation across samples of alternatives is small. 
 
We conclude that this approach represents a worthwhile possibility for practical implementation. 
Tests using real data should next be undertaken to test its practicality. 
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Table 4: Results of simulation experiments for destination choice 7 

  Independent sampling Replacement sampling Without replacement 
 average ݂ ܿݐݐߚ 

sample 
average 

coverage 
effort variation ܬሚ average 

sample 
average 

coverage effort variation average 
coverage effort 

A
im

in
g 

fo
r 

1/
6 

–0.03 17 16.28 31.99% 0.51 0.21 20 16.66 30.51% 0.55 0.09 29.44% 0.54 
–0.05 19 16.25 53.03% 0.31 0.18 25 16.97 50.19% 0.34 0.12 48.32% 0.33 
–0.07 25 16.72 73.33% 0.23 0.16 33 16.56 68.46% 0.24 0.14 67.33% 0.24 
–0.09 36 16.64 85.58% 0.19 0.14 50 16.74 82.57% 0.20 0.14 81.29% 0.20 
-0.11 57 16.75 92.58% 0.18 0.13 80 16.79 90.83% 0.18 0.14 89.91% 0.18 

A
im

in
g 

fo
r 

1/
12

 

–0.03 8 7.99 18.55% 0.43 0.32 9 8.26 16.95% 0.49 0.10 16.38% 0.49 
–0.05 9 8.26 35.27% 0.23 0.29 10 8.25 32.22% 0.26 0.14 31.16% 0.26 
–0.07 10 8.16 52.56% 0.16 0.27 12 8.23 49.91% 0.16 0.18 48.56% 0.16 
–0.09 12 8.23 68.60% 0.12 0.24 16 8.5 65.49% 0.13 0.19 63.68% 0.13 
-0.11 15 8.24 79.66% 0.10 0.22 20 8.25 76.07% 0.11 0.20 75.13% 0.11 

 8 

Table 5: Statistics on sampling error from simulated MNL data 9 
 10 
௧௧௖ߚ    

 

equation -0.03 -0.05 -0.07 -0.09 -0.11 

Mean across people of ஽ܲ (8) 28.8% 47.5% 63.1% 75.6% 83.9% 

Mean across people of sd of ෩ܹ  (11) 27.652 21.110 16.397 11.751 8.330 

Mean across people of sd of  0.231 0.474 1.031 2.341 6.313 (12) ܮ 

 11 
 12 
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Table 6: Estimation results from simulated mode (M) - destination (D) case studies 16 
  Setting 1 Setting 2 Setting 3 Setting 4 Setting 5 
 TƌƵĞ ɴttc -0.03 -0.05 -0.07 -0.09 -0.11 
 TƌƵĞ ɴttPT -0.07 -0.12 -0.16 -0.21 -0.26 
 

            
 

Results summarised across ten sampling runs for each setting 
 

 
mean sd. mean sd. mean sd. mean sd. mean sd. 

 sample size 8.19 0.04 8.54 0.02 8.35 0.02 8.44 0.02 8.39 0.02 
 ஽ܲ 0.29 0.00 0.47 0.00 0.63 0.00 0.76 0.00 0.84 0.00 

M
N

L 
(d

e
st

.)
  MNL;DͿ ɴttc bias. -0.0006 0.0002 -0.0004 0.0002 -0.0005 0.0002 -0.0003 0.0002 -0.0005 0.0002 

ɴttc bias. t-rat. -0.86 0.23 -0.45 0.27 -0.48 0.19 -0.24 0.17 -0.29 0.13 
ɶ bias. -0.0013 0.0078 0.0149 0.0074 0.0202 0.0043 0.0160 0.0037 0.0132 0.0027 

ɶ bias. t-rat. -0.02 0.14 0.34 0.17 0.51 0.11 0.42 0.10 0.34 0.07 
ɻ ďŝĂƐ͘ 0.0035 0.0147 0.0030 0.0246 0.0834 0.0388 -0.0207 0.0479 -0.0266 0.0678 

ɻ ďŝas. t-rat. 0.08 0.23 0.05 0.27 0.67 0.28 -0.04 0.21 -0.03 0.18 

M
N

L 
(m

o
d

e
 ʹ

 

d
e

st
in

a
ti

o
n

) 

MNL;MнDͿɴttc bias. -0.0001 0.0001 0.0000 0.0002 0.0006 0.0002 0.0007 0.0002 0.0002 0.0002 
ɴttc bias. t-rat. -0.17 0.19 0.02 0.24 0.59 0.17 0.48 0.15 0.15 0.13 

ɴttPT bias. 0.0000 0.0001 0.0014 0.0002 0.0005 0.0002 0.0006 0.0002 0.0012 0.0002 
ɴttPT bias. t-rat. 0.03 0.07 0.62 0.07 0.15 0.05 0.18 0.05 0.25 0.04 

ɶ bias. 0.0113 0.0057 0.0012 0.0064 0.0240 0.0042 0.0133 0.0028 -0.0013 0.0025 
ɶ bias. t-rat. 0.23 0.11 0.03 0.15 0.61 0.11 0.34 0.07 -0.04 0.07 

ɻ ďŝĂƐ͘ 0.0001 0.0149 -0.0199 0.0183 0.0109 0.0198 -0.0758 0.0224 0.0137 0.0299 
ɻ bias. t-rat. 0.02 0.22 -0.21 0.21 0.15 0.17 -0.39 0.14 0.13 0.14 

N
e

st
 L

o
g

it
 (

m
o

d
e

 ʹ
 

d
e

st
in

a
ti

o
n

) 

 Nested Logit -  ɴttc 0.0003 0.0002 0.0002 0.0002 0.0000 0.0002 -0.0004 0.0002 0.0001 0.0004 
ɴttc bias. t-rat. 0.45 0.22 0.25 0.26 0.02 0.20 -0.27 0.14 0.08 0.20 

ɴttPT bias. -0.0039 0.0003 -0.0009 0.0004 -0.0047 0.0018 -0.0001 0.0003 -0.0036 0.0038 
ɴttPT bias. t-rat. -1.99 0.17 -0.20 0.11 -0.71 0.08 0.09 0.03 -0.22 0.03 

ɶ bias. -0.0283 0.0096 -0.0075 0.0090 -0.0141 0.0056 -0.0128 0.0033 0.0008 0.0059 
ɶ bias. t-rat. -0.55 0.19 -0.17 0.21 -0.34 0.13 -0.33 0.09 -0.02 0.07 

ɻ ďias. -0.0494 0.0175 -0.0064 0.0258 0.0444 0.0403 0.0065 0.0437 0.0566 0.0576 
ɻ ďŝĂƐ͘ ƚ-rat. -0.65 0.24 -0.04 0.25 0.33 0.27 0.22 0.18 0.22 0.15 

ʔ ďŝĂƐ -0.0304 0.0021 -0.0151 0.0021 -0.0169 0.0111 -0.0002 0.0008 -0.0004 0.0202 
ʔ ďŝĂƐ ƚ-rat. -1.84 0.14 -0.81 0.10 -0.93 0.12 -0.11 0.03 -0.31 0.03 
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