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GLOBAL NONLINEAR MODEL FOR THE EVOLUTION OF
THE D,; INDEX

O.M. Boaghe, M.A. Balikhin, S.A. Billings, H. Alleyne

Department of Automatic Control and Systems Engineering. University of Sheffield,
United Kingdom

Abstract

The NARMAX (Nonlinear AutoRegressive Moving Average model with eXoge-
nous inputs) approach is used to analyse simultaneous measurements of the geomag-
netic D,; Index and the merging rate of the IMF and the geomagnetic field V' B;.
A nonlinear discrete relation which describes the dynamics of the Dy; index driven
by V B, is derived directly from experimental measurements. This relation can be
used to forecast the evolution of the Dy index. Higher order spectral analysis of the
identified model provides information about nonlinear coupling between the various
spectral components.

1 Introduction

Modelling of the geomagnetic activity modelling has received considerable attention in
recent years in space physics. especially since it has been realised how important this can
be for space weather predictions. One approach considered in the literature for modelling
the geomagnetic activity is based on basic physical principles. However it has been realised
that geomagnetic activity is a highly complex collection of events, and even the internal
relationships are far from being completely understood [Fairfield et al 1992]. A second
approach consists of finding a physical analogue model, such as the dripping faucet model
[Baker et al, 1990], directly driven model [Goertz et al, 1993], Faraday loop model [Klimas
et al, 1996] for auroral electrojet indices or the Burton model [Burton et al, 1975] for the
evolution of the D, index.

More recently new data driven approaches have been considered. Neural networks
were employed by Wu and Lundsted [1997] to model and forecast the evolution of the
D, index. In an alternative approach the nonlinear relationship between the Dy index
and V' Bs was modelled as a collection of local linear models by Klimas and Vassiliadis
[Klimas et al, 1997, 1993]. [Vassiliadis et al, 1999].

The approach investigated in the present study is based on nonlinear system iden-
tification concepts. The NARMAX (Nonlinear AutoRegressive Moving Average model
with eXogenous inputs) methodology is used to analyse geomagnetic data, to identify a
nonlinear NARMAX model which is a discrete-time difference equation. The identified
nonlinear NARMAX model, statistically and dynamically validated, can be used to fore-
cast the Dy, index. This model can also be readily mapped into the frequency domain to
reveal the energy transfer mechanisms that characterise the magnetosphere dynamics.
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2 The NARMAX methodology - brief presentation

The NARMAX (Nonlinear AutoRegressive Moving Average model with eXogenous in-
puts) methodology used in system modelling and identification is a well known procedure
in nonlinear system theory. The NARMAX approach which has been developed over the
past twenty vears. has a wide area of applications. from the analysis of nonlinear differ-
ential equation with strong nonlinearities. to real system identification and analysis. The
NARMAX representation. proposed by Leontaritis and Billings [1983a,b], is given as

y(k) = F{y(k*l),---:y(k—”y}fu(k;lh----.M(k—nu)-.f(’f-—l),---:f(k*ne)]-Fi(k) (1)

where F'[-] denotes a nonlinear function, u and y are the discrete-time input and output
signals with corresponding maximum lagged values of n, and n,. The quantity £(k) ac-
counts for possible noise and uncertainties, n; represents the maximum noise lag. The
nonlinear function F' can be a polynomial. rational function, radial basis functions, wavelet
decomposition or any other function subject to some mild constraints. Structure detec-
tion. parameter estimation and model validation methods are now well developed for all
these model types [Chen and Billings, 1989; Billings and Voon, 1983; Billings and Zhu,
1994].

The structure and parameters in the NARMAX model can be identified using an
orthogonal least-squares algorithm, which searches through all the potential model terms
and selects the final model terms according to the contribution that they make to the
variance of the system output. This allows the user to build the simplest possible model
using the most significant model terms. Model validation techniques are then applied
to confirm that the model is adequate. The validation is based on both statistical and
dynamical criteria. The statistical validation involves high order correlations which ensure
that the residuals are unpredictable from all past values of the input and output. The
dynamical validation is based on model predictions. A common qualitative validation
is based on one step ahead predictions and long term predictions. The one step ahead
predictions are obtained from previous measured values of D,; and V' B, using the identified
NARMAX model (1). A much better test is to compute the long term predictions, often
called the model predicted output, where the estimated D,; is computed using only input
values, without using any measured output values, except for a few initial values to start
the recursion.

Once a NARMAX model has been identified, it can be readily translated into
the frequency domain [Peyton-Jones and Billings, 1989] to determine all the nonlinear
frequency response functions. The nonlinear frequency response functions are generali-
sations of the linear transfer function, which is defined as the Fourier transform of the
impulse response function h;(7) in the convolution integral

y(t) = [ hulrhult — r)dr

The first order frequency response function H,(w) gives the measure in which a linear
system can modify the amplitude and phase of an input signal.

The nonlinear frequency response functions, also called generalised frequency re-
sponse functions, are Fourier transforms of the nonlinear impulse response functions




Aa(7i.....7Tn) in the nonlinear convolution integral, known as the Volterra series
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The generalised frequency response functions Hy,(wy, . . . ,ws) affect not only the magnitude

and phase of an input signal, but also give a measure of the nonlinear coupling between
spectral components of the input and of the energy transfer mechanism to new spectral
components in the output.

The NARMAX approach will be used in the present work to identify features of the
nonlinear dynamics of the terrestrial magnetosphere. In the next section a discrete-time
NARMAX model is first identified for the D, and V B, data sets and translated into the
frequency domain, where the generalised frequency response functions reveal in a2 new
way energy transfer phenomena, together with a storage and release energy mechanism.

3 Analysis of the D,; dynamics

The input-output data analysed in this paper consist of 4344 hours of data with 5 minutes
resolution for D, and the solar wind V B, taken from January to June 1979'. The D
data has not been pressure corrected, and the V' B, data has been propagated ballistically
to the magnetopause.

The set of 4000 points of the data set with 40 minutes resolution was chosen as the
estimation data set. Applying the NARMAX procedure to the data, using the Orthogonal
Least Squares estimator and a polynomial expansion of F[-]in (1), the model process terms
were identified as

Dy(k) = +1.0772Dg(k — 1) — 0.3940D4;(k — 2) + 0.2711 D (k — 3) — 2.5654V B, (k — 2)
+0.8287V B, (k — 4) 4 0.4948V B, (k — 6) — 0.1600V B, (k — 1)V Bs(k — 9)
+0.3553V By (k — 10) 4 0.3293V Bs(k — 2)V B,(k — 8)
+0.2131V B, (k — 1)V B,(k — 8) = 0.1533V B;(k — 9)V B, (k - 9) (3)
+0.0943V B, (k — 1)V Bs(k — 7) + 0.1644V B, (k — 2)V B (k — 10)

—0.4843V B, (k — 2)V Bs(k — T) — 0.1686V B, (k — 3)V B, (k — 4)

The model (3) consists of 15 process terms, and these contributed 98.95% to
the total variance in the output. In this model k represents the discrete-time step, 40
minutes in this case. The model satisfied both the statistical and dynamical validation
tests. Note also that a noise model was also estimated but is not given here. The one
hour ahead predictions together with ten hours ahead and long term predictions are given
in Figure 1. The predictions obtained are qualitatively similar with those obtained by
Klimas et al [1997,1998] and Vassiliadis et al [1999], however the model can be improved
if solar pressure is taken into account. Furthermore, the NARMAX approach enables
not only good forecasting but more importantly, physical interpretation of the nonlinear
mechanism that characterise Dy; in the frequency domain.

The generalised frequency response functions can be further obtained based on
the method derived by Peyton-Jones and Billings [1989]. The linear frequency response

Lthe data was provided by Prof.A. Klimas and Prof.Y .Kamide
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Figure 1: (a) Discrete-time model (3) predictions (black) compared with measurements

(gray)

function H;(w) shows in Figure 2(a) a high magnitude for low frequencies, meaning that
low frequency components of the V B; will be amplified while the higher components will
be reduced. The nonlinear model (3) also has a second order frequency response function
Hy(wy,wq), shown in Figure 2(b) as a plan view plot and also as a three dimensional
image. As in the linear case, Hy(w;,ws) has a high amplitude along the low frequencies line
fi+ f2 = 0, meaning that only frequency components in the input satisfying this condition
will be amplified by second order nonlinearities, the rest of the frequency components
being reduced. The phenomena of transferring high frequency components down to a
frequency close to the zero frequency component in f; + f>» = 0, can be interpreted as
energy storage.

A complementary phenomena was detected for a different NARMAX model, iden-
tified on the original data set oversampled at one hour resolution. The model is presented
in detail in Boaghe et al [1999] and only the third order transfer Hj(w),ws,ws) described
here. This is shown in Figure 2(c) as a hyper-plane section on the line fi = fs, the
function shows the same type of low frequency amplification on the line f; + f> + f3 = 0.
Again this can be interpreted as a storage of energy, but Hj(w;.w,,ws) also shows an
amplification for components which satisfy f; € [0;0.005] and f; € [—0.08;0.08]. In this
case a low frequency component in the interval f; € [0;0.003] can be transfered to higher
frequency values through nonlinear coupling with f; € [—0.08;0.08] and this phenomena
can be interpreted as energy release.

Another advantage of the NARMAX methodology and frequency domain approach
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Figure 2: (a) H; response function; (b) H, response function (3-D plot and plan view);
(c) Hs response function from Boaghe et al [1999] (3-D plot and plan view detail and
logarithmic scale)

is the possibility of continuous-time model extraction. This is very important because the
underlying phenomena are continuous and it allows the identified results to be interpreted
and related with respect to existing physical models. Based on a method derived by Li
and Billings [1998] the following continuous-time nonlinear model was derived from the
identified NARMAX model in equation (3)

5.380, + 13.38D,; + Dy = —12.88V B, — 9.36V B2 + 0.77V B (4)

The continuous-time model predicted output agrees very well with the discrete-time model
predicted output. Further improvement is expected when solar pressure will be considered.

4 Conclusions

The identification of a mathematical model relating the geomagnetic index D, to the
geomagnetic field V"B, has been performed using methods from nonlinear systems iden-
tification. A concise representation of the system was identified using the NARMAX
approach and was used for Dy, index forecasting. The dominant nonlinear characteristics
of the geomagnetic index were studied using the Generalised Frequency Response Func-
tions computed directly by mapping the identiied NARMAX model into the frequency
domain.
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